Distinct Methodologies to Produce Capped Mesoporous Silica with Hydroxyapatite and the Influence in Intracellular Signaling as Cytotoxicity on Human Umbilical Vein Endothelial Cells

da Silva de Barros, Aline Oliveira and Rebêlo Alencar, Luciana Magalhães and Alexis, Frank and Santos-Oliveira, Ralph (2021) Distinct Methodologies to Produce Capped Mesoporous Silica with Hydroxyapatite and the Influence in Intracellular Signaling as Cytotoxicity on Human Umbilical Vein Endothelial Cells. Bioengineering, 8 (9). p. 125. ISSN 2306-5354

[thumbnail of bioengineering-08-00125-v2.pdf] Text
bioengineering-08-00125-v2.pdf - Published Version

Download (5MB)

Abstract

Mesoporous silica has unique properties such as controllable mesoporous structure and size, good biocompatibility, high specific surface area, and large pore volume. For that reason, this material has been broadly functionalized for biomedical applications, such as optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and widely employed as drug delivery systems. In this study, we synthesized fiber-type mesoporous silica capped with hydroxyapatite (ordered SiO2–CaO–P2O5 mesoporous silica). Its biological activity was evaluated through a cellular and molecular approach using HUVEC cell culture. Two distinct methodologies have produced the ordered SiO2–CaO–P2O5 mesoporous silica: (i) two-step Ca-doped silica matrix followed by hydroxyapatite crystallization inside the Ca-doped silica matrix and (ii) one-step Ca-doped silica matrix formed with the hydroxyapatite crystallization. Further analysis included: elemental analysis, transmission, scanning electron microscopy images, Small and Wide-Angle X-ray Diffraction analysis, Fourier Transform Infrared, and in vitro assays with HUVEC (cytotoxicity and immunoblotting). The hydroxyapatite capping methodology significantly affected the original mesoporous material structure. Furthermore, no cellular or molecular effect has been observed. The promising results presented here suggest that the one-step method to obtain hydroxyapatite capped mesoporous silica was effective, also demonstrating that this material has potential in biomedical applications.

Item Type: Article
Subjects: Universal Eprints > Engineering
Depositing User: Managing Editor
Date Deposited: 15 Mar 2023 09:00
Last Modified: 23 Mar 2024 04:05
URI: http://journal.article2publish.com/id/eprint/811

Actions (login required)

View Item
View Item