Wu, Luying (2024) Kirchhoff Biharmonic System with Choquard Nonlinearity and Singular Weights. Asian Journal of Mathematics and Computer Research, 31 (2). pp. 8-28. ISSN 2395-4213
Wu3122024AJOMCOR12012.pdf - Published Version
Download (793kB)
Abstract
The aim of this paper is to find the existence of solutions for the following Kirchhoff type biharmonic system with exponential nonlinearity and singular weights
\(\begin{cases}m\left(\|u\|^2+\|v\|^2\right) \Delta^2 u=\left[I_\mu * \frac{F(x, u, v)}{|x|^\alpha}\right] \frac{f_1(x, u, v)}{|x|^\alpha} & \text { in } \Omega \\ m\left(\|u\|^2+\|v\|^2\right) \Delta^2 v=\left[I_\mu * \frac{F(x, u, v)}{|x|^\alpha}\right] \frac{f_2(x, u, v)}{|x|^\alpha} & \text { in } \Omega \\ u=0, \quad v=0, \quad \nabla u=\mathbf{0}, \quad \nabla v=\mathbf{0} & \text { on } \partial \Omega\end{cases}S\)
where \(\Omega\) is a bounded domain in \(\mathbb{R}^4\) containing the origin with smooth boundary, \(\mu \in(0,4), 0<\alpha<\frac{\mu}{2}\), \(I_\mu(x)=\frac{1}{|x|^4-\mu}, m\) is a Kirchhoff type function, \(\|u\|^2=\int_{\Omega}|\Delta u|^2 d x, f_i\) behaves like \(e^{\beta_{0 s^2}}\) when \(|s| \rightarrow \infty\) for some \(\beta_0>0\), and there is \(C^1\) function \(F: \mathbb{R}^2 \rightarrow \mathbb{R}\) such that \(\left(\frac{\partial F(x, u, v)}{\partial u}, \frac{\partial F(x, u, v)}{\partial v}\right)=\left(f_1(x, u, v), f_2(x, u, v)\right)\). We establish sufficient conditions for the solutions of the above system by using variational methods with Adams inequality.
Item Type: | Article |
---|---|
Subjects: | Universal Eprints > Mathematical Science |
Depositing User: | Managing Editor |
Date Deposited: | 09 Apr 2024 06:19 |
Last Modified: | 09 Apr 2024 06:19 |
URI: | http://journal.article2publish.com/id/eprint/3726 |