Effects of a dietary intervention on cardiometabolic risk and food consumption in a workplace

Shrestha, Archana and Tamrakar, Dipesh and Ghinanju, Bhawana and Shrestha, Deepa and Khadka, Parashar and Adhikari, Bikram and Shrestha, Jayana and Waiwa, Suruchi and Pyakurel, Prajjwal and Bhandari, Niroj and Karmacharya, Biraj Man and Shrestha, Akina and Shrestha, Rajeev and Bhatta, Rajendra Dev and Malik, Vasanti and Mattei, Josiemer and Spiegelman, Donna and Mendoza-Nuñez, Victor Manuel (2024) Effects of a dietary intervention on cardiometabolic risk and food consumption in a workplace. PLOS ONE, 19 (4). e0301826. ISSN 1932-6203

[thumbnail of journal.pone.0301826.pdf] Text
journal.pone.0301826.pdf - Published Version

Download (716kB)

Abstract

Since the pandemic started, organisations have been actively seeking ways to improve their organisational agility and resilience (regility) and turn to Artificial Intelligence (AI) to gain a deeper understanding and further enhance their agility and regility. Organisations are turning to AI as a critical enabler to achieve these goals. AI empowers organisations by analysing large data sets quickly and accurately, enabling faster decision-making and building agility and resilience. This strategic use of AI gives businesses a competitive advantage and allows them to adapt to rapidly changing environments. Failure to prioritise agility and responsiveness can result in increased costs, missed opportunities, competition and reputational damage, and ultimately, loss of customers, revenue, profitability, and market share. Prioritising can be achieved by utilising eXplainable Artificial Intelligence (XAI) techniques, illuminating how AI models make decisions and making them transparent, interpretable, and understandable. Based on previous research on using AI to predict organisational agility, this study focuses on integrating XAI techniques, such as Shapley Additive Explanations (SHAP), in organisational agility and resilience. By identifying the importance of different features that affect organisational agility prediction, this study aims to demystify the decision-making processes of the prediction model using XAI. This is essential for the ethical deployment of AI, fostering trust and transparency in these systems. Recognising key features in organisational agility prediction can guide companies in determining which areas to concentrate on in order to improve their agility and resilience.

Item Type: Article
Subjects: Universal Eprints > Biological Science
Depositing User: Managing Editor
Date Deposited: 06 May 2024 05:57
Last Modified: 06 May 2024 05:57
URI: http://journal.article2publish.com/id/eprint/3776

Actions (login required)

View Item
View Item