Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides

Booth, Valerie (2021) Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides. Frontiers in Medical Technology, 2. ISSN 2673-3129

[thumbnail of pubmed-zip/versions/1/package-entries/fmedt-02-621572/fmedt-02-621572.pdf] Text
pubmed-zip/versions/1/package-entries/fmedt-02-621572/fmedt-02-621572.pdf - Published Version

Download (2MB)

Abstract

Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides Valerie Booth

Solid state NMR has been tremendously useful in characterizing the structure and dynamics of model membranes composed of simple lipid mixtures. Model lipid studies employing solid state NMR have included important work revealing how membrane bilayer structure and dynamics are affected by molecules such as antimicrobial peptides (AMPs). However, solid state NMR need not be applied only to model membranes, but can also be used with living, intact cells. NMR of whole cells holds promise for helping resolve some unsolved mysteries about how bacteria interact with AMPs. This mini-review will focus on recent studies using 2 H NMR to study how treatment with AMPs affect membranes in intact bacteria.
1 11 2021 621572 10.3389/fmedt.2020.621572 1 10.3389/crossmark-policy frontiersin.org true Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100000038 https://creativecommons.org/licenses/by/4.0/ 10.3389/fmedt.2020.621572 https://www.frontiersin.org/articles/10.3389/fmedt.2020.621572/full https://www.frontiersin.org/articles/10.3389/fmedt.2020.621572/full Trends Biotechnol. Nguyen 29 464 2011 The expanding scope of antimicrobial peptide structures and their modes of action 10.1016/j.tibtech.2011.05.001 Biophys J. Faust 112 1663 2017 Action of antimicrobial peptides on bacterial and lipid membranes: a direct comparison 10.1016/j.bpj.2017.03.003 Antimicrobial Peptides, Advances in Experimental Medicine and Biology, 1117. Aisenbrey 33 2019 The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations Nat Rev Microbiol. Brogden 3 238 2005 Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? 10.1038/nrmicro1098 Expert Opin Drug Discov. Marcos 4 659 2009 Antimicrobial peptides: to membranes and beyond 10.1517/17460440902992888 Curr Top Med Chem. Scocchi 16 76 2016 Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria 10.2174/1568026615666150703121009 Exp Dermatol. Niyonsaba 26 989 2017 Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases 10.1111/exd.13314 Front Chem. Haney 7 43 2019 Reassessing the host defense peptide landscape 10.3389/fchem.2019.00043 Biochim Biophys Acta. McDonald 1848 1451 2015 Structure-function relationships in histidine-rich antimicrobial peptides from Atlantic cod 10.1016/j.bbamem.2015.03.030 Biosci Rep. Chen 38 BSR20180710 2018 A novel antimicrobial peptide, Ranatuerin-2PLx, showing therapeutic potential in inhibiting proliferation of cancer cells 10.1042/BSR20180710 Int J Mol Sci. Barroso 21 4613 2020 The diverse piscidin repertoire of the European sea bass (dicentrarchus labrax): molecular characterization and antimicrobial activities 10.3390/ijms21134613 Biochim Biophys Acta. Shai 1462 55 1999 Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides 10.1016/S0005-2736(99)00200-X Front Cell Infect Microbiol. Mahlapuu 6 194 2016 Antimicrobial peptides: an emerging category of therapeutic agents 10.3389/fcimb.2016.00194 Adv Exp Med Biol. Epand 1117 65 2019 Anionic lipid clustering model 10.1007/978-981-13-3588-4_5 Biochim Biophys Acta. Bechinger 1758 1529 2006 Detergent-like actions of linear amphipathic cationic antimicrobial peptides 10.1016/j.bbamem.2006.07.001 J Pept Sci. Bechinger 17 306 2011 Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations 10.1002/psc.1343 ACS Chem Biol. Wimley 5 905 2010 Describing the mechanism of antimicrobial peptide action with the interfacial activity model 10.1021/cb1001558 Nat Rev Microbiol. Melo 7 245 2009 Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations 10.1038/nrmicro2095 Pept Sci. Savini 110 e24041 2018 From liposomes to cells: filling the gap between physicochemical and microbiological studies of the activity and selectivity of host-defense peptides 10.1002/pep2.24041 Clin Microbiol Rev. Jenssen 19 491 2006 Peptide antimicrobial agents 10.1128/CMR.00056-05 PeerJ. Brannan 3 e1516 2015 Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target 10.7717/peerj.1516 Acc Chem Res. Sani 49 1130 2016 How membrane-active peptides get into lipid membranes 10.1021/acs.accounts.6b00074 FEBS J. Libardo 284 3662 2017 Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms 10.1111/febs.14263 Front Microbiol. Vasilchenko 10 1160 2019 Sub-inhibitory effects of antimicrobial peptides 10.3389/fmicb.2019.01160 Biochim Biophys Acta Biomembr. Savini 1862 183291 2020 Binding of an antimicrobial peptide to bacterial cells: interaction with different species, strains and cellular components 10.1016/j.bbamem.2020.183291 J Pept Sci. Freire 21 178 2015 Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells 10.1002/psc.2741 Biochim Biophys Acta. Malanovic 1858 936 2016 Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides 10.1016/j.bbamem.2015.11.004 Front Cell Dev Biol. Rashid 4 55 2016 Focal targeting of the bacterial envelope by antimicrobial peptides 10.3389/fcell.2016.00055 J Dent Res. Bechinger 96 254 2017 Antimicrobial peptides: mechanisms of action and resistance 10.1177/0022034516679973 Front Neurosci. Li 11 73 2017 Membrane active antimicrobial peptides: translating mechanistic insights to design 10.3389/fnins.2017.00073 The pH dependence of microbe sterilization by cationic antimicrobial peptides: not just the usual suspects331220 WalkenhorstWF KleinJW VoP WimleyWC 10.1128/AAC.00063-1323650166Antimicrob Agents Chemother.572013 Biophys J. Westerfield 117 920 2019 Ions modulate key interactions between pHLIP and lipid membranes 10.1016/j.bpj.2019.07.034 Antimicrobial Peptides, Advances in Experimental Medicine and Biology, 1117 Hilchie 131 2019 Anticancer activities of natural and synthetic peptides Proc Natl Acad Sci USA. Mishra 116 13517 2019 Low cationicity is important for systemic in vivo efficacy of database-derived peptides against drug-resistant gram-positive pathogens 10.1073/pnas.1821410116 Sci Rep. Oliva 8 8888 2018 Exploring the role of unnatural amino acids in antimicrobial peptides 10.1038/s41598-018-27231-5 Biochim Biophys Acta Biomembr. Vaezi 1862 183107 2020 Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: the case of killerFLIP 10.1016/j.bbamem.2019.183107 Biochim Biophys Acta. Kacprzyk 1768 2667 2007 Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions 10.1016/j.bbamem.2007.06.020 Arch Microbiol. Kharidia 194 769 2012 Activity and selectivity of histidine-containing lytic peptides to antibiotic-resistant bacteria 10.1007/s00203-012-0810-5 Biochim Biophys Acta. Khatami 1838 2778 2014 Molecular dynamics simulations of histidine-containing cod antimicrobial peptide paralogs in self-assembled bilayers 10.1016/j.bbamem.2014.07.013 Biochim Biophys Acta. Hoskin 1778 357 2008 Studies on anticancer activities of antimicrobial peptides 10.1016/j.bbamem.2007.11.008 Biochim Biophys Acta Biomembr. Capozzi 1860 2348 2018 Designing effective anticancer-radiopeptides. A molecular dynamics study of their interaction with model tumor and healthy cell membranes 10.1016/j.bbamem.2018.05.021 Biochim Biophys Acta. Wiedman 1848 951 2015 Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides 10.1016/j.bbamem.2014.12.023 Sci Rep. Liu 7 9585 2017 The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum 10.1038/s41598-017-10049-y pH-dependent membrane interactions of the histidine-rich cell-penetrating peptide LAH4-L11290300 WolfJ AisenbreyC HarmoucheN RayaJ BertaniP VoievodaN 10.1016/j.bpj.2017.06.05328734478Biophys J.1132017 Chembiochem. Torcato 14 2013 2013 The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability 10.1002/cbic.201300274 Biochim Biophys Acta. Quilès 1858 75 2016 In situ and real time investigation of the evolution of a pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide 10.1016/j.bbamem.2015.10.015 Biochim Biophys Acta Biomembr. Hammond 1863 183447 2020 Atomic force microscopy to elucidate how peptides disrupt membranes 10.1016/j.bbamem.2020.183447 Antimicrob Agents Chemother. Hartmann 54 3132 2010 Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy 10.1128/AAC.00124-10 Sci Rep. Schneider 6 32948 2016 Imaging the antimicrobial mechanism(s) of cathelicidin-2 10.1038/srep32948 Trends Microbiol. Choi 24 111 2016 Lights, camera, action! antimicrobial peptide mechanisms imaged in space and time 10.1016/j.tim.2015.11.004 Biochim Biophys Acta Zhang 1858 274 2016 Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum 10.1016/j.bbamem.2015.11.018 Biopolymers. Bourbigot 91 1 2009 Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles 10.1002/bip.21071 Biochim Biophys Acta. Haney 1788 1639 2009 Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? 10.1016/j.bbamem.2009.01.002 Biochim Biophys Acta. Legrand 1808 106 2011 Structure and mechanism of action of a de novo antimicrobial detergent-like peptide 10.1016/j.bbamem.2010.08.020 Biochemistry. Shenkarev 50 6255 2011 Molecular mechanism of action of beta-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers 10.1021/bi200746t J Biol Chem. Vermeer 287 34120 2012 Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic alpha-helical peptides 10.1074/jbc.M112.359067 Biochim Biophys Acta. Bechinger 1666 190 2004 The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy 10.1016/j.bbamem.2004.08.008 Biochemistry. Bourbigot 48 10509 2009 Structure of chemokine-derived antimicrobial peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers 10.1021/bi901311p J Am Chem Soc. Perrin 136 3491 2014 High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion 10.1021/ja411119m Modern Magnetic Resonance Fillion 1 2016 10.1007/978-3-319-28275-6_63-1 Solid-state NMR studies of the interactions and structure of antimicrobial peptides in model membranes Biochemistry. Lee 54 1897 2015 Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study 10.1021/bi501418m Pept Sci. Zhu 110 e24061 2018 Interaction of cationic antimicrobial peptides from Australian frogs with lipid membranes 10.1002/pep2.24061 Biochemistry. Sherman 48 11892 2009 Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study 10.1021/bi901668y Biophys J Harmouche 115 1033 2018 Lipid-mediated interactions between the antimicrobial peptides magainin 2 and PGLa in bilayers 10.1016/j.bpj.2018.08.009 Langmuir. Sandhu 36 9867 2020 Role of charge in lipid vesicle binding and vesicle surface saturation by gaduscidin-1 and gaduscidin-2 10.1021/acs.langmuir.0c01497 Protein Sci. Hong 20 641 2011 Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR 10.1002/pro.600 J Magn Reson. Sani 253 138 2015 Progression of NMR studies of membrane-active peptides from lipid bilayers to live cells 10.1016/j.jmr.2014.11.016 Proc Natl Acad Sci USA. Mani 103 16242 2006 Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR 10.1073/pnas.0605079103 Commun Biol. Kang 2 402 2019 Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog 10.1038/s42003-019-0653-6 IUCrJ. Luchinat 4 108 2017 In-cell NMR: a topical review 10.1107/S2052252516020625 Chempluschem. Narasimhan 85 760 2020 When small becomes too big: expanding the use of in-cell solid-state NMR spectroscopy 10.1002/cplu.202000167 Nat Protoc. Serber 1 2701 2006 Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy 10.1038/nprot.2006.181 Nature. Inomata 458 106 2009 High-resolution multi-dimensional NMR spectroscopy of proteins in human cells 10.1038/nature07839 Nature. Burmann 577 127 2020 Regulation of α-synuclein by chaperones in mammalian cells 10.1038/s41586-019-1808-9 Biophys J. Datta 111 1724 2016 Mode of action of a designed antimicrobial peptide: high potency against cryptococcus neoformans 10.1016/j.bpj.2016.08.032 Nat Methods. Kaplan 12 649 2015 Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR 10.1038/nmeth.3406 Biochim Biophys Acta. Yamamoto 1848 342 2015 Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization 10.1016/j.bbamem.2014.07.008 Biochemistry. Albert 57 4741 2018 Dynamic nuclear polarization nuclear magnetic resonance in human cells using fluorescent polarizing agents 10.1021/acs.biochem.8b00257 Angew Chem Int Ed Engl. Narasimhan 58 12969 2019 DNP-supported solid-state NMR spectroscopy of proteins inside mammalian cells 10.1002/anie.201903246 J Mol Biol. Cegelski 357 1253 2006 Conformational and quantitative characterization of oritavancin-peptidoglycan complexes in whole cells of Staphylococcus aureus by in vivo 13C and 15N labeling 10.1016/j.jmb.2006.01.040 Biochemistry. Zhou 51 8143 2012 Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy 10.1021/bi3012115 Biochemistry. Romaniuk 57 3966 2018 Peptidoglycan and teichoic acid levels and alterations in Staphylococcus aureus by cell-wall and whole-cell nuclear magnetic resonance 10.1021/acs.biochem.8b00495 J Biol Chem. Chatterjee 290 13779 2015 Solid-state NMR reveals the carbon-based molecular architecture of cryptococcus neoformans fungal eumelanins in the cell wall 10.1074/jbc.M114.618389 Nat Commun. Kang 9 2747 2018 Molecular architecture of fungal cell walls revealed by solid-state NMR 10.1038/s41467-018-05199-0 Int J Mol Sci. Poulhazan 19 3817 2018 Unambiguous ex situ and in cell 2D 10.3390/ijms19123817 Int J Mol Sci. Overall 20 181 2019 In situ monitoring of bacteria under antimicrobial stress using 31P solid-state NMR 10.3390/ijms20010181 Biochemistry. Pius 51 118 2012 (2)H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78 10.1021/bi201569t Biochim Biophys Acta. Tardy-Laporte 1828 614 2013 A (2)H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating 10.1016/j.bbamem.2012.09.011 Biochim Biophys Acta. Davis 737 117 1983 The description of membrane lipid conformation, order and dynamics by 2H-NMR 10.1016/0304-4157(83)90015-1 Methods Mol Biol. Santisteban 1548 217 2017 Protocols for studying the interaction of MSI-78 with the membranes of whole gram-positive and gram-negative bacteria by NMR 10.1007/978-1-4939-6737-7_15 Biochim Biophys Acta Biomembr. Santisteban 1862 183199 2020 Effect of AMPs MSI-78 and BP100 on the lipid acyl chains of 2H-labeled intact gram positive bacteria 10.1016/j.bbamem.2020.183199 Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides. Marcotte 459 2014 10.1039/9781782627449-00459 2H solid-state NMR study of peptide-membrane interactions in intact bacteria Biophys J. Warnet 109 2461 2015 In-cell solid-state NMR: an emerging technique for the study of biological membranes 10.1016/j.bpj.2015.10.041 Biochim Biophys Acta. Laadhari 1858 2959 2016 Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by (2)H solid-state NMR 10.1016/j.bbamem.2016.09.009 Biochim Biophys Acta. Booth 1865 1500 2017 Recent progress on the application of (2)H solid-state NMR to probe the interaction of antimicrobial peptides with intact bacteria 10.1016/j.bbapap.2017.07.018 J Biomol NMR. Arnold 70 123 2018 Whole cell solid-state NMR study of chlamydomonas reinhardtii microalgae 10.1007/s10858-018-0164-7 Biochim Biophys Acta Biomembr Bouhlel 1861 871 2019 Labelling strategy and membrane characterization of marine bacteria vibrio splendidus by in vivo 10.1016/j.bbamem.2019.01.018 Biochim Biophys Acta Biomembr. Warnet 1858 146 2016 A 2H magic-angle spinning solid-state {NMR} characterisation of lipid membranes in intact bacteria 10.1016/j.bbamem.2015.10.020 SantistebanNP 31987866CanadaDepartment of Physics and Physical Oceanography, Memorial University of NewfoundlandInteraction of Antimicrobial Peptides With Bacterial Cell Envelopes.2019 Solid-State NMR: Applications in Biomembrane Structure Booth 1 2020 10.1088/978-0-7503-2532-5ch3 Deuterium solid-state NMR of whole bacteria: Sample preparation and effects of cell envelope manipulation Biophys J. Ramamoorthy 91 206 2006 Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin 10.1529/biophysj.105.073890 Antimicrob Agents Chemother. Friedrich 44 2086 2000 Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria 10.1128/AAC.44.8.2086-2092.2000 Nat Biotechnol. Hancock 24 1551 2006 Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies 10.1038/nbt1267 Philos Trans R Soc Lond B Biol Sci. Baeder 371 20150294 2016 Antimicrobial combinations: bliss independence and loewe additivity derived from mechanistic multi-hit models 10.1098/rstb.2015.0294 ACS Chem Biol. Roversi 9 2003 2014 How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23 10.1021/cb500426r Eur Biophys J. Splith 40 387 2011 Antimicrobial peptides with cell-penetrating peptide properties and vice versa 10.1007/s00249-011-0682-7 Drug Discov Today. Milletti 17 850 2012 Cell-penetrating peptides: classes, origin, and current landscape 10.1016/j.drudis.2012.03.002 Biomolecules. Avci 8 77 2018 Membrane active peptides and their biophysical characterization 10.3390/biom8030077

Item Type: Article
Subjects: Universal Eprints > Medical Science
Depositing User: Managing Editor
Date Deposited: 26 Nov 2022 04:17
Last Modified: 21 Feb 2024 03:56
URI: http://journal.article2publish.com/id/eprint/348

Actions (login required)

View Item
View Item