Preparation of Silymarin–quercetin Loaded Nanoparticles by Spontaneous Emulsification Solvent Diffusion Method Using D-alpha-tocopheryl Poly (Ethylene Glycol) 1000 Succinate

Venkatesan, P. and Kumar, P. Manoj and Senthila, S. (2021) Preparation of Silymarin–quercetin Loaded Nanoparticles by Spontaneous Emulsification Solvent Diffusion Method Using D-alpha-tocopheryl Poly (Ethylene Glycol) 1000 Succinate. Journal of Pharmaceutical Research International, 33 (12). pp. 84-94. ISSN 2456-9119

[thumbnail of 2087-Article Text-3725-1-10-20221006.pdf] Text
2087-Article Text-3725-1-10-20221006.pdf - Published Version

Download (2MB)

Abstract

Silymarin, a flavonolignan, derived from Silybum marianum, family Asteraceae has long been used as a hepatoprotective remedy. Silymarin has cytoprotective activities due to its antioxidant property and free radical scavenging activity. The pharmacokinetic studies of past three decades revealed that silymarin has poor absorption, rapid metabolism especially by Phase II metabolism and ultimately poor oral bioavailability. Quercetin, a flavonoid present in edible vegetables and fruits, It is a potent antioxidant and shows a wide range of biological functions. Quercetin improves blood levels and efficacy of number of drugs since it is P-Glycoprotein inhibitor and also inhibits drug metabolizing enzymes. Both silymarin and quercetin were, poorly soluble in the water shows low bioavailability. The advanced type of formulation like polymeric nanoparticles (PNPs) can be successfully utilised for bioavailability enhancement and targeting the Silymarin-quercetin to hepatocytes. A controlled release PNPs of silymarin-quercetin were prepared by spontaneous emulsification solvent diffusion (SESD) method using Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable polymer, D-alpha-tocopheryl poly (ethylene glycol) 1000 succinate (TPGS) used as a solubilizer, as an emulsifier. TPGS as an emulsifier and further as a matrix material blended with PLGA was used to enhance the encapsulation efficiency and improve the drug release profile of nanoparticles. Different formulations with various drug: polymer ratios and volume and concentration of surfactant, centrifugation time were evaluated. The effect of formulation parameters such as drug/polymer ratio, volume and surfactant content were evaluated. The surface morphology and size of the nanoparticles were studied by scanning electron microscopy (SEM) Transmission electron microscopy (TEM). Drug encapsulation efficiency and in vitro drug release profiles of nanoparticles were determined using UV spectrophotometry. The nanoparticles prepared with combination of both the drugs in this study were spherical with size range of 100–200 nm. It was shown that TPGS was a good emulsifier for producing nanoparticles of hydrophobic drugs and improving the encapsulation efficiency and drug loading and drug release profile of nanoparticles. Although the amount of the TPGS used had a significant effect on the nanoparticle size and morphology, the drug loading and release profile of nanoparticles

Item Type: Article
Subjects: Universal Eprints > Medical Science
Depositing User: Managing Editor
Date Deposited: 12 Jan 2023 06:31
Last Modified: 02 Jan 2024 12:45
URI: http://journal.article2publish.com/id/eprint/312

Actions (login required)

View Item
View Item