Test and Detection of Antifreezing and Anticorrosion Performance of Carbon Nanofiber Bridge Concrete

Yang, Huining and Wang, Dan and Yu, Huai and Vasimalai, Nagamalai (2022) Test and Detection of Antifreezing and Anticorrosion Performance of Carbon Nanofiber Bridge Concrete. International Journal of Analytical Chemistry, 2022. pp. 1-6. ISSN 1687-8760

[thumbnail of 4055128.pdf] Text
4055128.pdf - Published Version

Download (628kB)

Abstract

In order to solve the problems of carbon nanotubes, steel fibers, and carbon nanotubes + steel fibers on the compressive strength and impact resistance of concrete, the author proposes a test method for the frost resistance and corrosion resistance of carbon nanofiber bridge concrete. Using carbon nanotubes and steel fibers as reinforcing materials, the effects of carbon nanotubes and steel fibers on the compressive strength and impact resistance of concrete were studied. Experimental results show that incorporating carbon nanotubes and steel fibers can improve the compressive strength of concrete. Compared with the single-doped carbon nanotubes, the single-doped steel fiber has a greater effect on the improvement of the impact resistance of the concrete. The toughness and ductility of carbon nanotubes and steel fiber reinforced concrete are improved again compared with that of single steel fiber reinforced concrete. The effect of adding 1% steel fiber +0.30% carbon nanotubes is the most significant in enhancing the performance of concrete. Conclusion. The synergistic effect of carbon nanotubes and steel fibers is more conducive in complementing each other's advantages and improving the performance of concrete.

Item Type: Article
Subjects: Universal Eprints > Chemical Science
Depositing User: Managing Editor
Date Deposited: 17 Jan 2023 06:07
Last Modified: 17 Jun 2024 05:46
URI: http://journal.article2publish.com/id/eprint/1169

Actions (login required)

View Item
View Item