A B3LYP study on electronic structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O) as a Mn cluster model of OEC

Katsuda, Masashi and Mitani, Masaki and Yoshioka, Yasunori (2012) A B3LYP study on electronic structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O) as a Mn cluster model of OEC. Journal of Biophysical Chemistry, 03 (02). pp. 111-126. ISSN 2153-036X

[thumbnail of JBPC20120200001_11276481.pdf] Text
JBPC20120200001_11276481.pdf - Published Version

Download (1MB)

Abstract

Electronic and molecular structures of [(X)mMn(μ-oxo)2Mn(Y)n]q+ (X, Y = H2O, OH and O), which are Mn cluster models at catalytic sites of OEC, were studied by broken-symmetry unrestricted B3LYP method. Two paths from the S0 to S3 states of Kok cycle were investigated. One is a path starting from [Mn(II) (μ-oxo)2Mn(III)] at the S0 state, and another is from [Mn(III) (μ-oxo)2Mn(III)] at the S0. Results found in this study are summarized as, 1) In [Mn(II), Mn(III)], it is not possible that H2O molecules coordinate to the Mn atoms with retaining the octahedral configuration. 2) The OHˉ anion selectively coordinates to Mn(IV) rather than Mn(III). 3) When the oxo atom directly bind to the Mn atom, the Mn atom must be a Mn(IV). From these results, the catalytic mechanism for four-electron oxidation of two H2O molecules in OEC is proposed. 1) The Mn4(II, III, IV, IV) at S0 is ruled out. 2) For Mn4(III, III, IV, IV) at S1, the Mn atom coordinated by OHˉ anion is a Mn(IV) not Mn(III). 3) Only Mn(III) ion which is coordinated by a H2O molecule at S0 plays crucial roles for the oxidation.

Item Type: Article
Subjects: Universal Eprints > Chemical Science
Depositing User: Managing Editor
Date Deposited: 13 Jan 2023 06:07
Last Modified: 06 Jul 2024 06:19
URI: http://journal.article2publish.com/id/eprint/1040

Actions (login required)

View Item
View Item