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Abstract 
Background: The liver function tests (LFTs) remain one of the most com-
monly employed clinical measures for the diagnosis of hepatobiliary disease. 
LFTs sometimes referred to as hepatic panel help to determine the health of 
liver, monitor the progression of a disease and measure the severity of a dis-
ease particularly scarring or cirrhosis of the liver. Aims: In this study, we 
present a new approach to evaluate the natural progression of liver disease 
through the assessment of eight biochemical parameters: serum total biliru-
bin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
Alkaline phosphatase (ALP), total protein (TP), albumin (ALB), albu-
min/globulin (A/G) ratio, and alpha-fetoprotein (AFP) as well as two ma-
chine learning (ML) tools—Random Forest and CART to substantive the 
outcome. Methods: The study was carried out in a total of 100 subjects which 
included healthy controls (group I-25 patients), patients with acute hepatitis 
(group II-25 patients), chronic hepatitis (group III-25 patients) and hepato-
cellular carcinoma (group IV-25 patients) applying both biochemical and 
Machine Learning methods. Results: Of the eight parameters tested, all ex-
cept ALP (p = 0.426), showed an overall discriminatory ability as judged by 
one-factor analysis of variance (p < 0.0001). We also assessed the differences 
among group means by least significance difference (LSD). The analysis 
showed that TB remained significantly elevated in groups II, III, and IV as 
compared to controls (p < 0.05). ALP did not have any discriminatory power 
among the four groups tested. ALT and AST were good discriminators only 
between the control groups and groups II and III. TP, ALB, and A/G ratio 
were decreased significantly in groups III and IV as compared to controls. 
Group III and IV were almost indistinguishable using these biochemical pa-
rameters except for AFP, which was found to be elevated only in group IV. 

How to cite this paper: Akter, S., Shekhar, 
H.U. and Akhteruzzaman, S. (2021) Appli-
cation of Biochemical Tests and Machine 
Learning Techniques to Diagnose and 
Evaluate Liver Disease. Advances in Bios-
cience and Biotechnology, 12, 154-172. 
https://doi.org/10.4236/abb.2021.126011 
 
Received: May 11, 2021 
Accepted: June 22, 2021 
Published: June 25, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/abb
https://doi.org/10.4236/abb.2021.126011
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/abb.2021.126011
http://creativecommons.org/licenses/by/4.0/


S. Akter et al. 
 

 

DOI: 10.4236/abb.2021.126011 155 Advances in Bioscience and Biotechnology 
 

The accuracy of classification into different liver patient groups using random 
Forest and CART was 94% and 95% respectively. Conclusion: Acute hepati-
tis (group II) shows a higher level of AST, ALT and ALP compared to chronic 
hepatitis (group III) and hepatocellular carcinoma (group IV). Two machine 
learning algorithms also predicted and supported the same biochemical re-
sults by correctly classifying liver disease patients. We also recommend that 
the AFP test can be performed if hepatocellular carcinoma is suspected. 
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1. Introduction 

As a body’s largest organ, the liver plays an important role in our whole body’s 
blood transfer and controls the concentrations of most of the chemical and waste 
products in our blood. Thus, it is important to keep the liver healthy. Parasites, 
viruses cause inflammation and decrease function by infecting the liver, subse-
quently causing Liver Disease (LD) [1]. 

LD is a common clinical disorder; it is also associated with high morbidity and 
mortality [2]. Additionally, LD has been increasing in parallel with the preva-
lence of diabetes, metabolic syndrome, alcohol and obesity [3]. Higher preva-
lence of LD has appeared as a greater economic burden. Therefore, accurate 
identification of individuals at risk and early recognition of LD could offer im-
mense benefits for diagnosis, prevention, or even proper treatment. Subsequent-
ly, reliance on a single diagnostics test is not sufficient to evaluate liver function 
[4]. A wide variety of biochemical measures are therefore used to determine the 
general condition of the liver. 

Different biochemical tests commonly referred to as Liver Function Tests 
(LFT) provide secondary evidence for hepatic diseases [5]. Metrical record, 
physical examination along with diagnostic test (LFTs) results entail to 1) recog-
nize patients with liver disease; 2) diagnosis of differential jaundice; 3) monitor 
the severity (i.e., course and response of the disease); and 4) detect hepatotoxici-
ty caused by various agents [6]. In addition, commonly used LFTs are mainly 
used to determine liver damage instead of monitoring hepatic functions which 
can make the identification of disease complicated [7]. Certainly, these bio-
chemical tests can also detect problems such as hemolysis (high bilirubin), high-
er alkaline phosphatase level (bone disease). Abnormal LFTs often suggest that 
the liver may not function properly and indicate the severity of the problem. But 
still, the correctness and accuracy to predict liver disease remain uncertain [6]. 

In this essence, computer-based diagnosis methods/tools such as Machine 
Learning (ML) can help to predict liver diseases correctly with precision. The 
knowledge discovery of ML has made it possible to handle valuable data to en-
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hance decision making both in medical diagnosis and prognosis. Researchers 
show potential interest in ML to support data mining, classification techniques 
(based on features or characteristics) towards medical diagnosis and prediction 
of liver diseases [8]. In medical settings, groups of patients can be diagnosed into 
different classes with respect to types and/or subtypes of diseases. In ML, classi-
fication is defined as a supervised method where training data is fitted into the 
model, then the model is trained with the dataset(s) with a known class of sam-
ple based on the features [9] [10]. Later the model predicts the test sample class 
which is unknown [9]. The classifier performance is evaluated by measuring the 
accuracy of classification that describes the percentage of correctly classified oc-
currences. ML provides the promise to improve the diagnosis and predict dis-
eases that are of concern in liver diseases [8]. 

Several liver functions tests are carried out for the estimation and medication 
of hepatic dysfunction in patients. The biochemical markers: serum bilirubin, 
alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 
phosphatase (ALP), α-fetoprotein, 5’ nucleosidase, ceruloplasmin are liver func-
tion tests [5] [11] [12]. Few other studies have indicated that ALT, AST, ALP, 
GGT, Bilirubin, prothrombin time, serum Albumin are the tests that are com-
monly performed in liver disease patients [13] [14]. In these studies, researchers 
highlighted the importance of these tests to reflect liver functionality. For in-
stance, bilirubin presents the excretions of anions, transaminases explain the 
hepatocellular integrity, bilirubin, ALP describes the creation of bile and subse-
quent flow of bile freely, and albumin denotes the protein synthesis. Overall, re-
searchers comprehensively presented all these biomarkers along with AFP, se-
rum proteins to screen the liver functions [4]. Also, they found that AFP was in-
creased in the case of hepatocellular carcinoma. In addition, in the case of 
asymptomatic patients, a mild increase of serum ALT levels are observed and 
around one-third of the patients show normal liver enzyme function persistently 
[6] [15]. 

Recently, authors proposed to build intelligent medical decision support sys-
tems by using ML through classification of liver disease and clustering to pat-
terns that can benefit physicians for the treatment [16]. Other studies have rec-
ommended the data categorization based on liver ailment and used different al-
gorithms (J-48, SVM, Random Forest tree, etc.) for classifying these liver disease 
conditions [17] [18]. For example, researchers use six ML methods; LR, KNN, 
DT, SVM, NB, RF to classify the patients with liver disease. They estimated ac-
curacy, recall (specificity) and precision (sensitivity) of the applied methods 
while classifying the patients into groups [19]. In another study, CART (Classi-
fication and Regression Tree) was represented to detect liver disease patients and 
obtained 92.94% accuracy [20]. Authors applied classification algorithms; naïve 
bayes, C4.5 decision tree, back propagation, SVM and KNN. They compared the 
performance of classifiers to classify the patients on the basis of accuracy, preci-
sion, sensitivity and specificity [21]. Very recently in one study, authors pre-
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dicted the risk factor of chronic kidney disease using different machine learning 
algorithms; Random forest, Decision Stump, Linear regression, Naïve Bayes, 
Simple logistic regression while classifying the CKD patients [22]. 

In this study, considering the importance and utilities of both of these me-
thods, we strived to find two key research questions: 1) which biochemical pa-
rameter is significantly associated with different liver disease(s), and 2) as-
sess/validate the outcome by using ML tools. To get the answers, we performed a 
cross-sectional study to a) evaluate liver patients using different biochemical 
markers (TB, ALT, AST, ALP, TP, ALB, A/G ratio, and AFP, and ALT, b) em-
ploy two prediction models (Random Forest and CART) of ML to support the 
findings. We aim to establish the relationships between conventional LFTs of 
liver with ML tools to verify the accuracy. We believe that the study helps clini-
cians to correctly identify and make an actionable decision of prevention, early 
diagnosis, and targeted intervention. The study provides a fresh insight about 
utilizing both the biochemical test and ML tools to predict liver disease. To our 
knowledge, the study is the first initiative to connect traditional biochemical 
tests with computational analysis and subsequently establishes the reliance of 
ML to support the outcome from biochemical tests. 

2. Materials and Methods  

Four different groups (Control, AH, CH, AH) of patient data provided by Shek-
har Lab, Biochemistry and Molecular Biology, University of Dhaka, were ana-
lyzed in two different ways; 1) Testing biochemical parameters-serum total bili-
rubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
Alkaline phosphatase (ALP), total protein (TP), albumin (ALB), albumin/globulin 
(A/G) ratio, and alpha-fetoprotein (AFP), followed by statistical analysis to ob-
tain the distribution of these parameters in different groups. 2) Using ML me-
thods-RF and CART to classify the samples into 4 different groups and obtain 
the accuracy of the classification model followed by finding the important fea-
tures as biochemical important parameter for the liver disease. The process of 
the study has been shown in Figure 1. 

2.1. Biochemical Tests 
2.1.1. Data Collection 
Patients were selected from a pathological laboratory of a diagnostic clinic, based 
on case records for a three years period. Samples were collected and subsequent-
ly analysed in collaboration with Shekhar Lab. Principal investigator Dr. Hussain 
Uddin Shekhar had the authorization to collect the samples. The written in-
formed consent was taken from all the patients. The patient criteria were as fol-
lows: 1) The patients with acute viral hepatitis (AH) were diagnosed clinical fea-
tures, serological investigations, and ultrasound scanning; 2) Chronic hepatitis 
(CH) Patients had persisted jaundice for more than six months without HC; 3) 
Diagnosis of HC had been confirmed by histological examination and biopsy of 
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a liver specimen. Hepatitis B as detected by HbsAg enzyme immunoassay kit 
(DiaSorin, Vercelli, Italy) was present in 67% with AVH, 75% in CH and 80% 
patient in HC. The controls were healthy volunteers and included students and 
university staff. 

2.1.2. Blood Samples 
A sample of venous blood was collected and allowed to clot. It was then centri-
fuged at 4˚C for 10 minutes at 4000 rpm. The serum was then separated and 
stored at −20˚C until analyzed. The process flow has been shown in Figure 2. 

2.1.3. Laboratory Tests 
The following routine liver function tests were executed by standard methods. 
The reference number—Serum bilirubin [23], serum alanine aminotransferase 
[24] and aspartate aminotransferase [24], serum alkaline phosphatase [25], se-
rum total protein [26], serum albumin [27]—are followed to prepare samples, 
and to measure the quantity of each parameter as LFTs in those patients. The 
value of albumin was subtracted from the total protein and serum globulin con-
centration was calculated as the total protein value consists of both albumin and 
globulin values. 
 

 
Figure 1. Data analyzing pipeline of different liver disease patients. 

 

 
Figure 2. Process flow of the blood serum collection. 
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Bilirubin 
Total and direct Bilirubin was measured by the modified Jendrassik-Grof 

Analysis method with centrifugal analyzer method [23]. 
Alpha-fetoprotein (AFP) 
Serum alpha-fetoprotein levels were determined by microparticle enzyme 

immunoassay (MEIA) technology in IMx systems (Abbott Laboratories, IL 
60064, USA) [28]. 

AST and ALT 
To measure both of these two enzymes correctly, conditions were optimized 

with basic variables (buffer kind, conc of buffer, ion, pH) and kinetic parameters 
(inhibitor and Michaelis constant were determined) [24]. 

ALP 
Serum ALP was measured using a test kit named “Iso-ALP”, Boehringer 

Mannheim. The principle of the assay is based on Rosalki and Foo (Clin Chem 
1984; 30: 1182-6) [25]. 

Total protein 
TP was determined based on the Biuret method [26]. 
Albumin 
Serum albumin was measured using a prompt and consistent method with 

Bromocresol green. In this method, when albumin was added to 0.075M succi-
nate buffer in pH4.20 with the Bromocresol solution, absorbance increased at 
628 nm [27]. 

2.1.4. Statistical Analysis 
All statistical analyses were done using the SPSS statistical package (Ver. 10.0). 
One-way analysis of variance (ANOVA) following a logarithmic transformation 
of the data was initially used to detect the overall difference in group means of 
the eight biochemical parameters. Differences among group means were as-
sessed using the least significance (LSD) [29]. 

2.2. Machine Learning (ML) 
2.2.1. Random Forest 
RF is an aggregate classifier which works efficiently on a large dataset. It is a re-
gression classification method that performs through generating decision trees 
from randomly selected subset of training data and gives output class (i.e., which 
is the output from individual trees [30]. There is no need to reduce variables 
during the analysis because RF can maintain thousands of input attributes easily. 
RF provides the estimation of variables which are important in the classification. 
During the generation of multiple trees, input vectors are put down to each of 
the decision trees in the forest to classify a new liver object. Each tree gets a vote 
for new data classification for accuracy. Most votes containing classes are chosen 
by the forest. The Following equations are employed to classify the liver data 
with RF model [31]. 

( ) ( ) ( ) ( )left left right rightj j j j j j jni w C w C w C= − −                (1) 
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nij = the importance of node j 
• wj = weighted number of samples reaching node j 
• Cj = the impurity value of node j 
• left(j) = child node from left split on node j 
• right(j) = child node from right split on node j 

:node  splits on feature 

all nodes

jj j i
i
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ni
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ni
∈

=
∑

∑
                    (2) 
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                     (4) 

• RFfii = the importance of feature i calculated from all trees in the Random 
Forest model 

• normfiij = the normalized feature importance for i in tree j 
• T = total number of trees 

( ) ( )Accuracy TP TN TP TN FP FN= + + + +              (5) 

2.2.2. CART 
CART (Classification and regression trees) is a ML classification model which 
helps to obtain a variable depending on other variables which are labeled and 
then predict the class through asking a set of if-else questions [32]. There are two 
advantages to using these models; 1) Nonlinear dataset is handled by this model, 
2) data normalization or Standardization is not needed as distance or other 
quantitative parameters between data points are not calculated. In the construc-
tion of the tree model, there are three types of nodes (Root, Internal, and Leaf) 
involved in the tree. Each node has its own if-else question for variables that can 
direct to a specific leaf-node for the final prediction of class using decision 
boundaries [33]. Information Gain (IG) is a criterion to detect the purity of a 
node and can be measured depending on the split of items by a node. Corres-
ponding impurity criterion is used to split the features (Table 1). 

 
Table 1. CART classification based on impurity criterion described with equations by Scikit-learn and spark [31]. 

Impurity Task Formula Description 

Gini impurity Classification ( )1
1C

i ii
f f

=
−∑  fi is the frequency of label i at node and C is the number of unique labels 

Entropy Classification ( )1
logC

i ii
f f

=
−∑  fi is the frequency of label i at node and C is the number of unique labels 

Variance/Mean Square  
Error(MSE) 

Regression ( )2

1

1 N

ii
y

N
µ

=
−∑  

yi is the label for an instance, N is the number of instance and μ is the mean given by 

1

1 N

ii
y

N =∑  

Variance/Mean  
Absoluter Error (MAE)  
(Scikit-learn only) 

Regression 
1

1 N

ii
y

N
µ

=
−∑  

yi is the label for an instance, N is the number of instance and μ is the mean given by 

1

1 N

ii
y

N =∑  
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( ) ( ) ( )Information Gain-Gain , Entropy Entropy ,T X T T X= −       (6) 

• T = target variable 
• X = Feature to be split on 
• Entropy (T, X) = The entropy calculated after the data is split on feature X 

3. Results 
3.1. Patient Characteristics 

The summary data of the number and age of the various groups of patients and 
controls used in this study is represented in Table 2. The mean age did not differ 
significantly among groups. Inspection of the data showed clear evidence of 
non-Gaussian distributions. However, a transformation to log10 was successful 
in normalizing the data. All subsequent analyses were based on the logarithm of 
the raw values. 

3.2. Biochemical 
3.2.1. Comparison of Biomedical Parameters 
There were large and statistically highly significant differences in means among 
the four groups of all eight biochemical parameters, as expected. These are 
summarized in Table 3, which also shows how the groups differed for each pa-
rameter. For example, the mean of the controls differed from that of all other 
groups for bilirubin, ALT and AST, but did not differ from AH and CH for AFP. 
Table 3 shows the mean value (±SD) of each biochemical liver function tests for 
the four groups: Healthy individual (Control), AH, CH, and HC. In addition, p 
values were derived from ANOVA. Within each group, arithmetic means show-
ing the same letter (i.e., a or b subscript) are not significantly different from each 
other. 

Although group means differed, there were considerable overlaps among in-
dividual patients for each biochemical parameter. The result is illustrated in 
Figure 3(a)-(h). The figures show that many of the liver disease patients were 
clearly in pathological range, while others were within normal range. Therefore, 
it would not be possible to draw a line on any of these plots which would sepa-
rate all the liver disease patients from controls, or which could distinguish be-
tween the liver disease groups. 

 
Table 2. Summary data of patients and controls. 

Group 
Male Female Total Age 

(n) (n) (n) (years) 

Control (Gr-I) 15 10 25 39.4 ± 11.8 

Acute Hepatitis (Gr-II) 13 12 25 42.3 ± 11.5 

Chronic Hepatitis (Gr-III) 11 14 25 40.7 ± 11.0 

Hepatocellular carcinoma (Gr-IV) 16 9 25 45.4 ± 9.7 
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Table 3. Geometric Mean ± SD values of biochemical parameters in four group of sub-
jects. 

Value 
Group 

p value 
I (Control) II (AVH) III (CH) IV (HC) 

AFP (IU/mL) I.85 ± 1.52a 1.07 ± 1.73a 1.75 ± 1.51a 161 ± 2.22 <0.0001 

A/G ratio 1.36 ± 1.25a 1.36 ± 1.44a 1.10± 1A7b 0.92 ± 1.46b <0.0001 

Albumin (g/dL) 4.31 ± 1.21a 4.03 ± 1.20a 3.37 ± 1.37b 2.83 ± 1.32b <0.0001 

ALP (UL) 181 ± 1 43a 228 ± 2.45a 181 ± 1.45a 187 ± 1.58a >0.05 

ALT (UL) 26.0 ± 1.65a 264 ± 3.64 42.1 ± 1.58b 34.8 ± 1.68a/b <0.0001 

AST (UL) 20.9 ± 1 52 290 ± 3.53 52.8± 1.36 a 41.5 ± 1.64a <0.0001 

Bilirubin (mg/dL) 0.60 ± 1.43 8 44 ± 1.75 2.30 ± 1.78a 2.46 ± 1.62a <0.0001 

Total Protein (g/dL) 7.19 ± 1.10a 7.09 ± 1.09a 6.55 ± 1.17b 6.96 ± 1.15b <0.0001 

 

 
(a)                                     (b) 

 
(c)                                     (d) 

 
(e)                                     (f) 
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(g)                                      (h) 

Figure 3. (a)-(h): Individual values of each of the eight biochemical parameters for 
control subjects and patients in each of the three diagnostic groups. Based lines 
show extremes of values in control subjects. The abbreviations are AH: Acute viral 
hepatitis, CH: Chronic hepatitis HC: Hepatocellular carcinoma. 

3.2.2. Examination of Biochemical Parameters (with Respect to  
Bilirubin) 

From Figure 4, it has been observed that in the AH group (Figure 4(a)), when 
the patient’s bilirubin was low, then the concentrations of AST, ALT, and ALP 
were low and patients with high bilirubin values showed a high concentration of 
AST, ALT, and ALP enzymes that describe the severity of the disease in acute 
conditions. Other parameters such as total Protein, Albumin, and AFP of all the 
patients observed constant regarding elevated bilirubin level. As apparent from 
Figure 4(b), in the case of the low and high value of bilirubin for CH, the cor-
responding liver enzymes i.e., AST, ALT, and ALP showed higher values, respec-
tively. The other parameters showed consistency with bilirubin value that elabo-
rates insignificant change of the value of AFP, TP, or albumin with the higher 
value of bilirubin. We observed a similar (CH) outcome while comparing HC 
Bilirubin with other liver enzymes (Figure 4(c)), In the case of HC, Liver en-
zyme levels did not increase substantially and patients with high-value bilirubin 
did not show high value of ALT, AST. AFP concentration showed substantially 
higher than the other two enzymes. However, the values of other parameters 
showed a similar outcome with AH and CH. All these findings are consistent 
with the results shown in Figure 3. 

3.3. Machine Learning 
3.3.1. Random Forest  
RF Classifier model have classified 100 patients into 4 groups (Control, AH, CH, 
HC). Out of 100 patients, the model has classified 95 patients correctly with 
whole data set (Table 4). When data was split into train (70%) and test (30%) 
samples, then model have classified 30 patients as test samples and 28 patients 
were classified correctly (Table 5). The model also has estimated the features 
and ranked them 1 to 7 based on feature importance (Table 6). From this esti-
mation, it has been identified that Bilirubin is the most important parameter in 
diagnosing all 4 liver disease patients. The 2nd important parameter is the AFP; 
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3rd one is AST and 4th one is ALT (Figure 5). Therefore, the model classified the 
patients correctly into different groups with 94% accuracy. 

 

 
Figure 4. Shows the relationship of Bilirubin level with other parameters in three 
different groups i.e., AH, CH, HC except control. For each group, x-axis denotes 
the conc of Bilirubin and y axis denotes the values of all other parameters in loga-
rithmic scale. Liver enzymes i.e., AST and ALT show high value with the high value 
of Bilirubin. AH, CH, HC groups are represented by the (a), (b), (c), respectively. 
Each dot represents the values of the corresponding parameter of each patient. 
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Figure 5. Variable important plot to rank the feature or parameter using RF model. 

 
Table 4. Confusion matrix. 

Liver Patient Class AH CH Control HC 

AH 25 4 0 0 

CH 0 19 0 0 

Control 0 2 25 0 

HC 0 0 0 25 

 
Table 5. Confusion matrix for test data set for RF. 

Liver Patients Group AH CH Control HC 

AH 9 0 0 0 

CH 0 6 2 0 

Control 0 0 7 0 

HC 0 0 0 6 

 
Table 6. Feature ranking with score. 

Ranking Feature score 

1 Bilirubin 0.2623 

7 AFP 0.2311 

3 AST 0.1754 

2 ALT 0.1359 

6 Albumin 0.08 

5 Total.Protein.TP. 0.0718 

4 ALP 0.0434 

3.3.2. CART 
The CART classifier model correctly classified 94 patients correctly into 4 dif-
ferent groups out of 100 patients. The whole data is trained and predicts the 
class. The results are shown in Table 7 as a confusion matrix. One of the impor-
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tant findings of the classification tree is that out of 7.4 features; AFP, Bilirubin, 
ALT, AST were important in the classification process. These 4 (four) features 
are required to perform the classification. The results show that only AFP is re-
quired to classify the 25 HC patients correctly, Bilirubin is required for the Con-
trol group, and all patients were classified correctly. Both ALT and AST were 
required for AH and CH patients classification. All 25 AH and 21 CH patients 
were classified correctly, 6 patients were wrongly classified for HC patients 
(Figure 6). 
 
Table 7. Confusion matrix. 

Liver Patients Group AH CH Control HC 

AH 23 2 0 0 

CH 1 23 1 0 

Control 0 0 25 0 

HC 0 0 1 24 

 

 
Figure 6. Classification Tree (CART) of the four liver diseases groups. Here 
Bilirubi indicates Bilirubin. 
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4. Discussion 
4.1. Biochemical Tests 

In this study, the diagnostic effectiveness of eight biochemical parameters were 
evaluated among four subject groups including controls and patients with three 
types of liver disease. The biochemical parameters were chosen to measure a 
range of known biochemical functions of the organ. Since the liver performs a 
wide variety of tasks, hence relying on a single test is not sufficient to evaluate 
liver function. Therefore, a wide variety of diagnostic tests is imperative for the 
indication of hepatobiliary disease along with ML classification scheme with two 
models i.e. RF & CART. 

4.1.1. Bilirubin 
Although a small amount of unconjugated (indirect) bilirubin is present in 
healthy people, there is virtually no observable conjugation (direct) bilirubin in 
the blood. This is due to the rapid secretion of conjugated bilirubin into the bile. 
Serum bilirubin levels will not increase no less than half of the liver’s excretion 
potential is lost. In this study, we found that serum total bilirubin was increased 
significantly in the patients with acute hepatitis, and it showed no overlapping 
with the control group (Figure 3(a)). In groups III (chronic hepatitis) and IV 
(hepatocellular carcinoma) bilirubin levels, though remained elevated compared 
to the controls, were not as high as in acute hepatitis. Serum bilirubin help to 
determine abnormalities in hepatic uptake, conjugation and secretion [34]. 

4.1.2. ALT and AST 
The levels of ALT and AST describe the most used markers of liver impairment. 
This study demonstrated a significant elevation of serum ALT and AST in the 
patients of acute hepatitis compared to controls (Figure 3(b), Figure 3(c)). In 
group IV, i.e., in hepatocellular carcinoma patients, ALT levels did not differ 
significantly from the controls. In hepatocellular carcinoma, apoptosis induced 
dead hepatocytes wither away and likely synthesize less of the enzymes. This is 
likely to clarify why most patients with hepatocellular carcinoma have persis-
tently normal liver enzymes though having inflammation in the liver biopsy [35] 
[36]. The mean AST value in group IV, though was significantly higher than it 
was in the control group, nevertheless had considerable overlap with the control 
groups. The extrahepatic origin of this enzyme might explain this difference 
from ALT. Moreover, pyridoxine deficiency might be another reason behind this 
phenomenon. Though ALT formation is inhibited more strongly than that of 
AST by pyridoxine deficiency, both ALT and AST use pyridoxine as coenzymes 
[37]. In group III, i.e., in chronic hepatitis patients, both ALT and AST values 
significantly higher than control groups but not as high as it was in case of group 
were acute hepatitis patients. The reason behind this is not well understood. It is 
observed from the recent studies that histological evidence can be found for 
chronic Hepatitis C Virus (HCV infection in patients, while normal or slightly 
elevated serum transaminases are frequently present [38]. 

https://doi.org/10.4236/abb.2021.126011


S. Akter et al. 
 

 

DOI: 10.4236/abb.2021.126011 168 Advances in Bioscience and Biotechnology 
 

4.1.3. ALP 
Serum ALP values did not show any substantial divergence between controls and 
the three other patient groups (Figure 3(d)). The results obtained also suggest 
that ALP is not a good marker to identify hepatocellular injury or intrahepatic 
problems strikingly high ALP levels indicate the risk of extrahepatic biliary ob-
struction, primary liver cirrhosis and cholestasis triggered by drugs. Since this 
study did not recruit any such patient, the serum ALP value in all the four 
groups studied, were almost comparable to each other. 

4.1.4. Serum Albumin 
Serum total protein and A/G ratio are also indirect measures for the synthetic 
capacity of the liver, as most plasma proteins are synthesized in the liver. We al-
so found in this study that total protein, albumin, and A/G ratio are decreased 
significantly in groups III (CH) and IV (HC) but not in group II (AH) (Figure 
3(e), Figure 3(f), Figure 3(g)). The likely explanations are as follows: 1) Ap-
proximately, three weeks is the half-life of albumin, and it is a large life cycle, 2) 
the reduced synthetic ability of liver is compensated by the double production of 
albumin compared to normal synthesis rate. So, serum albumin concentration 
changes slowly in response to alterations in protein synthesis. This is possibly 
why serum albumin, total protein and A/G ratio in acute hepatitis are within the 
normal range. Overall, these three biochemical tests are positive indicators of 
chronic liver disease, but chronic renal failure, urinary protein loss or loss of ga-
strointestinal properties may affect levels [39] [40]. 

4.1.5. Alpha-Fetoprotein 
In this study, AFP was assessed to discriminate hepatocellular carcinoma from 
other liver diseases. This study clearly demonstrates that AFP is elevated signifi-
cantly only in group IV (HC) compared to controls (Figure 3(h)). Benign he-
patic disease; for instance acute chronic active hepatitis, viral hepatitis, and liver 
cirrhosis occasionally show elevated AFP levels [41]. However, this study did not 
find any such association. Another important finding of this study is that groups 
III and IV are not distinguishable by any of the parameters used in this study 
except AFP. 

4.2. Machine Learning (ML) 
4.2.1. Random Forest 
ML study supports the finding from the biochemical analysis. RF model esti-
mates feature importance when predicting the class or groups of patients 
(Figure 5). This finding resulted Bilirubin as most important features that de-
notes the marker in diagnosing all 4 liver diseases.AFP turns out to be second 
important features that correlates with finding and discussion for biochemical 
findings as AFP can differentiate HC groups from other groups.ALT and AST 
are predicted another crucial feature in ML study correlating with biochemical 
results as these two parameters values highly increased in AH and CH patients. 
Feature ranking (Figure 5) shows that the first four variables (Bilirubin, AFP, 
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ALT, AST) turn out to be required to diagnose liver patients, other features have 
insignificant importance for classification that are also discussed in the bio-
chemical part and evident from the result. 

4.2.2. CART 
From this ML classification using the CART model, it has been shown that HC 
patients are classified from the data of AFP that correlates with the experimental 
results (Section 3.2). AH and CH patients are classified from the data of AST and 
ALT, meaning that these enzymes are important markers for the diagnosis of 
AH, CH. This finding also correlates with the experimental results. From the 
tree, the 4 features (i.e. Bilirubin, ALT, AST, AFP) are shown and predicted to be 
important for classification and overall, from biochemical analysis also provided 
the same outcome. 

5. Conclusion 

In conclusion, the determination of abnormal liver tests requires close attention 
to the relevant data from case records as well as physical evaluation. It is usually 
helpful that liver tests are divided into three groups: evaluate synthetic function 
(Albumin, Total Protein and A/G ratio), evaluate hepatocellular injury or in-
flammation (ALT and AST), evaluate cholestasis (ALP and Glutamyl transfe-
rase). AFP can only be employed if hepatocellular malignancy is suspected. The 
clinical conditions and the specific pattern of liver disorders will not only mi-
nimize various diagnoses but also offer a cost-effective method to evaluate pa-
tients and recognize individuals who require a liver biopsy. The models have 
classified the patients correctly into different groups with 94% and 95% accuracy 
with respective models (RF and CART) and these results establish and validate 
the identification of important parameters as features. 
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