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Abstract

Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attrib-

uted to an imbalance in weighting incoming sensory evidence with prior knowledge when

interpreting sensory information. Here, we show that sensory encoding and how it adapts to

changing stimulus statistics during feedback also characteristically differs between neuroty-

pical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of

sensory encoding from psychophysical data by using an information theoretic measure. Ini-

tially, sensory representations in both groups reflected the statistics of visual orientations in

natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an

artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback

altered the sensory representations of the neurotypical group toward the novel experimental

statistics, while also increasing their total encoding capacity. In contrast, neither total encod-

ing capacity nor its allocation significantly changed in the ASD group. Across both groups,

the degree of adaptation was correlated withAU : PleasenotethatperPLOSstyle; thewordsubjectsshouldnotbeusedforhumanpatients:Thus; subject=shasbeenchangedtoparticipant=swhereappropriate=applicable:Pleasecheckandcorrectifnecessary:participants’ initial encoding capacity. These

findings highlight substantial deficits in sensory encoding—independent from and potentially

in addition to deficits in decoding—in individuals with ASD.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition with high prevalence [1]

which ubiquitously afflicting brain function, from perception to (social) cognition. Recent

reports have attempted to formalize the functional implications of the disorder within the lan-

guage of statistical inference, proposing that across domains ASD is largely characterized by

an imbalance in weighting incoming sensory evidence with prior knowledge about the world

[2–9].

This formulation places the study of ASD within the encoding–decoding framework of per-

ception (Fig 1A). Namely, sensory stimuli, θ, are first encoded by a noisy neural measure—i.e.,

sensory information is mapped onto bandwidth-limited neural responses. Then, for example,

within the framework of statistical (Bayesian) inference, these measurements, m, inform an
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observer about the identity or magnitude of a stimulus variable (likelihood). Combined with

prior expectations about the environment, p(θ), this results in a posterior belief p(θ|m). An

estimate of the stimulus variable ŷðmÞ is generated based on the posterior and the utility func-

tion participants employ for the task. Together, these components and their appropriate com-

bination (i.e., combination of a likelihood with a prior resulting in a posterior that is used in

accordance with a utility function to generate responses) represent the “decoding” of sensory

representation. Anomalies in this decoding process have been the main focus of recent compu-

tational studies of ASD (e.g., imbalance in the weighting of likelihood versus priors; see cita-

tions above), with researchers recently also emphasizing a slow or inflexible updating of priors

in ASD [10,11].

The optimal combination of likelihoods with priors is, however, only one of many potential

decoding mechanisms. Other commonly studied decoders in perceptual science include maxi-

mum likelihood estimation (MLE; [12]), linear decoders (e.g., [13]), and in more recent years,

decoders based on neural networks [14]. Given the array of potential decoders the brain may

employ and the various ways in which these may malfunction in ASD [8], here we were instead

interested in identifying potential deficits in the sensory encoding, and the updating of this

encoding with sensory exposure and feedback, irrespective of differences in decoding. This

exclusive emphasis on sensory encoding is seldom, if ever, explored within the ASD literature

and does not detract from reported anomalies in sensory decoding. Rather, it provides the

opportunity to cleanly disentangle and localize deficits in encoding from deficits in decoding.

As experimenters, however, we can only measure participants’ responses as reported by ver-

bal or motor output. These reports are influenced by both encoding and decoding processes

(including participants’ prior belief and utility function, or “response model”), thus rendering

the characterization of a singular process (i.e., encoding or decoding) difficult. To address this

challenge, and to specifically test the hypothesis that sensory encoding and its updating are

aberrant in ASD, we leverage a principled framework for data analysis emphasizing sensory

encoding independently from decoding (Fig 1B and 1C). Specifically, we compute Fisher

information (FI), a measure of how much information participants’ internal representations

carry about the physical stimulus presented, by using a lawful relationship between estimation

bias, variance, and FI, known as the Cramer–Rao lower bound (Eq 1; [15,16]):

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
�
½1þ b0ðyÞ�
sðyÞ

: ðEq 1Þ

In other words, by measuring bias (b) and variance (σ2) in estimates ðŷÞ of θ, we can deter-

mine a lower bound on FI, i.e., the accuracy with which the stimulus variable is represented.

Equating this bound with a direct index of sensory encoding (i.e., in effect replacing the greater

than or equal sign with an equality in Eq 1) requires a single assumption—that the translation

from sensory representations to behavioral outputs was uncorrupted by stimulus-dependent

noise. Note that this assumption is (often implicitly) made by virtually all decoders in percep-

tual science (e.g., Bayesian decoders, MLE), and neural decoders (e.g., linear classifiers, popu-

lation vector, etc.). The exact form of the decoder (i.e., idiosyncrasies in the mapping from

sensory estimates to motor outputs) does not matter beyond this single assumption, given that

any decoder will trade off bias and variance. We further motivate and demonstrate the validity

of our approach via both a numerical simulation (Fig 1) and an analytical derivation (see S1

Text) showing that: (1) the same encoding process (Fig 1D) can produce very distinct patterns

of estimation bias and variance given different decoders (Fig 1E), yet critically; (2) with the

Cramer–Rao lower bound, we are able to precisely recover the encoding scheme in terms of

FI, regardless of the differences in decoding (Fig 1F).
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To identify anomalies in the capacity, and the updating of sensory encoding in ASD, we

took advantage of the well-known “oblique effect” [17,18]. That is, humans demonstrate

greater sensitivity and repulsive (i.e., away from) biases in perceiving gratings and motion

around cardinal compared to oblique orientations [19,20]. This effect is thought to reflect the

fine-tuning of sensory encoding to environmental statistics—with vertical and horizontal ori-

entations being most common in nature [21,22]. Recent studies [16,23] further highlight that

it is exactly this anisotropic property of sensory encoding that leads to the observed repulsive

bias. In other words, the oblique effect is thought to reflect a property of sensory encoding,

and not decoding. A standard Bayesian decoder with homogenous encoding cannot account

for the oblique effect, given the bias is away from and not toward the prior [23]. Lastly, early

studies demonstrated that orientation discrimination is readily impacted by perceptual learn-

ing, adaptation, and feedback (e.g., [24–26]) on a relatively short timescale. In turn, orientation

estimation is an appropriate paradigm to study the updating and flexibility of the encoding

process.

First, we had neurotypical and ASD individuals estimate orientations in the absence of feed-

back, in order to index their baseline accuracy in encoding individual stimulus orientations

and overall encoding capacity. Then, to parallel observations emphasizing the slow updating of

Bayesian priors in ASD [10,11] and establish whether this phenotype would extend to sensory

encoding, we presented participants with an experimental distribution of orientations (i.e.,

uniform) that differs from the natural distribution (i.e., peaking at cardinal orientations) and

provided participants with performance feedback. Feedback was given in order to accelerate

any putative reallocation of encoding resources due to the change in orientation distribution.

Results

Heightened variability and reduced learning in autism

We asked participants to perform a visual orientation estimation task, first without feedback,

and then in the presence of trial-by-trial feedback in an attempt to induce learning and updat-

ing of sensory encoding. Groups of ASD (n = 17) and neurotypical (n = 25) individuals

matched via button press a briefly (120 ms) presented visual target of random orientation. Tar-

get orientations were drawn from a uniform distribution. Initially, no feedback was presented

(woFB block), but in the second and third block of trials (wFB1 and wFB2; 200 trials/block),

feedback was presented by overlaying the participant’s response and the target (Fig 2A, see

Materials and methods for details). As shown for an example neurotypical (Fig 2B) and ASD

Fig 1. Theoretical and conceptual framework. (A) Perception can be described as an encoding–decoding process. Stimulus is first

encoded in the noisy and resource limited sensory representation m. An estimate ŷ is generated given m based on the decoding process. As

an experimenter, we can only measure overt responses; characterized as a participant’s bias (m ðŷ Þ � y; difference between the average

estimate and real stimulus value) and variance σ2(θ) in their responses. (B) The fidelity of encoding in neurotypical participants is generally

anisotropic due to uneven allocation of sensory resources determined by environmental statistics. For example, as shown here, the

nonlinear transformation between stimulus values and a neural space (solid red line) with homogenous noise results in higher uncertainty

for orientations around the oblique than those around the cardinal. This can be characterized by a nonuniform profile of Fisher

information IF(θ) (solid green line). In our experiment, we imposed an artificial, uniform distribution of orientations, different from that of

natural environment, which allows us to study whether and how both groups update their encoding under changing stimulus statistics. (C)

Cramer–Rao lower bound specifies the lawful relationship between bias b(θ), variance σ2(θ), and encoding accuracy, i.e., Fisher information

IF(θ), regardless of the decoding scheme. This allows us to directly characterize encoding, while remaining agnostic about the details of the

decoding process (also see S1 Text). (D) To demonstrate validity of our approach, we simulate an observer with anisotropic encoding

process, p(m|θ), with a peak FI at 90˚. (E) As an example, we construct 3 arbitrary decoders (red, black, and blue), yielding very distinct

pattern of estimation biases and variances, yet they all attain the Cramer–Rao lower bound. (F) Applying the inequality, we estimate the

(lower bound of) FI, which appropriately recovers the identical, true underlying pattern of FI in the encoding regardless of idiosyncrasies in

the decoding process. Raw data and code underlying this figure can be found at S1 Code, and numerical values that make up this figure can

be found at S1 Data. FI, Fisher information.

https://doi.org/10.1371/journal.pbio.3001215.g001

PLOS BIOLOGY Individuals with autism spectrum disorder have altered visual encoding capacity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001215 May 12, 2021 4 / 21

https://doi.org/10.1371/journal.pbio.3001215.g001
https://doi.org/10.1371/journal.pbio.3001215


PLOS BIOLOGY Individuals with autism spectrum disorder have altered visual encoding capacity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001215 May 12, 2021 5 / 21

https://doi.org/10.1371/journal.pbio.3001215


(Fig 2C) individual, orientation perception was biased away from cardinal orientations in

both groups—namely, both groups demonstrated an “oblique effect” [17,18]. With feedback,

the bias seemingly dissipated in the neurotypical participant but not the ASD individual (Fig

2B and 2C scatter plot are individual responses, curve is a running average within a sliding 18˚

window, and vertical dashed lines are orientations at 45˚, 90˚, and 135˚. See S1 and S2 Figs for

similar plots for all individual participants).

These basic observations are also evident in group averages of neurotypical and ASD indi-

viduals (Fig 3). When presenting targets between 0˚ (horizontal) and 45˚, the bias was on aver-

age positive (e.g., neurotypical group: 6.0˚ ± 0.26˚ (SE), p< 10−3), suggesting that horizontal

Fig 2. Experimental protocol and individual participant performance. (A) A target orientation (Gabor) is briefly presented, and participants report

their percept by orienting a line indicator (white) via left or right button press. No feedback is given on the first block of trials but is in subsequent blocks

by overlaying the target orientation and the participant’s response. (B) Target orientations (x-axis) are drawn from a uniform distribution (individual dots

are single trials). Y-axis indicates the bias for an example neurotypical participant, and lines are the running average within a sliding window of 18˚.

Different columns (and the color gradient) respectively show performance on the block without feedback (woFB; leftmost), on the first block with

feedback (wFB1; center), and the second block with feedback (wFB2; rightmost). (C) follows the format in (B) while depicting the performance of an

example ASD participant. Raw data and code underlying this figure can be found at S1 Code, and numerical values that make up this figure can be found

at S2 Data. ASD, autism spectrum disorder.

https://doi.org/10.1371/journal.pbio.3001215.g002

Fig 3. Orientation perception in combined neurotypical and ASD participant. Bias (y-axis) as a function of target orientation (x-axis, cardinal and oblique

orientation indicated by dashed lines) and feedback block in neurotypical (A) and ASD (B) participants. Variance (1/κ, y-axis, see Materials and methods) as a function

of target orientation and feedback block in neurotypical (C) and ASD (D) participants. RMSE (y-axis) as a function of target orientation and feedback block in

neurotypical (E) and ASD (F) participants. Smoothing using a sliding window of 18˚ has been applied for visualization purpose. Error bars are ± SEM across 5,000

bootstrap runs. Raw data and code underlying this figure can be found at S1 Code, and numerical values that make up this figure can be found at S3 Data. ASD, autism

spectrum disorder; RMSE, root-mean-square error.

https://doi.org/10.1371/journal.pbio.3001215.g003
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gratings were perceived closer to the oblique 45˚. Contrary, when presenting targets between

45˚ and 90˚ (vertical), the bias was negative (e.g., neurotypical group: −5.14˚ ± 0.26˚, p<
10−3), suggesting that vertical gratings were again perceived closer to the oblique 45˚ (Fig 3A

and 3B). Before feedback, there was no statistical difference in the overall magnitude (i.e.,

absolute value) of bias between neurotypical and ASD groups (neurotypical: 5.63˚ ± 0.12˚;

ASD: 5.99˚ ± 0.22˚, Δ = 0.35˚ ± 0.25˚, p = 0.154). On the other hand, when provided with feed-

back, orientation perception bias was reduced in the neurotypical group but much less so in

the ASD group (reduction in average magnitude of bias between woFB and wFB2, neurotypi-

cal: Δ = 2.38˚ ± 0.17˚, p< 10−3; ASD: Δ = 1.04˚ ± 0.31˚, p< 10−3; ΔNeurotypical—ΔASD =

1.34˚ ± 0.35˚, p< 10−3; Fig 3A and 3B, feedback conditions shown by a color gradient).

Regarding the variability of orientation perception, we found that at baseline (i.e., before

feedback), the ASD group had larger variance in their estimates than the neurotypical group

(neurotypical: 0.180 ± 0.006; ASD: 0.297 ± 0.010; Δ = 0.117 ± 0.11, p< 10−3; Fig 3C and 3D).

This is in line with a growing literature suggesting heightened variability in ASD and the “neu-

ral unreliability thesis” of ASD [27–31]. Additionally, while variance was reduced with feed-

back in the neurotypical group, especially in the latter feedback block, this was not evident in

the ASD cohort (reduction in overall variance between woFB and wFB2, neurotypical: Δ =

0.037 ± 0.008, p< 10−3; ASD: Δ = −0.012 ± 0.015, p = 0.414).

As expected, given these differences in bias and variability, the neurotypical group overall

had better performance as measured by root-mean-square error (RMSE). This was true in the

initial block of the experiment (neurotypical: 14.82˚ ± 0.35˚, p< 10−3; ASD: 19.42˚ ± 0.47˚,

p< 10−3) and was exacerbated with feedback (Fig 3E and 3F). Namely, performance of the

neurotypical, but not the ASD, group increased with feedback (reduction in overall RMSE

between woFB and wFB2, neurotypical: Δ = 2.83˚ ± 0.48˚, p< 10−3, ASD: Δ = −0.55˚ ± 0.71˚,

p = 0.78).

Reduced capacity and aberrant allocation of encoding resources in autism

Beyond characterizing the raw task performance of neurotypical and autistic individuals, our

main goal here is to detail their encoding capacity, the allocation of these resources, and flexi-

bility with which encoding resources are reallocated, given the artificial stimulus distribution

presented in the experiment. Using the Cramer–Rao bound (Eq 1) we found that in both neuro-

typical and ASD individuals, FI peaked at cardinal orientations (Fig 4A). That is, initially the

shape of FI (i.e., normalized
ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
, see Materials and methods, Eq 3) in both groups qualita-

tively matched the previously measured distribution of orientations in natural images [21,22].

Additionally, since FI directly determines discrimination thresholds [16,32], the observed shape

of FI also corroborates a heightened sensitivity to cardinal orientations [18] in both neurotypical

and individuals with ASD. On the other hand, both total FI (i.e.,
R

y

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
dy) during the very

first block of trials and how its magnitude changed over the course of the experiment differed for

ASD and neurotypical groups. Already during the woFB block, total FI was significantly lower in

ASD than neurotypical individuals (woFB, neurotypical: 14.67 ± 0.24, ASD: 11.28 ± 0.19, Δ =

3.39 ± 0.43, p< 10−3). Further, total FI increased from woFB to wFB2 for the neurotypical group

(Δ = 1.96 ± 0.38, p< 10−3) but did not in the ASD group (Δ = −0.060 ± 0.27, p = 0.83, Fig 4B).

The above analyses suggest that similarly to their neurotypical counterparts, individuals

with ASD have placed the bulk of their encoding resources in line with the distribution of ori-

entations in the natural environment (i.e., at cardinal orientations). More broadly, this obser-

vation supports the efficient coding hypothesis [33], whereby encoding resources are

characterized by FI and directly follow the shape of the stimulus distribution (see Materials

and methods, Eq 2). In turn, to quantitatively assess encoding capacity and distribution of
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resources in both groups throughout the experiment, we parametrized the shape of FI as a

weighted mixture of a “cardinal orientation distribution” and a uniform orientation distribu-

tion (with weights ω and 1−ω, respectively; Fig 4C; also see Materials and methods, Eq 4). A ω
value of 0.5 approximates the previously measured prior distribution of orientation in natural

images [21,22]. Presumably, allocation of encoding resources starts closer to the natural stimu-

lus distribution for orientations (ω~0.5) and is then gradually molded to become more uni-

form (i.e., smaller ω). Thus, by parametrizing normalized
ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
as a weighted sum of the

cardinal orientation prior and the distribution of orientations presented during the experi-

ment (i.e., uniform), we can quantify if and how feedback changed our participants’ allocation

of encoding resources along a range, from the natural to the experimental stimulus distribu-

tion. Further, the overall magnitude of FI is determined by a scaling parameter, λ (Fig 4C, Eq

4 in Materials and methods). We fit the bias predicted by the parameterized FI to the measured

Fig 4. Quantification and parametrization of FI in neurotypical and ASD individuals. (A) FI peaked at cardinal orientations for both neurotypical (blue) and ASD

(red) individuals, similar to the natural scene statistics of orientations. Further, visual inspection suggests a flattening of this function with feedback in neurotypical

participants (from dark to light blue) but not ASD participants (see panels C and E for quantification). Smoothing using a sliding window of 18˚ has been applied for

visualization. (B) The total amount of FI was larger in neurotypical individuals than ASD at the outset and increased over the course of the experiment in neurotypical

(blue color gradient) but not ASD (red color gradient) individuals. (C) The FI pattern as a function of orientation was quantified by 2 parameters, ω, which mixes a

cardinal orientation prior with a uniform distribution as the normalized (square root of) FI, and λ, scaling total FI. (D) λ and (E) ω as a function of group

(blue = neurotypical control, red = ASD) and block. Error bars are ± SEM across 5,000 bootstrap runs. Raw data and code underlying this figure can be found at S1 Code,

and numerical values that make up this figure can be found at S4 Data. ASD, autism spectrum disorder; FI, Fisher information.

https://doi.org/10.1371/journal.pbio.3001215.g004
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bias given the measured variance (see Materials and methods, Eqs 5 and 6, and S1 and S2 Figs

for the biases and fits of individual participants; see S3 and S4 Figs for parameters extracted

for individual participants). Average R2 for the neurotypical group: 0.770 ± 0.025; average R2

for ASD group: 0.774 ± 0.034.

Examination of the fitted λ values confirmed that at the outset of the experiment, the ASD

group had a lower total amount of FI compared to the neurotypical group (neurotypical versus

ASD at woFB; Δ = 4.352 ± 0.473, p< 10−3; Fig 4D). This effect is unlikely due to differences in

task strategies, such as speed–accuracy trade-offs, given that the distribution of response times

(RTs) was qualitatively similar across both groups, and if anything, slower in ASD, making this

latter group deficitary in bothAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif bothinthesentenceThiseffectisunlikelyduetodifferencesintaskstrategies:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:speed and accuracy (S5 Fig). Over the course of the experiment,

λ increased further for the neurotypical group (woFB versus wFB2 in neurotypical individuals:

Δ = 2.094 ± 0.580, p< 10−3; Fig 4D), but this was not the case for the ASD group (Δ = −-

0.150 ± 0.441, p = 0.732, Fig 4D). These results suggest a lower overall encoding capacity in

ASD relative to their neurotypical counterparts and further a capacity that does not improve

over the course of repeated feedback. On the other hand, we observed a significant decrease in

median RT between woFB and wFB2 for both the neurotypical (ΔRT = −0.61 ± 0.069 sec,

p< 10−3) and ASD group (ΔRT = −0.75 ± 0.114 sec, p< 10−3; see S5 Fig), again suggesting

that differences in task strategy or putative differences in working memory are unlikely to

account for the differing accuracy and precision in visual orientation estimation across ASD

and neurotypical individuals.

Most interestingly, regarding participants’ allocation of encoding resources, or their prior

distribution of orientation as derived from a parametrized normalized
ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
, both groups

started with a similar ω parameter before feedback (Δ = 0.052 ± 0.043, p = 0.230, Fig 4E). That

is, these groups allocated resources similarly in the natural environment where horizontal and

vertical edges are most common. When provided with feedback (woFB versus wFB2), the ω
parameter decreased for the neurotypical group (change in ω: Δ = 0.191 ± 0.046, p< 10−3, Fig

4E, blue) but much less so for the ASD group (change in ω: Δ = 0.086 ± 0.049, p = 0.080).

Again, under the efficient coding framework, this change in the ω parameter can be viewed as

participants of the neurotypical group reallocating their encoding resources, from following

the natural distribution of orientations to now incorporating the uniform stimulus distribu-

tion imposed by the experiment. The ASD group, instead, did not readily update their alloca-

tion of encoding resources (see S3 and S4 Figs for individual participant data).

Reduced initial encoding capacity is correlated with inflexibility in

updating resource allocation

We further questioned whether the herein described anomalies in sensory encoding present in

ASD may relate to their purported inflexibility in updating priors [10,11]. Indeed, recent theo-

retical studies [34,35] highlight an inherent relation between encoding resources and the

degree to which one can adapt to changing environments. Intuitively, if resources are allocated

primarily to represent statistically likely events, then fewer can be devoted to distinguishing

between statistically unlikely alternatives—and it is precisely these latter ones that are most

informative regarding a potential change in the environment [34,35]. To examine this hypoth-

esis, we correlated participants’ encoding capacity (λ) before feedback with the shape of their

prior after feedback (ω at wFB2). We found a strong correlation between these variables (R2 =

0.407, p< 10−3, Fig 5A). The correlation holds separately for the neurotypical and ASD groups

(Fig 5B). Thus, the inflexibility in resource reallocation observed in individuals with ASD may

emanate from their limited encoding resources.
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Discussion

By tracking perceptual estimates while (i) exposing observers to an artificial stimulus distribu-

tion (i.e., uniformly distributed orientations) and presenting them with performance feedback,

(ii) directly extracting FI of sensory encoding from psychophysical data, and (iii) parameteriz-

ing the shape of FI as a mixture of the cardinal and uniform distributions of orientation stimu-

lus, we have estimated the total sensory encoding capacity and the change in its allocation with

feedback in individuals with ASD. This combined approach resulted in a number of empirical

observations. First, the initial pattern of FI as a function of orientation strongly resembled the

known natural distribution of orientations in the natural environment [21,22] in both ASD

and neurotypical individuals. Second, already in the first block of trials, the total encoding

resources for the representation of gratings in ASD is about 2/3 that of their neurotypical

counterparts. Third, exposure to an experimental distribution of orientations, coupled with

feedback, resulted in the appropriate reallocation and an overall increase in encoding

resources of neurotypical individuals. This was not the case in individuals with ASD. Lastly,

initial encoding capacity correlated with the degree of adaptation from the natural to experi-

mental allocation of encoding resources.

The observation that encoding capacity differs from the outset between ASD and neuroty-

pical individuals is in line with “neural unreliability thesis” [27] and a number of recent reports

that have suggested heightened variability in ASD, be it in relatively low-level visual psycho-

physics [36,37], more naturalistic and continuous tasks [31], neurovascular [28,29] or physio-

logical responses [27]. Particularly noteworthy and relevant to the current report is a study by

Fig 5. Correlation between sensory encoding capacity and flexibility in encoding resources allocation. (A) The flatness of FI after feedback (y-axis, indicating

incorporation of stimulus statistics from the experiment) correlates strongly with total encoding resources before feedback (x-axis). The blue dots indicate individual

neurotypical participants, and red dots indicate individual ASD participants. (B) The same correlation holds within both the neurotypical and ASD groups. Raw data and

code underlying this figure can be found at S1 Code, and numerical values that make up this figure can be found at S5 Data. ASD, autism spectrum disorder; FI, Fisher

information.

https://doi.org/10.1371/journal.pbio.3001215.g005
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Park and colleagues [37], where researchers had neurotypical and ASD individuals discrimi-

nate visual orientations. Then, via psychophysical modeling [38,39], they were able to ascertain

that individuals with ASD had increased internal noise and a reduced capacity for external

noise filtering than neurotypical counterparts. These results are also in line with accounts sug-

gesting a reduced use of Bayesian priors [2] or an overweighting of sensory likelihoods versus

expectations in ASD [5]. Namely, these expectations in essence serve as low-pass filters reduc-

ing trial-to-trial variability, and thus a decreased use of Bayesian priors could engender greater

variability.

The second major observation is that the reallocation of sensory encoding resources is

inflexible in ASD relative to neurotypical individuals. Given that within the efficient coding

hypothesis the allocation of encoding resources may directly reflect participants’ prior in the

Bayesian framework [23], these results are similarly consistent with recent experimental find-

ings suggesting that individuals with ASD may update their priors slowly [11], putatively due

to overestimating the volatility of the environment [10]. Further, here we suggest an explana-

tion for the apparently inflexibility of priors in ASD. Namely, when resources are allocated pri-

marily to represent statistically likely events, the representation of a given external

environment may be best. However, it also limits the degree of resources that may be devoted

to distinguishing between statistically unlikely alternatives [34,35]. These statistically unlikely

events, however, are the most informative when attempting to infer whether the environment

has changed. There is an inherent trade-off between coding for representational fidelity and

for inference of changing environments given limited encoding resources [34,35]. Thus, the

pattern of results suggesting reduced encoding resources in ASD may indicate that this deficit

is at the root of aberrant perceptual flexibility in ASD [10,11]. This speculation is supported by

a correlation between the total amount of encoding resources a participant demonstrated in

the initial block of the experiment, and the degree to which their sensory encoding had

adapted at the end of the experiment.

Related to the reallocation of sensory resources, studies on perceptual learning have identi-

fied a multitude of processes that may contribute to learning, even in simple tasks. These

include changes in low-level representations, changes in attention, decision rules, and/or the

assimilation of feedback [40,41]. Thus, one may wonder whether the observed inflexibility of

sensory encoding in ASD reflects a more global learning deficit. We do notAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif notinthesentenceWedonotbelieveso; forthefollowingreasons:shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:believe so, for the

following reasons. First, the total amount of encoding resources differed between ASD and

neurotypical individuals already at the outset of the experiment, and, as stated above, this

quantity correlated with the degree of reallocation of encoding resources with feedback. Thus,

if the inflexibility of encoding was expressing a global deficit in incorporating feedback, one

would have to account for its correlation with total encoding resources at outset. Second, indi-

viduals with ASD did learn. Their allocation of encoding resources drifted from the natural

toward the experimental distribution, particularly in wFB2 (S6 Fig), just not as readily as in

neurotypical individuals. More importantly, their response times decreased over the course of

the experiment, and this effect was in fact “largerAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif largerinthesentenceMoreimportantly; theirresponsetimesdecreasedoverthecourseof :::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:” in ASD than neurotypical individuals (S5

Fig). Similarly, Harris and colleagues (2015) [42] have reported normal perceptual learning in

individuals with ASD, in terms of improvement in discrimination threshold, as long as train-

ing and testing samples completely overlap (as was the case in the current experiment). It is

only when probing for generalization in perceptual learning (i.e., from one retinotopic location

to another) that poor performance is observed in ASD [42], again demonstrating a more spe-

cific, rather than a general, form of learning deficit.

There is a wide range of potential neural mechanisms by which the amount and allocation

of encoding resources may change on a timescale that is compatible with the duration of our

experiment. While neural recordings in animal models have shown that practicing orientation
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discrimination can reshape tuning functions as early as V1 [43], given the timeframe of the

current experiment, we consider that network-level mechanisms are most likely. A first possi-

bility is a gain modulation of the neural response. Indeed, for an efficient coding framework

where each cell transmits an equal portion of the stimulus probability mass, an increase in the

overall firing rate corresponds to a direct increase in population FI [44]. Previous studies of

sensory adaption (e.g., [26,45]) have also suggested that gain changes specific to a subpopula-

tion of neurons are able to alter the allocation of coding resources. Gain modulation could be

implemented by alterations in neuromodulation, and fittingly, Lawson and colleagues (2017)

[10] recently demonstrated abnormal noradrenergic responsivity in ASD and suggested that

this anomaly is related to the slow updating of their priors. The present findings suggest a

functional interpretation for such a link: Abnormal noradrenergic responsivity could decrease

FI (e.g., encoding resources), which then directly correlates with an inflexibility in altering pri-

ors. A second potential mechanism may be changes in the noise-correlation structure in the

neural population. For example, a decrease in interneuronal correlations generally reduces the

impact of noise on stimulus representation, thus leading to a higher population FI [46]. Along

this line, Coen-Gagli and Solomon (2019) [47] have recently suggested that divisive normaliza-

tion [48] is a critical player in neural variability, and Rosenberg and colleagues (2015) [49]

have accounted for a wide array of perceptual deficits in ASD by postulating a deficit in divi-

sive normalization.

For all these seemingly converging lines of evidence, however, there are open empirical

questions.

First, in the current experiment, we provided participants with feedback on their perfor-

mance in latter blocks of trials. This was done to accelerate learning of the novel statistical dis-

tribution of orientations and thus to enable reallocation of encoding resources. And indeed,

scrutiny within the woFB block suggests that no learning occurred—neither in neurotypical

nor ASD individuals—in the absence of feedback (S6 Fig), at least in the timeframe of our

experiment. Thus, in the context of this experiment, seemingly feedback was necessary in

reshaping encoding resources. This speculation goes hand in hand with our conjectures

regarding the neural implementation of the current effect—likely being a network-level effect

on the (feedforward) sensory representations in early visual areas (see [50] for an argument

that the distribution of tuning functions in V1 underlies the oblique effect). In follow-up

experiments, it will be interesting to repeat the current paradigm while considerably expand-

ing the exposure time to the novel orientation distributions and without presenting feedback,

in order to further understand if and how the updating of sensory encoding differs with mere

exposure and with feedback.

Second, one may wonder about the potential impact of additional stimulus-independent

variability introduced by factors following encoding—such as an inefficient decoder (i.e., a

decoder that produces larger variance than that predicted by the Cramer–Rao lower bound),

or post-perceptual factors such as motor noise. We attempted to experimentally minimize the

potential impact of motor noise in ASD [51] by making the estimation task an unspeeded

binary button press (i.e., up or down) that additionally had to be “confirmed” via another but-

ton press (see Materials and methods). Likewise, scrutiny of response time distributions did

not suggest different strategies across experimental groups. Further, even if there were differ-

ences in post-encoding processes, these differing strategies (part of the decoding process) trade

off biases and variances, and thus we would regardless recuperate an appropriate estimate of

encoding (see Fig 1 and S1 Text). Nevertheless, to further ascertain that potential stimuli-inde-

pendent variability or post-perceptual factors do not deter from the current conclusions we

ran additional simulations. We show that turning the decoder inefficient by adding homoge-

neous late noise will both decrease the total amount and flatten the pattern of extracted FI (S7
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Fig). This is incompatible with the observed results in the following aspects. First, our empiri-

cal data suggest exposure to an artificial stimulus distribution coupled with feedback increases

total FI (i.e., the λ parameter) while flattening the pattern of FI (i.e., the ω parameter). Thus, if

the increase in total FI with feedback in the neurotypical group were to be explained by an

increase in the efficiency in the decoder or a decrease in motor variability, the pattern of FI

ought to be sharpened, which is the exact opposite of what we observed in the data. Similarly,

if we were to explain the lack of change in total FI in the ASD group with increase in additional

noise, the pattern of FI would have to go through even less learning (S8 Fig). Lastly, if we were

to explain the initial difference in total FI (i.e., before feedback) between ASD and neurotypical

individuals with additional stimulus-independent variability in the ASD group, then the “true”

(i.e., uncorrupted by late noise) FI pattern in ASD would have to be more extreme (i.e., sharper

at cardinal orientations) than what is specified by the stimulus distribution in the natural envi-

ronment (see S8 Fig). While we cannot completely rule out this latter possibility, we consider

that it is most parsimonious that both neurotypical and ASD groups do indeed start with a pat-

tern of FI that is similarly adapted to the natural statistics of orientations, just as we observed

in our experiment.

Third, here we have exclusively focused on sensory encoding in an effort to separately

understand each piece leading to perception (i.e., encoding, recoding, decoding). However,

comprehensively understanding sensory processing in ASD will ultimately necessitate a

broader framework including encoding, prior beliefs, and loss (utility) functions, among oth-

ers. In the context of oblique effect this will require a nontrivial form of encoding [23], orienta-

tion prior [21], and loss function [52]. Thus, instead of “reverse-engineering” all these

components together [53,54], which would require a set of additional assumptions, here we

took a data-driven approach. Our method, while not a complete model, can isolate and directly

characterize the encoding process while being agnostic to potential differences in the decoding

process and free of parametric restrictions about the shape of, for example, priors and likeli-

hoods (see S1 Text for an extended discussion). As stated above, this is not to say that there are

no differences in sensory decoding between the neurotypical and ASD group but to simply

emphasize anomalies in encoding. Future work will be able to build on this foundation to

extend the comparison of sensory processing in ASD relative to neurotypical individuals to a

full model.

Lastly, we must mention that in a standard Bayesian framework, the lower encoding capac-

ity of ASD would likely translate to broader likelihood functions or underweighting of sensory

evidence. While some prior work [29,30,36,37] indeed suggest less precise sensory representa-

tion in ASD, others [55–58] have not replicated these observations. Butler and colleagues

(2017) [58], for example, have shown no difference in the reliability of visual and somatosen-

sory evoked activity during passive observation. Furthermore, some [3,54] have even argued

for more, and not less, precise sensory likelihoods in ASD. In turn, future work will have to

charter the domain generality of deficits and/or improvements in sensory encoding in ASD.

More broadly, we suggest caution must be taken when comparing “likelihood functions” in an

encoding–decoding framework across studies, given that these represent an abstract and

aggregated property of a complex and multilayered hierarchical neural process, and could be

strongly determined by factors such as stimulus type and task context. Here, therefore, instead

of broadly describing potential anomalies in likelihood functions and/or prior distributions,

we have taken a principled approach that links perceptual bias and variance to the available

information in the encoding step. There are no degrees of freedom, and thus the problem is

not underconstrained. Instead, FI is completely constrained by the measured pattern of biases

and variance across the state space of interest (here 180 degrees of possible orientations). Fur-

ther, by following the efficient coding hypothesis, we can relate encoding to perceptual priors

PLOS BIOLOGY Individuals with autism spectrum disorder have altered visual encoding capacity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001215 May 12, 2021 13 / 21

https://doi.org/10.1371/journal.pbio.3001215


directly from psychophysical data without explicit parametric assumptions. Having taken

these properties into account, the present analyses suggest that in ASD a reduced pool of

encoding resources leads to increased variability, and then putatively to the inability to accu-

rately detect and represent statistically unlikely events. This may explain the observed inflexi-

bility in the reallocation of sensory resources following a change in the environment [10,11].

More importantly, our results highlight that the encoding stage itself appears aberrant in ASD,

and thus future studies examining perception in ASD must carefully characterize other aspects

of normative computation beyond Bayesian decoding.

Materials and methods

All data and code for our analysis can be found at S1 Code or at https://github.com/cpc-lab-

stocker/ASD_Encoding_2020

Participants

A total of 42 participants completed an orientation-matching task. Seventeen were individuals

diagnosed as within the ASD (N = 17, mean ± SD; age = 15.3 ± 2.6 years; AQ = 33.5 ± 7.0;

SCQ = 16.8 ± 4.4) by expert clinicians. The rest were neurotypical individuals (N = 25, mean ±
SD; age = 14.8 ± 2.1 years; AQ = 14.0 ± 5.5; SCQ = 5.6 ± 3.2). Participants had normal or cor-

rected-to-normal vision and no history of musculoskeletal or neurological disorders. Before par-

taking in the study, all participants completed the Autism Spectrum Quotient (AQ; [59]) and the

Social Communication Questionnaire (SCQ; [60]). The Institutional Review Board at Baylor

College and Medicine approved this study (protocol number H-29411) in adherence to the Dec-

laration of Helsinki, and all participants gave their written informed consent and/or assent.

Materials and procedures

Participants were comfortably seated facing a gamma-corrected CRT monitor (Micron Tech-

nology, Boise, Idaho; 43 × 35 cm) at a distance of 57 cm. Participants self-initiated a trial by

button press, upon which a Gabor (120 ms presentation, 0.4 cycles/degree, 10 degrees, Gauss-

ian envelope) was presented centrally on a gray background. The orientation of this target

Gabor was random (uniform distribution, 0 to 180 degrees). Immediately following the offset

of the Gabor, a mask consistent of 6 concentric circles (line color: black; 2.5, 4, 5.5, 7, 8.5, and

10 degrees) was presented. This mask had a duration of 300 ms and was presented in order to

eliminate the possibility of participants experiencing an afterimage. Following a blank period

of 400 ms, participants were presented with a white Gabor patch (3 cycles/degree, only 1 strip

visible, random initial orientation) that they rotated via button press (up and down arrow, res-

olution = 1 degree) until they considered the orientation of the white Gabor patch indicator to

match that of the target Gabor. Participants logged a response via a “confirmatory” button

press. The intertrial interval was set to 1 second, and participants completed 200 trials per

block. The experiment consisted of 3 blocks; the first was without feedback, as described

above. In the second and third blocks, participants were given feedback by superimposing the

target Gabor and the orientation reported during the intertrial interval. Participants were

given approximately 5-minute rest between blocks. All stimuli were generated and rendered

using C++ Open Graphics Library (OpenGL).

Data analysis

We model participants as a generic estimator T of the orientation parameter θ, and thus the

responses as independent samples of T. The bias and variance of the estimator T is a function
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of θ defined by b(θ) = Eθ[T]−θ, and σ2(θ) = σ2
θ[T], respectively. A sliding window (of size 18˚

when analyzing individual participants and 4˚ for the combined participant) is used to calcu-

late the function b(θ) and σ2(θ). Within each window, due to the circular nature of orientation,

the mean (μ) and concentration (κ) parameters are calculated by fitting a von Mises distribu-

tion. The bias b was then defined as the difference between μ and the center of the window.

The variance σ2 is defined as σ2 = 1/κ, and standard deviation s ¼
ffiffiffiffiffi
s2
p

.

The lower bound of FI as a function of θ is given by Cramer–Rao lower bound (Fig 1):

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
�
½1þ b0ðyÞ�
sðyÞ

: ðEq 1; see main textÞ

For our analysis, we assumed a tight bound (e.g., a wide range of commonly used decoders,

including Bayesian and maximum likelihood estimators can attain the bound, also see Fig 1

and S1 Text), which allows us to extract FI directly from data. Furthermore, with an efficient

coding assumption that the square-root of FI is directly proportional to the prior distribution

of the stimulus:

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
� pðyÞ: ðEq 2Þ

We can thus estimate the prior distribution that corresponds to an efficient sensory repre-

sentation directly from data by calculating the normalized square-root of FI (Fig 4A):

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
=

Z

y

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
dy: ðEq 3Þ

Note that the denominator,
R

y

ffiffiffiffiffiffiffiffiffiffi
IFðyÞ

p
dy, is also a direct measure of the total amount of

resource available for encoding (Fig 4B; [16,23]).

Next, to quantify the changes in encoding during the experiment, we parameterized the

square-root of FI with λ and ω:

ffiffiffiffi
IF

p
y; l;oð Þ ¼ l � o � 0:877 � 1 � sinj2yjð Þ½ � þ 1 � oð Þ �

1

p

� �

; ðEq 4Þ

where λ determines the amount of total (square-root of) FI, and ω controls the shape of FI

(i.e., allocation of encoding resources, effectively the prior distribution under the efficient cod-

ing hypothesis) by mixing a “cardinal orientation prior” with a uniform orientation distribu-

tion (Fig 4C). Note the constants are such that the prior term of the equation normalizes

properly to 1.

To recover λ and ω, we calculate the predicted bias:

b̂ðy; l;oÞ ¼
Z y

0

ð
ffiffiffiffi
IF

p
ðy; l;oÞ � sðyÞ � 1Þdy: ðEq 5Þ

We find l̂ and ô that give rise to the best fit to the observed bias b(θ) using MATLAB’s

fmincon:

argminl;ojjb̂ðy; l;oÞ � bðyÞjj2
2
: ðEq 6Þ

See S1 and S2 Figs for individual participant fits. See S3 and S4 Figs for parameters

extracted for each individual participant and their relationship with measures of autism symp-

tomatology. Note that in principle, we can fit
ffiffiffiffi
IF
p
ðy; l;oÞ to the extracted FI directly. Here,
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we choose to fit the bias pattern b(θ), to avoid the noisy derivative, b0(θ) in the Cramér–Rao

lower bound, and effectively replaced it with an integration step instead.

Fig 4D and 4E show the parameters estimated for the combined participant, while the

regression analysis presented in Fig 5 is based on parameters estimated with the same proce-

dure applied to each individual participant. All statistical tests and p-values (except for the

regression in Fig 5) are two-sided and are based on the distribution (intervals) of the sample

statistics (e.g., mean, variance, model parameters ω and λ) across 5,000 bootstrap runs ([61]).

Supporting information

S1 Text. Motivation and analytical derivation for using the Cramer–Rao lower bound to

measure Fisher information of the encoding process.

(DOCX)

S1 Fig. Scatter plot of the response data for individual neurotypical participants (target on x-

axis and bias on y-axis), and the model fits (dotted lines) to the average bias (solid lines). The

number on the top right of each panel indicates the goodness-of-fit (R2). Average R2: 0.770

±0.025. Note that we enforced the bias pattern to have a periodicity of 90˚. Color gradient

(from dark to light) and left-to-right shows first the block without feedback (woFB), and then

the first and second blocks with feedback (wFB1, wFB2). Raw data and code underlying this

figure can be found at S1 Code, and numerical values that make up this figure can be found at

S6 Data.

(EPS)

S2 Fig. Scatter plot of the response data for individual ASD participants (target on x-axis and

bias on y-axis), and the model fits (dotted line) to the average bias (solid line). The number on

the top right of each panel indicates the goodness-of-fit (R2). Average R2: 0.774±0.034. Note

that we enforced the bias pattern to have a periodicity of 90˚. Color gradient (from dark to

light) and left-to-right shows first the block without feedback (woFB), and then the first and

second blocks with feedback (wFB1, wFB2). Raw data and code underlying this figure can be

found at S1 Code, and numerical values that make up this figure can be found at S6 Data.

ASDAU : AbbreviationlistshavebeencompiledforthoseusedinS2 � S8Figs:Pleaseverifythatallentriesarecorrect:, autism spectrum disorder.

(EPS)

S3 Fig. Magnitude λ (top) and shape ω (bottom) of FI as a function of AQ scores for individ-

ual participants. Neurotypical individuals are depicted in blue, and ASD participants are

shown in red (individual dots are single participants, dots with errors bars are means across

individuals ± SEM). The results corroborate the conclusion (Fig 4D and 4E) that the neuroty-

pical and ASD group differed only by the λ parameter before feedback but both the λ and ω
parameters after feedback. Raw data and code underlying this figure can be found at S1 Code,

and numerical values that make up this figure can be found at S5 Data. AQ, Autism Quotient;

ASD, autism spectrum disorder; FI, Fisher information.

(EPS)

S4 Fig. Magnitude λ (top) and shape ω (bottom) of FI as a function of SCQ scores. Raw data

and code underlying this figure can be found at S1 Code, and numerical values that make up

this figure can be found at S5 Data. FI, Fisher information; SCQ, Social Communication

Questionnaire.

(EPS)

S5 Fig. Histogram of RT (i.e., time it took for participants to rotate the response Gabor

patch to match the target orientation). The overall shape of the distributions is qualitatively
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similar. There is a significant albeit small difference in the median RT between the neurotypi-

cal and ASD group across all 3 blocks (woFB, wFB1, and wFB2). Furthermore, there is a signif-

icant decrease in RT for both the neurotypical and ASD group with feedback as the

experiment progresses. Raw data and code underlying this figure can be found at S1 Code,

and numerical values that make up this figure can be found at S6 Data. ASD, autism spectrum

disorder; RT, response time.

(EPS)

S6 Fig. We conducted a sliding-window analysis in an attempt to reveal the effect of learning

within each block (woFB, wFB1, and wFB2) in terms of changes in: (A) average magnitude of

the bias; (B) standard deviation of the response; (C) shape of the FI ω; and (D) magnitude of

the FI λ. Our analysis suggested that, within the context of our experiment, feedback seems

essential for learning. In fact, within the first block (woFB), the bias and variance of both

groups seem to be increasing as opposed to decreasing. Raw data and code underlying this fig-

ure can be found at S1 Code, and numerical values that make up this figure can be found at S6

Data. FI, Fisher information.

(EPS)

S7 Fig. (A) We simulated the potential impact of stimulus-independent noise/variability

introduced by factors other than encoding, such as an inefficient decoder (i.e., a decoder that

produces larger variance than that dictated by the Cramer–Rao lower bound), or post-deci-

sional factors such as motor noise. We consider this important, given that while we attempted

to reduce motor responses to their simplest form (i.e., nonspeeded binary button press as

opposed to more complex movements such as joystick use), the presence of increase motor

noise is well documented in ASD (e.g., Gowen and Hamilton, 2012). (B) An increase in stimu-

lus-independent, post-encoding noise will cause a decrease in the overall magnitude of the

extracted FI. (C) An increase in post-encoding noise will flatten the shape of the extracted FI,

while decrease the overall magnitude of FI. These results are incompatible with what we

observed in our experiment, since we observe either an increase in the magnitude of FI associ-

ated with a flattening in the shape of FI (neurotypical group), or no change in the magnitude

of FI, while the shape of FI is slightly flattened (ASD). Therefore, these simulations argue that

the differences we herein report cannot be attributed to motor noise or other sources of noise

that are stimuli-independent (see Discussion and S8 Fig). Raw data and code underlying this

figure can be found at S1 Code, and numerical values that make up this figure can be found at

S6 Data. ASD, autism spectrum disorder; FI, Fisher information.

(EPS)

S8 Fig. In a further attempt to understand the potential impact of post-encoding noise, we

conducted model simulations with the counterfactual assumption that the abnormalities

in λ (both total and change thereof) in the ASD group are fully explained by stimulus-inde-

pendent noise. (A) We simulated an artificial observer (black solid) for which its FI increased

during wFB2, just as for neurotypical individuals. However, due to additional noise, this

observer appears (black dashed) to be unchanged, similar as the ASD group (red dashed). (B)

The ω values in the artificial observer (black solid) would have to undergo lessAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif lessinthesentenceTheovaluesintheartificialobserverðblacksolidÞwould:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:learning than

what was observed in ASD, such that that when it is corrupted by additional noise, it appears

to have similar ω values as the ASD group (red dashed). (C) Similarly, we simulated another

artificial observer (black solid) for which its FI matched that of the neurotypical individuals

during woFB (blue dashed), yet appears to be reduced (black dashed) to a similar level as the

ASD group (red dashed) due to additional noise. (D) The ω values in the artificial observer

(black solid) would have to be even more extreme (FI peaking even stronger than what is
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determined by the natural distribution of orientations in the environment), such that when it

is corrupted by additional noise, it appears to have similar ω values as the ASD group (red

dashed). We consider this unlikely since it is most parsimonious that both neurotypical and

ASD groups do indeed start with a pattern of FI that is similarly adapted to the natural statistics

of orientations. Importantly, in both cases, the ω values in the simulated observer strongly sup-

port our main conclusion that the neurotypical group reallocate their encoding resources

toward uniform distribution more so than the ASD group did. Raw data and code underlying

this figure can be found at S1 Code, and numerical values that make up this figure can be

found at S6 Data. ASD, autism spectrum disorder; FI, Fisher information.

(EPS)

S1 Code. Raw data and MATLAB code for our analysis and figures. Routine to reproduce

Figs 1D–1F, 2B, 2C, 3, 4 and 5 and S1–S6, panel B in S7, and S8 Figs.

(ZIP)

S1 Data. Numerical values that make up Fig 1D–1F.

(ZIP)

S2 Data. Numerical values that make up Fig 2B and 2C.

(ZIP)

S3 Data. Numerical values that make up Fig 3.

(ZIP)

S4 Data. Numerical values that make up Fig 4.

(ZIP)

S5 Data. Numerical values that make up Fig 5 and S3 and S4 Figs.

(ZIP)

S6 Data. Numerical values that make up S1, S2, S5, S6, panel B in S7, and S8 Figs.

(ZIP)
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