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Abstract

Uncontrolled urban growth detracts from healthy urban development. Understanding urban

development trends and predicting future urban spatial states is of great practical signifi-

cance. In order to comprehensively analyze urbanization and its effect on vegetation cover,

we extracted urban development trends from time series DMSP/OLS NTL and NDVI data

from 2000 to 2015, using a linear model fitting method. Six urban development trend types

were identified by clustering the linear model parameters. The identified trend types were

found to accurately reflect the on-ground conditions and changes in the Jinan area. For

example, a high-density, stable urban type was found in the city center while a stable dense

vegetation type was found in the mountains to the south. The SLEUTH model was used for

urban growth simulation under three scenarios built on the urban development analysis

results. The simulation results project a gentle urban growth trend from 2015 to 2030, dem-

onstrating the prospects for urban growth from the perspective of environmental protection

and conservative urban development.

Introduction

Global urbanization has accelerated in recent decades. The average urbanization level is

expected to reach 86% in developed countries and 64% in developing countries by 2050 [1].

Although urbanization is commensurate with socioeconomic development, it also causes

problems such as cropland loss, deforestation, regional climate and environmental impacts [2–

5]. In order to achieve sustainable development and support rational urban planning and man-

agement, it is of great practical significance to understand urban development trends and pre-

dict future urban spatial configurations.

In recent decades, remote sensing data have been widely used in urbanization process studies

because, in comparison with census data, they can provide timely and spatially explicit informa-

tion [6, 7]. Frequently used remote sensing data include multispectral reflectance [8, 9], normal-

ized difference vegetation index (NDVI) [10, 11], nighttime lights data (NTL) [7, 12], the

biophysical composition index (BCI) [13] and other indicators that reflect urban land types [14].

Most of these data have been used for detection of urban land use change. Two types of detection
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methods have been developed, namely temporal trajectory analysis and post-classification [15].

The former typically builds models using time series remote sensing products to analyze change

trends in urban land. These land changes include inter-class changes, between different urban

land types, such as between farmland or forest and built-up land [16, 17], and intra-class changes,

such as changes in built land density or in vegetation coverage [18, 19]. The post-classification

method first classifies land use/cover types at each time, and then analyzes land changes by com-

paring the time series classifications [20, 21]. Nowadays, with developments in remote sensing

and deepening concern for sustainable development, combinatorial analysis of urbanization pro-

cesses and ecological trends, using time series remote sensing data, has become very important.

As described above, change trends in urban land have been previously extracted from time

series data. Since human beings cannot change their past, the main objective of these studies

has been to assist in future rational exploitation and utilization of urban land. To this end,

many scholars have focused on studies simulating future urban land distributions [2, 22, 23].

Various types of models and methods have been proposed and used in urban land simulations

[22, 24]. Among these models, the majority are based on cellular automata (CA) because they

have been shown to be effective for representing and simulating the complexity of the dynamic

processes involved in urban growth and land use change [25–27]. In recent decades, CA

modeling has been advanced by significant technological innovations, and many CA-based

urban models have been developed, including UrbanSim [28], ANN-CA [29], RF-CA [30],

SLEUTH [31], CLUE-S [32], and FLUS [23]. These models are commonly applied under vari-

ous urban development scenarios, and allow comparison of simulation results under the dif-

ferent scenarios [23, 24]. Then, urban development suggestions have been proposed based

these comparisons. The existing research has shown these models to be effective in this regard.

Since the reform and opening up, China has experienced rapid urbanization. In particular,

many eastern coastal cities have developed into metropolises with populations of more than

ten million. Jinan, the capital of Shandong Province, which is the third largest economic aggre-

gation in China, also developed rapidly. From 2000 to 2016, driven by the real estate economy,

the urban area of Jinan expanded by 37% [33]. However, this mode of urban development is

unhealthy and unsustainable, and leads to cropland loss and environmental disruption. To

remedy this development situation, the government has generally attached great importance

to environmental protection. As a representative eastern Chinese city, Jinan has been selected

as the study area in many urban expansion and urban simulation studies [33–35]. With the

deepening concern for the environment, combinatorial analysis of urbanization processes and

ecological trends is now needed to support sustainable future development of Jinan.

In previous studies, time series NDVI and NTL data have been used for urban land use

extraction [36, 37] and urban land dynamic analysis [38–40]. Correlation analysis is usually

used to explore the influence of urbanization on the eco-environment [38, 39]. However, while

correlation analysis provides the degree of correlation between urbanization and ecological

degradation, it is difficult to determine urban development trend types, and the pace of change

and spatial distribution patterns of these types. Therefore, in this study, we used time series

remote sensing data to analyze Jinan’s development trends in urbanization and ecology and

summarized the development types and simulated future urban expansion under a number of

scenarios based on the combinatorial analysis.

Study area and data

Study area

Jinan, as the cultural, commercial, financial, and political center of Shandong Province, China,

has experienced rapid development. From 2006 to 2018, the built-up land area of Jinan grew
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from 305 km2 to 524 km2. The main urban areas and some fast-developing suburbs were

selected for this study. The geographical position is between 36˚14´ N–36˚54´ N and 116˚30´

E–117˚22´ E. As shown in Fig 1, the study area included Shizhong District, Lixia District,

Licheng District, Tianqiao District, Huaiyin District, and Changqing District. In recent

decades, the urban expansion of Jinan has occurred mainly in these areas.

Data and pre-processing

The data primarily used in this study were time series of Defense Meteorological Satellite Pro-

gram/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) data from

Fig 1. Location of the study area, mainly included urban area and suburb areas.

https://doi.org/10.1371/journal.pone.0257776.g001
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2000 to 2013, normalized difference vegetation index (NDVI) data from 2000 to 2015, urban

land cover data from 2000 to 2015, a water mask, traffic network vector data, and a digital ele-

vation model (DEM).

The DMSP/OLS NTL time series data were downloaded from the NOAA National Cen-

ters for Environmental Information (NCEI) website (https://www.ngdc.noaa.gov/ngdc.

html). The digital numbers (DN) in the NTL data reflect the urbanization level, with high

values in the center of the city, low values in peripheral regions, and values close to zero in

uninhabited regions [41]. NTL is widely used in dynamic monitoring of urban expansion,

economic development, and population evolution [6, 41, 42]. Thus, we selected time series

NTL data for urbanization analysis of the study area. The NTL data have a spatial resolution

of 30 arc-seconds and a DN range of 0–63. The calibration method developed by [43] was

used to improve the inter-annual comparability of the time series NTL data. The NTL data

from the middle year, 2007, were selected as the reference image, and Mauritius, Puerto

Rico, and Okinawa were selected as invariant regions [12]. To reduce the effect of NTL satu-

ration, the Vegetation Adjusted NTL Urban Index (VANUI) [44] was used in calibrating

NTL values based on time series NDVI images. Lastly, the NLT time series DN values were

normalized to the range of 0–1.

The time series NDVI data collected by SPOT/VEGETATION were downloaded from the

Resource and Environment Science and Data Center of China (http://www.resdc.cn/). NDVI

is an effective vegetation indicator whose value ranges from –1 to 1. Denser vegetation has

NDVI value closer to 1. It is widely used in long-term change detection of forests, grasslands,

farmlands, and other vegetated areas [45–47]. Thus, time series NDVI was therefore chosen to

identify change trends in the ecology of the study area. Composite NDVI, from August 2000 to

2015, was selected because August is a time of flourishing vegetation, and therefore shows the

greatest difference between land types. For comparability with the NTL data, the time series

NDVI was also normalized to the range of 0–1.

Urban land cover data were downloaded from an open source repository [48]. These data

were derived from Landsat images with a spatial resolution of 30 m and four years were

selected for urban simulation, namely 2000, 2005, 2010, and 2015. The digital elevation model

(DEM) was downloaded from the Geospatial Data Cloud website (http://www.gscloud.cn/)

and used to derive slope and hillshade data. Finally, all raster and vector data were clipped to

the same extent as the study area, and the projection coordinate system was uniformly set to

WGS_1984_UTM_Zone_50N.

Methodology

The methodology of this work included two main parts: (1) urban development trend analysis

and (2) urban simulation. The former synthetically analyzed the urbanization process and eco-

logical change trend from 2000 to 2015 using time series NTL and NDVI data, and then identi-

fied a set of urban development spatial area types based on a spatial clustering procedure. The

latter simulated the urban area in 2030 under different scenarios based on the prior analysis.

The detailed methodology is shown in Fig 2.

Urban development trend analysis

Change trend analysis of time series NTL and NDVI data is usually a model-fitting process

using linear, non-linear, or harmonic models [12, 18, 49, 50]. Linear models are commonly

used in general change trend analysis and do not consider local changes. Nonlinear models are

often used in detailed change trend analysis and include local changes. Harmonic models are
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typically used in seasonal change analysis. Because this study aimed to define general change

trends in NTL and NDVI, a linear model was applied to the time series.

The linear model was built using least-squares first-order regression of the time series val-

ues of each image pixel. Thus, every pixel of the image had an individual model, as shown in

Fig 3 (Y = at+b). Y denotes the time series values of normalized NTL or NDVI, t denotes the

time points, a denotes the slope value of the linear model, and b denotes the intercept value of

the linear model. For example, for the ith pixel of the NDVI images, the model is Y (NDVI,i) =

a(NDVI,i)t + b(NDVI,i), and for the ith pixel of the NTL images, the model is Y (NTL,i) = a(NTL,i)t

+ b(NTL,i). The goodness of fit of the models was evaluated using the root mean squared error

(RMSE) indicator, which is defined as the square root of the mean of the squared differences

between corresponding elements of the model values and actual values [51]. The smaller the

RMSE value, the better the goodness of fit.

As shown in Fig 3, in a model, the value of parameter a reflects the change trend and the

speed of change, and the parameter b reflects the size of the initial values of the time series. If a
is a negative value, the change trend is declining. If a is a positive value, the change trend is

increasing. If the absolute value of a is large, the speed of change is fast. If the absolute value of

a is small, the change speed is slow. Thus, it can be seen that the change trend of time series

data can be summarized from the two parameters, namely a and b. To synthetically analyze

the evolution trend of NTL and NDVI, vectors were constructed based on NTL and NDVI

model parameters, specifically V = haNTL, bNTL, aNDVI, bNDVIi. Then, the vectors of all pixels

Fig 2. The flowchart of this study.

https://doi.org/10.1371/journal.pone.0257776.g002
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were clustered, based on their similarity, using the k-means clustering algorithm. First, the

number of clusters (k) and a set of n data points were selected as the original cluster centers.

Then, the sum of the distances between each point and its closest center (dsum) was calculated

iteratively. The cluster centers were iteratively optimized to created optimal clusters that mini-

mized the value of dsum. Although it is one of the earliest clustering algorithms, it is simple and

effective and still popular for a variety of applications [52, 53].

According to the rapid urban expansion state in China in recent decades, we applied the

general assumption that the degeneration of urban land is not likely in this study [16]. Thus

we defined the change trend of urban land as three types, namely, urban expansion type, high

density urban stable type and low density urban stable type, and defined the change trend of

vegetation as four types, namely, the type of vegetation coverage increase, the type of vegeta-

tion degeneration, high density vegetation stable type and low density vegetation stable type.

Based on these definitions of urban and vegetation change trend type, there are totally twelve

urban development trend types under the comprehensive consideration of urban land and

vegetation. Therefore we set the initial cluster number as twelve.

Considering that there may be some types are not exist in the study area. After the cluster-

ing procedure, each cluster’s urban development trend type was determined using sample data

analysis. The detailed scheme was as follows. First, some sample pixels within each cluster

region were randomly selected. Then, the linear model parameters of the sample pixels were

extracted by least-squares first-order regression. Lastly, the development trend of each cluster

was defined based on the mean values of the linear model parameters. For example, for one

cluster, if the mean value of aNTL is a large positive value, bNTL is a small value, aNDVI is a large

negative value, and bNDVI is a large value, (i.e., NTL increased rapidly while NDVI decreased

rapidly) this represents an urban development type in which urban areas have expanded rap-

idly with a large loss of vegetation.

Fig 3. Illustration of linear model fitting of time series values.

https://doi.org/10.1371/journal.pone.0257776.g003
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Urban simulation

The SLEUTH (Slope, Land use, Exclusion, Urban, Transportation, and Hill-shade)

model was selected to simulate urban expansion. The SLEUTH model is a well-known

CA-based urban growth model that can predict future urban development areas under

different urban growth scenarios. The model uses simple simulation rules and has been

refined many times [54]. Its required spatial layers include roads, terrain, existing urban/

non-urban areas, land use, and exclusion areas. By changing the exclusion layers, the

SLEUTH model can simulate different urban growth scenarios, and many studies have

incorporated planning policies and environmental quality constraints into the model

using this method. The SLEUTH model has been widely applied and has shown robust

capability to simulate the emergence of complex urban patterns [2, 55, 56]. This study

only used the SLEUTH-UGM model, thus the land use layer was not included in the

input data. Therefore, there are five input layers have been used: slope, exclusions, urban

areas, transport, and hillshade. Changing the exclusion layer allows comparison of differ-

ent scenarios [2, 27]. This process was used in this study for scenario setting and model

calibration.

Scenario setting. Urban expansion scenarios were set by adjusting the grid cell values

in the exclusion layers. The cell values ranged from 0–100, with higher values indicating

higher probability of grid cells not being urbanized [24]. For example, water bodies are typi-

cally not suitable for urban construction and water cells were given an exclusion value of

100. In an environmental protection scenario, forests and wetlands have a value exclusion

probability close to 100. This process also allowed us to define urban expansion scenarios

based on results of the urban development trend analysis. For example, for a region with

rapid urban expansion at but major vegetation loss, the exclusion layer’s value might be set

as close to 100, in order to protect the remaining ecology. A region of rapid urban expansion

at little vegetation cost has seen urban expansion with little influence on ecology, meaning it

has space for further urban expansion. Thus, the exclusion layer’s values in this region

would be set small. In all we applied three scenarios. The first reflects historical growth with

high exclusion probability only for water bodies. The other two scenarios were based on

outcome of the urban development trend analysis.

Model calibration. The SLEUTH model uses four rules to simulate urban growth:

spontaneous growth, new spreading center growth, edge growth, and road-influenced

growth. To control these four rules, five coefficients, namely dispersion, breed, spread,

road gravity, and slope, need to be chosen [57]. To obtain the optimal coefficient values,

model calibration is essential. This involves comparison of the simulated and actual

urban growth patterns and is a multi-stage, automated, and sequential process using a

forced Monte Carlo iterative method and divided into three phases: coarse calibration,

fine calibration, and final calibration [24]. The three calibration phases sequentially nar-

row the ranges of the coefficient values using a predetermined iteration interval and step

size. Each coefficient combination is applied in simulating urban growth patterns based

on the input data. The degree of fit, under each coefficient combination, between the

simulated urban growth and actual urban growth is assessed using indexes based on

SLEUTH options such as Compare, Population, Edges, Clusters, Lee-Salle, Slope, X-

mean, and Y-mean [54]. Among these indexes, Lee-Salle is widely used [58, 59]. It is a

shape index, which quantifies the spatial fit between the model’s growth and the known

urban extent. The higher the Lee-Salle value, the better the simulation effect. Therefore,

this study selected the Lee-Salle index to assess the performance of each coefficient

combination.
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Results

Urban development trend analysis results

The results of the linear fitting goodness evaluation are shown in Fig 4. The RMSE values of

the NTL time series ranged from 0.0052 to 0.1603 (Fig 4A), and the RMSE values of the NDVI

time series ranged from 0.0153 to 0.123 (Fig 4C). To further verify the goodness of linear fit-

ting, four sample points in the NTL and NDVI high RMSE areas of were separately extracted,

Fig 4. The linear fitting goodness evaluations of NTL and NDVI time series. (a) the RMSE map of the NTL time series; (b) examples of NTL linear fitting at sample

points with high RMSE values; (c) the RMSE map of NDVI time series; (d) examples of NDVI linear fitting of sample points with high RMSE values.

https://doi.org/10.1371/journal.pone.0257776.g004
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and their linear models are shown in Fig 4B and 4D. From these sample point linear models,

we can see that although their RMSE values are higher than those of other areas, they reveal

the overall change trend well. Therefore, the linear models were judged as effective for devel-

opment trend identification, and the resulting model parameters were deemed suitable for the

spatial clustering progress.

Maps showing the spatial distribution of the linear model parameters of the NTL and

NDVI time series are in Fig 5. Low values of aNTL were mainly in the south of the study area

and in the center of the city (Fig 5A). This indicates that these areas have experienced slow

urbanization. High values of aNTL were mainly around the central area of the city and to the

east and southwest of the central city. Rapid urbanization was mostly in these two directions.

High values of bNTL were mainly in the center of the city and the administrative center of the

suburban district (Fig 5B) indicating that these areas were mostly urbanized before 2000 and

have experienced slow urbanization since then.

Low values of aNDVI had a similar distribution pattern to high aNTL values (Fig 5C), and

were mainly in the eastern and southwestern parts of the city. Urbanization of these areas has

clearly influenced vegetation cover. High values of aNDVI were mainly in the south of the study

area, areas of mostly forest and grassland, indicating that the south of the study area has main-

tained good vegetation coverage and ecological conditions. Low values of bNDVI were mainly

distributed in the center of the city, and high values were mostly in other areas (Fig 5D) reflect-

ing good vegetation coverage of most of the study area in 2000.

As mentioned above, we used time series normalized NTL images from 2000 to 2013 and

NDVI images from 2000 to 2015 to build linear models. Four linear model parameters were

extracted for each pixel, namely aNTL, bNTL, aNDVI and bNDVI. Then, the linear model parame-

ters of each pixel were used for spatial clustering. As stated above, the initial cluster number is

twelve. The mean values of the four linear model parameters in each cluster region were

extracted and are shown in Table 1. And the linear models of each cluster’s samples are shown

in Figs 6 and 7.

For cluster 1 and cluster 10, the slope values of the normalized NTL lines were small and

indicated a stable trend (Fig 6A and 6C). The mean slope values of the normalized NDVI lines

were all larger than 0.01 and indicated a increase trend (Fig 6B and 6D). Thus, the develop-

ment trend type of cluster 1 and cluster 10 was defined appropriately as low density stable

urban and vegetation increase type (LDSU-VI). For cluster 2 and cluster 4, the normalized

NTL lines exhibited an obvious growth trend (Fig 6E and 6G). The normalized NDVI lines all

showed stable trends at roughly median values reflecting the low-density vegetation cover evi-

dent in the original NDVI values (Fig 6F and 6H). Thus, the development trend type of cluster

2 and cluster 4 was defined appropriately as the urban expansion and low density stable vegeta-

tion type (UE-LDSV). For cluster 3 and cluster 11, the normalized NTL lines presented a stable

trend and maintained low values (Fig 6I and 6K), and the normalized NDVI lines also pre-

sented a stable trend and maintained high values (Fig 6J and 6M). Thus, the development

trend type of cluster 3 and cluster 11 was defined appropriately as low density stable urban and

high density stable vegetation type (LDSU-HDSV).

For cluster 5, the normalized NTL lines had a stable trend and maintained high values (Fig

7A). The normalized NDVI lines also had a stable trend and maintained low values (Fig 7B).

Thus, the development trend type of cluster 5 was defined appropriately as high density stable

urban and low density stable vegetation type (HDSU-LDSV). For cluster 6, cluster 8 and clus-

ter 12, the normalized NTL lines showed an obvious growth trend (Fig 7C, 7E and 7G) while

the normalized NDVI lines presented a stable trend and maintained high values (Fig 7D, 7F

and 7H). Thus, the development trend type of cluster 6, cluster 8 and cluster 12 was defined

appropriately as urban expansion and high density stable vegetation type (UE-HDSV). For
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Fig 5. The spatial distributions of the linear model parameters. (a) map of aNTL values; (b) map of bNTL values; (c) map of aNDVI values; (d) map of

bNDVI values.

https://doi.org/10.1371/journal.pone.0257776.g005
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cluster 7 and cluster 9, the normalized NTL lines had a growth trend (Fig 7I and 7K), and the

normalized NDVI lines exhibited a declining trend (Fig 7J and 7M). Thus, the development

trend type of cluster 7 and cluster 9 was defined appropriately as urban expansion and vegeta-

tion degeneration type (UE-VD).

As mentioned above, the twelve clusters were grouped into six development trend types

based their linear model features. The spatial distribution pattern of the urban development

types are shown in Fig 8. The area labeled HDSU-LDSV is the urban center. This high-density,

stable urban area was already built-up, and there was little land available for urban expansion.

The green areas labeled LDSU-VI and LDSU-HDSV were mainly at the edges of the study

area. These regions are mainly occupied by forests and have been little influenced by urban

development. Urban expansion mainly occurred in the regions labeled UE-LDSV, UE-HDSV,

and UE-VD. However, in the UE-LDSV region, vegetation coverage remained low from 2000

to 2015. This is because this area is close to the center of Jinan and although it was not built up,

the vegetation had already been disturbed by human activities. In the region UE-HDSV, vege-

tation coverage remained high from 2000 to 2015. This is because this region has a large area

of farmland, and most urban land has changed from farmland, thus little forest have been

urbanized. In the regions UE-VD, vegetation coverage degenerated rapidly during the study

period. This is because these regions were close to prior city built-up areas and were anteced-

ent areas of urban expansion. Urban construction activities were frequent, and the vegetation

was seriously disturbed.

Urban simulation

Three scenarios were set by adjusting the exclusion layer values (Fig 9). The first scenario is

called the historical growth scenario. In this scenario, only water bodies were completely

excluded using a value of 100 in the exclusion layer with other areas set at zero. The second

and third scenarios were built based on the results of the urban development trend analysis.

The second scenario is called the gentle restriction scenario of urban expansion. In this sce-

nario, in order to protect the ecological environment of the suburbs, in addition to water bod-

ies, areas in the LDSU-VI and LDSU-HDSV classes were completely excluded (a value of 100).

Urban expansion was allowed in regions UE-LDSV, UE-HDSV and UE-VD, their exclusion

values were set at 50 to ensure the gentle restriction of urban growth. The third scenario is a

Table 1. Results of clustering the linear model parameters and the urban development trends of each cluster.

Cluster number Mean parameter value of each cluster Development trend types

aNTL bNTL aNDVI bNDVI

1 0.0056 0.0746 0.0172 0.6108 Type 1: Low density stable urban and vegetation increase type (LDSU-VI)

2 0.0329 0.5157 0.0045 0.5212 Type 2: Urban expansion and Low density stable vegetation type (UE-LDSV)

3 0.0068 0.0851 0.0058 0.6859 Type 3: Low density stable urban and High density stable vegetation type (LDSU-HDSV)

4 0.0239 0.6625 -0.0068 0.5131 Type 2: Urban expansion and Low density stable vegetation type (UE-LDSV)

5 0.0028 0.96 0.0049 0.2858 Type 4: High density stable urban and low density stable vegetation type (HDSU-LDSV)

6 0.0288 0.1522 -0.0049 0.7182 Type 5: Urban expansion and high density stable vegetation type (UE-HDSV)

7 0.0322 0.4511 -0.0117 0.6915 Type 6: Urban expansion and vegetation degeneration type (UE-VD)

8 0.033 0.2896 -0.0041 0.728 Type 5: Urban expansion and high density stable vegetation type (UE-HDSV)

9 0.0106 0.8754 -0.0129 0.5248 Type 6: Urban expansion and vegetation degeneration type (UE-VD)

10 0.0076 0.0331 0.0123 0.6626 Type 1: Low density stable urban and vegetation increase type (LDSU-VI)

11 0.007 0.0658 0.0033 0.7237 Type 3: Low density stable urban and High density stable vegetation type (LDSU-HDSV)

12 0.0268 0.2384 0.007 0.6228 Type 5: Urban expansion and high density stable vegetation type (UE-HDSV)

https://doi.org/10.1371/journal.pone.0257776.t001
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strict urban expansion restriction scenario. In this scenario, the water bodies, LDSU-VI, and

LDSU-HDSV were as in the second scenario. The regions UE-LDSV, UE-HDSV and UE-VD,

were set to 80 in the exclusion layer to more strictly limit urban growth.

SLEUTH’s three calibration stages, coarse, fine, and final, were applied for each simulation

scenario. As shown in Table 2, the optimal coefficients for dispersion, breed, spread, slope, and

road gravity were 1, 18, 19, 90, and 75 in scenario 1; 1, 1, 39, 68, and 68 in scenario 2; and 1, 2,

78, 56, and 37 in scenario 3. The average Lee-Salle values of the three calibration processes

were 0.707 in scenario 1, 0.709 in scenario 2, and 0.708 in scenario 3. According to previous

research, calibration is acceptable when the Lee-Salle values are between 0.3 and 0.7 [24, 60].

Fig 6. The linear model lines of the samples of cluster 1, cluster 2, cluster 3, cluster 4, cluster 10 and class 11.

https://doi.org/10.1371/journal.pone.0257776.g006
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The Lee-Salle values in this study were all higher than 0.7, which indicates a good calibration

result.

Using the 2015 urban area as the seed layer, this study predicted urban growth to 2030 under

the three urban growth scenarios using the SLEUTH model (Fig 10). In the historical growth

scenario (Fig 10A), the urban build-up land area would increase to 728.68 km2 in 2030, a gain

of 104.5 km2 compared with 2015, with an average annual urban growth rate of 1.1% (Table 3).

In this scenario, only water bodies were set as non-urbanizable in the exclusion layer. The

restriction of urban expansion was the lowest across the three scenarios. Most urban expansion

occurred adjacent to prior urban boundaries. Some newly added built-up lands occur along

Fig 7. The linear model lines of the samples of cluster 5, cluster 6, cluster 7, cluster 8, cluster 9 and class 12.

https://doi.org/10.1371/journal.pone.0257776.g007
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roads in the suburbs and connected scattered urban patches. The gentle restriction scenario of

urban expansion (scenario 2) would add 58.5 km2 of build-up land by 2030, relative to 2015,

with an average annual urban growth rate of 0.7%. In the strict restriction scenario, 22 km2 of

built-up land would be added by 2030, with an average annual urban growth rate of 0.3%.

Fig 8. The urban development trend clustering results. LDSU-VI (type 1): Low density stable urban and vegetation increase type; UE-LDSV (type 2):

Urban expansion and Low density stable vegetation type; LDSU-HDSV (type 3): Low density stable urban and High density stable vegetation type;

HDSU-LDSV (type 4): High density stable urban and low density stable vegetation type; UE-HDSV (type 5): Urban expansion and high density stable

vegetation type; UE-VD (type 6): Urban expansion and vegetation degeneration type.

https://doi.org/10.1371/journal.pone.0257776.g008
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Discussion

Time series NTL and NDVI data were used to identify change trends in urban land and nearby

vegetation. A linear model of the change trend was built for each pixel based on the time series

data. The parameters of the models, namely slope and intercept values, were used in k-means

clustering to identify areas of homologous urban development trend type. Urban development

spatial types were then used to establish three scenarios in an urban growth simulation, from

2015 to 2030.

In previous studies, time series NDVI and NTL data have been used for urban land map-

ping [36, 37] and urban land dynamic analysis [38–40]. Correlation analysis is commonly used

to analyze the influence of urbanization on the eco-environment [38, 39]. This study used lin-

ear model fitting to analyze the trends of urbanization and ecology based on time series NDVI

and NTL data. This can identify the rate of urbanization and ecological change, alongside the

correlation information, through the parameters of the models. Next, to determine the spatial

distributions of the urban development trend types, the parameters of the NTL and NDVI lin-

ear models were set as variables in a spatial clustering process. Finally, six urban development

types were defined based on the clustering results and prior knowledge of the study area.

In linear fitting process, the goodness or the significance of linear fitting are usually

extracted to prove the effectiveness of the linear models, and the related indicators contain

root mean squared error (RMSE), Student’s T-test value, p-test value, and so on [49, 61]. In

Fig 9. Exclusion layers for urban expansion scenarios.

https://doi.org/10.1371/journal.pone.0257776.g009

Table 2. Calibration results of the three scenarios.

Optimal coefficient combination

Scenario 1 Scenario 2 Scenario 3

Model parameter Dispersion 1 1 1

Breed 18 1 2

Spread 19 39 78

Slope 90 68 56

Road gravity 75 68 37

Average Lee-Sallee 0.707 0.709 0.708

https://doi.org/10.1371/journal.pone.0257776.t002
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this study, we just selected the RMSE indicator to show the goodness of fitting and did not test

the statistical significance of linear fitting. The reason is that the stable trends of NTL and

NDVI is the important development pattern to dig out in this study, and they have a weak sta-

tistical significance when linear fitting due to the weak correlation between values and times.

Fig 10. Urban land area predicted under three scenarios by 2030. (a) Scenario 1, historical growth; (b) Scenario 2, gentle restriction of urban expansion; (c)

Scenario 3, strict restriction of urban expansion.

https://doi.org/10.1371/journal.pone.0257776.g010
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For example time series NTL data, at the significance level of 0.05, the significance threshold is

2.178. As shown in Fig 11A, the t-values of most regions are larger than 2.178. But in the red

areas, the t-values are all less than 2.178. It means that the red areas have a weak statistical sig-

nificance. And then, some sample points in these areas were selected randomly and showed

the linear fitting results (Fig 11B). From these sample lines, we could find that the red areas

are main NTL stable areas. It is inappropriate to validate the effectiveness of stable areas’ linear

fitting results by statistical significance indicators.

We simulated urban growth up to 2030 using the SLEUTH model under three urban growth

scenarios, which were built based on the results of the urban development trend analysis. The

urban growth areas of the different scenarios were clearly affected by the degree of urban expan-

sion restriction imposed by the exclusion layer. In the historical growth scenario (scenario 1),

only the water bodies were excluded from urban expansion, and the urban growth speed was

substantially higher than in the other two scenarios. Scenarios 2 and 3 were based on the concept

of environmental protection. The regions of LDSU-VI and LDSU-HDSV were excluded in these

scenarios by using the exclusion layer while growth in the main urban expansion areas, such as

UE-LDSV, UE-HDSV, and UE-VD, was also appropriately restricted. Thus, the urban simula-

tions of scenarios 2 and 3 directed urban growth with consideration of environmental protection

and conservative urban development. The urban simulation process used in this study is there-

fore relatively simple. In future studies, it would be best to combine urban planning, land con-

struction suitability, public will, and so on, into the urban development predictions [2].

Table 3. Predicted urban expansion statistics, in 2030, under three scenarios.

Scenarios Urban land(km2) Urban growth land (km2) Annual Urban growth rate (%)

Scenario 1 728.68 104.5 1.1

Scenario 2 682.62 58.5 0.7

Scenario 3 646.08 22 0.3

https://doi.org/10.1371/journal.pone.0257776.t003

Fig 11. T-test values of time series normalized NTL linear fitting. (a) the spatial distribution map of t-test values. (b) examples of

NTL linear fitting at sample points with low t-test values.

https://doi.org/10.1371/journal.pone.0257776.g011
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Although this study successfully extracted the urban development trend types of Jinan and

simulated urban growth in 2030, it had some limitations. First, only time series remote sensing

data were used in the urban development analysis process, and it would be better to add statis-

tical data about economic and social factors to identify urban development patterns in more

detail. Second, in order to limit inconsistencies among different remote sensing data sources,

this study only used the DMSP/OLS NTL data from 2000 to 2013, and it has stopped working

and was substituted by data from the Visible Infrared Imaging Radiometer Suite (VIIRS) [62]

after 2013. Third, this study simulated urban growth using the SLEUTH model. It is well

known that some cellular automata-based urban simulation models are considered superior,

such as the CA_MARKOV model [63], METRONAMICA model [64] and FLUS model [23].

Thus, it will be preferable to use these models in future urban simulation studies, especially if

more socio-economic data is included. Finally, the urban growth scenarios were set based

solely on the urban development analysis results, and it would be better to also include urban

planning, land construction suitability [65], public will, and so on, in future urban develop-

ment projections.

Conclusions

Using time series DMSP/OLS NTL and NDVI data, we analyzed the urban development

trends of Jinan from 2000 to 2015 and clustered these trends into six types. The first type was

the low density stable urban and vegetation increase type (LDSU-VI). It was mainly distributed

in southern Jinan, mostly mountains and forests. The second type was the urban expansion

and low density stable vegetation type (UE-LDSV) mainly located in the suburban areas of

Jinan. The third type was the low density stable urban and high density stable vegetation type

(LDSU-HDSV) and is mainly in the south of Jinan. The fourth type was high density stable

urban and low density stable vegetation type (HDSU-LDSV) mainly found in the center of

Jinan. The fifth type was urban expansion and high-density stable vegetation (UE-HDSV)

mainly in the suburbs of Jinan. The sixth type was urban expansion and vegetation degenera-

tion (UE-VD) mainly in the near suburban areas of Jinan. Three urban growth simulation sce-

narios were built based on the urban development trend analysis and respecting the

environmental protection and conservative urban development concepts. The urban simula-

tions indicated a gentle urban growth trend from 2015 to 2030. The historical scenario had the

highest urban growth rate. Scenarios 2 and 3 exhibited slower urban growth trends from 2015

to 2030 reflecting their different restriction levels. They show the prospects for urban growth

from the perspective of environmental protection and conservative urban development.
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