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Abstract

This paper reports the global asymptotic stability of a three-species preda-
tor-prey system involving the prey-taxis. With the assumptions, we establish
the global asymptotic stability results of its equilibria, respectively. Our re-
sults illustrate that 1) the global asymptotic stability of the semi-trivial equili-
brium does not involve the prey-taxis coefficients y,&; 2) the global asymp-
totic stability of two boundary equilibria relies on a single prey-taxis coeffi-
cient y and ¢, respectively; 3) the global asymptotic stability of the unique
positive equilibrium depends on two prey-taxis coefficients y and ¢.

Keywords
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1. Introduction

In the past few decades, predator-prey systems involving the prey-taxis have at-
tracted more and more scholars to investigate them. Chen et al [1] reported sta-
tionary patterns of a predator-prey model with prey-taxis and investigated the
stability of the nonconstant steady states by employing the Crandall-Rabinowitz
bifurcation theory. Tu et al [2] considered the asymptotic behaviors of a para-
bolic-elliptic chemotaxis system with competitive kinetics and loop of a preda-
tor-prey model. Bell and Haskell [3] established the global existence of positive
classical solutions and the existence of nontrivial steady states via the bifurcation
theory of a predator-prey system. The global existence and uniform bounded-
ness of solutions to a predator-prey system with prey-taxis for general functional
responses in any spatial dimensions have been investigated by Ahn and Yoon

[4]. The existence of the unique global bounded classical solution is proven, and

DOI: 10.4236/am.2022.138041 Aug. 19, 2022

658 Applied Mathematics


https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.138041
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2022.138041
http://creativecommons.org/licenses/by/4.0/

M. X. Chen, Q. Q. Zheng

the steady-state bifurcation, the Hopf bifurcation, and Hopf/steady-state mode
interaction are studied via the Lyapunov-Schmidt procedure by Qiu ef al [5].
We recommend more existing results about the predator-prey systems with di-
rected prey-taxis, see Refs. [6] [7] [8] [9] [10], etc.

In this present paper, we focus on a predator-prey model with two predators

and one prey as well as the prey-taxis as follows.

Ou=0,u-40,-| ———0O,W |+ puw___ puw -8U, XeQ, t>0,
(1+5W) o, +W+su o +W+sU
OV =0,V—E0, - %axw +'BZ—VW—M—5ZV, xeQ, t>0,
(1+5w) o, +W o, +W
ow=do, w+ rw(l—ﬂ]— FUW  HpVW , xeQ, t>0,
o +W+SU @, +W
ou=0v=0,w=0, xeoQ, t=0,
u(x,0)=uy(x)=0, v(x,0)=v,(x)=0, w(x,0)=w,(x)>0, XeQ,
(1)

where U :u(x,t),v:v(x,t) and W=W(X,t) are predator and prey densities
at position x and time £ respectively. Q c R" is a bounded domain with its
smooth boundary 0Q; constant d describes the diffusive rate of prey; For
=12, p; are the ratios of biomass conversion of predators species; p;
represent the rates of toxic substances produced by per unit biomass about pre-
dators due to prey species are toxic corresponding to the predators; J; are the
natural mortality of the predators zand v; «; describe the half-saturation con-
stant of the predators; s describes the measure of mutual interference among the
predator u; two constants r and K in the third equation are the intrinsic growth

rate and the maximum environmental capacity of prey species, respectively.

V.o, .
—)2 (W | are prey-taxis

Moreover, —x0, -
(1+6w

Lzawa and -0, [
(1+5w)

terms. They imply the tendency of predators moving toward the positive direc-
tion of the increasing gradient of prey population as y >0 and £>0. If
<0 and & <0, we say that predators move toward the opposite direction of
the increasing gradient of prey population to avoid group defense by a large
number of prey species or volume-filling effect in predator species [11]. Conse-

quently, »,£>0 and y,&<0 corresponding to attractive and repulsive
prey-taxis, respectively. Moreover, 4 > and v > represent the
(1+6w) (1+6w)

distribution variations of the directed species dispersals [12]. Obviously, they
depend on the density of the prey population. All parameters exhibited in the
system (1) are set to be positive.

For system (1), define

Puw puw
a +W+SU o +WHSU

f(u,v,w)= ou,
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and

uw VW
h(u,v,w):rw(l—ﬂj— it _
K) o +w+su a,+WwW

as well as some assumptions

Va7 =N,

a0, .
—p, =8 >0,W>—2L  with w=
(H1) Aimp=a B—p—6 2y,

Nnh= rs(ﬁl _pl)J’z = ﬂl(ﬂl — P _51) K _rs(ﬁl _pl)K' Vs =—146,K.
(H2) pB,—p,—9,>0, (ﬁz —pz)K —(0:2 + K)é'2 > 0.
(H3) Po—pr—6,>0,a,6, (ﬁl P _51)_%51 (ﬁz ~— P2 _52) >0,
(r=m)(B,—p,—6,)K—ra,6, >0.

As a result, we can conclude the classifications of the equilibria of system (1).
1) system (1) has a trivial equilibrium E, =(0,0,0) and a semi-trivial equili-
brium E = (0,0, K); 2) if (H1) holds, system (1) has a boundary equilibrium
E, =(0,0,W), where

_7z+\/722_47173 (ﬂl_pl_51)w_al51.

<>

W:

2y, SO,
3) if (H2) is valid, system (1) has a boundary equilibrium E; = (0,\7, W) R
where
W a,0, vzraz(ﬂz_Pz)[(ﬂz_Pz)K_(az+K)52]_
ﬂz_Pz_éz, ﬂz(ﬂz‘p2_52)K ,

4) if (H3) is satisfied, system (1) has a unique positive equilibrium
E, = (u*,v*,w*) , where
U= a,d, (:31 — A _51)_0‘151 (ﬁz — P _52)
s, (ﬁz — P> _52)

. (a1+W*)74
52/120‘2K(ﬁ1 _pl)(ﬂz — P> _52)

and
. a,0,
Br—pr—06, ,
) ;/4:a252(ﬂ1—p1)[(r—,ul)(ﬂz—p2—52)K—ra252]
with

+ 16K (ﬂz — P> _52)[0‘252 toy (ﬁz =P, =0, )] ‘
In this present paper, we will establish the global asymptotic stabilities of
semi-trivial equilibrium E, = (0, 0,K ) , boundary equilibria
E, = (G, 0, W), E, = (0,\7, W) and the unique positive equilibrium
E, = (u*,v*,w*) by constructing some suitable time evolution Lyapunov func-

tions, respectively.
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This paper is structured as follows. In Section 2, we perform the main results
of the present paper. In Section 3, the local-in-time existence of the classical so-
lution of the model is given. In Section 4, the proofs of the main results are dis-

played. Finally, some conclusions are made in Section 5.

2. Main Results

Theorem 2.1 Let QR be a bounded domain with the smooth boundary
0Q . Suppose (u,v,w) is a classical solution of system (1) with the initial con-
ditions Uy (X), Vo (X), W (X)) €[ W™P (Q)}3 and Uy (X) 20, (X)W, (x)>0
for X eQ . We have the following global asymptotic stability results.

1) Forany y,&>0 and

0<f,<p+u, 0<p,<p,+m, 0<K gmin{al—gl,%—az}, @)
MM
then E, =(0,0,K) isglobally asymptotically stable.
2) If the condition (H1) holds and
_ i 2 5
ﬁzsﬂ2S52flz,/_tl:(ﬂl pl)(%+SU)10<KSULaIO<ZZS£VYl (3)
W oy +W 40 C?d

then boundary equilibrium E, = (G,O, W) is globally asymptotically stable for

any £>0.
3) If the condition (F2) is valid and
S0 a, (B, — p,) ro 4dw
Sy <AL =" 2 0<K<—2, 0<E<——, (4
e o 05 Sy @
then E,=(0,V,W) isglobally asymptotically stable for any y>0.
4) If the condition (H3) holds and
—p )y +su” - 2 2
(Aplles) | alBp) o el v
o +W a, +W WU v
as well as
0< 2482 < AW 6)

max{u*,v*}CZ '
then E, = (u*,v*,w*) is globally asymptotically stable, where
€ = max [y (x)] ) K

Remark 2.1 From Theorem 2.1, we can find that the global asymptotic stabil-
ity of the semi-trivial equilibrium E, =(0,0,K) does not involve the prey-taxis
coefficients y and &. The global asymptotic stabilities of the boundary equi-
libria E, =(0,0,W) and E,=(0,V,W) only depend on prey-taxis coefficient
x and &, respectively. However, the global asymptotic stability of the unique
positive equilibrium E, = (u*,v*,w*) depends on prey-taxis coefficients y
and ¢.

Remark 2.2 The control conditions (3), (4) and (6) of the global asymptotic
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stabilities of the equilibria only involve the initial spatial density W,(X) of prey
species but are independent of the initial spatial densities U, (X) and V, (X) of
the predators.

The following conclusion is helpful to obtain the desired results.

3. Existence

Lemma 1 Suppose that Q c R" with the smooth boundary 6. For any initial
conditions (Uy(X),V,(X),W, (x)) e [Wl'p (Q)J3 satisfies

Ug (X) =0,y (X), Wy (X)=0 for xe Q. Then there is a maximal existence time
Toax >0 such that system (1) has a unique local non-negative classical solution
(u(x.t),v(x,t),w(xt))e [C ([0, T ;W P (Q)) N C** (2% (0, T, ))]3 . Moreo-
ver, we have u(x,t), V(X,t) >0, W(X,t) <C for xeQ, te [O,Tmax) , where

C= max{”w0 (x) (@) K} .

Proof. Denote by l//(X,t)=(u(X,t),V(X,t),W(X,t)). Then system (1) takes
the form

‘Z—ﬁ’:ax-(z(l//)axy/)w}'(y/), xeQ, t>0,
W _y, XedQ, t>0,
ov
w (40)=(uy (X) Vo (X), Wy (X)), xeQ
where
u
10 ——2 puw  puw su
(1+6w) o +W+SsU o +W+su
d)=0 1 b W)= APy
(1+6w) a, +W o, +W
00 d rw(l—ﬂj— UW W
K) og+w+su a,+WwW

Obviously, z(y) is an upper-triangular matrix and is positive definite
since d >0 is valid. Therefore, the local existence can be checked by Am-

man’s fixed point argument [13]. Now rewrite the first equation of system (1)

as follows.
ou=ou-y 6Xu-8XvZ L 2ydu _o, wuf, (U,v, W), xeQ, te(0T,,),
(1+6w)” (1+6w) )
u=0, Xe@Q,te(O,Tmax),
u(x,0)=u,(x)=0, XeQ,

Aw  pw
o +W+SU @, +W+Su

where f,(u,v,w)= — &, . Obviously, 0 is a lower solution

of (7). Therefore, the maximum principle shows U (X,t) >0 forall

(x,t) e Qx(0,T,, ). Combine Uy(X)>0(#0) with the strong maximum prin-
ciple, U(X,t)>0 is valid. By the same way, we have V(X,t),w(x,t)>0 for all
(x,t)eQx(0,T,, ). Finally, the maximum principle ensures that w(x,t)<C
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for (x,t)eQx(0,T,, ). This ends the proof.
In the sequel, we shall give proof of Theorem 2.1 by constructing some suita-

ble time evolution Lyapunov functions.

4. Proof of Theorem 2.1

1) For E, =(0,0,K), define the following Lyapunov function

A (t)=jﬂu(~,t)dx+IQV(-,t)dx+jQI:dedx. (8)

w(-t)

Then we deduce

V'l(t)zj'( puw____ puw —5lqux

Ao +W+su o +W+su

2
+I ( ALY —52vjdx—.[g—dK|a;W| dx

o +W o, +W w
+[ (w=K) r(l——j— L\
Q K) o+W+su a,+w

j[—) 5ujdx+ _ KUy

a, +W+Ssu Qo +W+sU
’UZK dx+J' M_é‘v dx
o, +W @ a, +W z
dK|a wf’

-1, dx+[_r( )[l——)dx

sjﬂ(ﬂl_pl_#l)uwdxﬂ'n(ﬂl}( —5]udx+.[ o= po =t yZ)Vde

o, +W+Ssu o a, +W

+jg[%_52Jvdx—j—dK!s ALY ——j w-K)’ dx

Consequently, V, (t)<0 and E, =(0,0,K) is globally asymptotically stable
if (2) holds.
2) Define

=1 Iu LI CLY U [ v(t)dx+ [ j:%dwdx. 9)

As a result, one deduces

. a W
V,(t)= Iﬂ(l_aj o.udx + jﬂ o,vax + jﬂ[l—wjatwdx

S Oy L, LA dx—j—0|axu|zd
a o FWHSU g +WHSU o y?

_[ Z00,W-0,4 udx+j (—ﬂsz _ LW —52vjdx

u(L+ow)’ N +w o, +w
—.[ —dW|6;W| dx+I (w—v”v){r(l—ﬂj— Al }
e w @ K) o +w+su a,+w
=41 (t)+ 3, (1),
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where
() =] (u-0)| —2Y PN s o
Q o +W+SsU o +W+su
+I ﬁz—vw_ﬂ_é‘v dx
o\ o, +W a,+w
F ] (woii) {1_&)_ CUN )
@ K) o+w+su a,+w
and
- lo,u[* 740, W-0,u dW|o,w’
(1) =-], = dx+fﬂ—u(1:5w)xz [, — o
By using
512 IB{-\W A+ piw ~ ) r:M.;.#,
o, +W+su o +W+Ssu K o +w+sU
one yields
7 A AW AW
J,(t)= - - -9, |d
(1) Iﬂ(u u)(o:1+w+su o, +W+su St

+ ﬁz—vw_ﬂ_szv dx
Yo, +W a,+Ww

) o)
R T e e
—IQ( SW(f; —py) (u~0) dx+.[9[ P __pp\W —52v}dx

oy +W+su)(ay +W+si) A +W o, +W

dx

0 (W—W)° [ (e W) (u—d)(w-ii)
fﬂ(a1+w+su)(a1+vAv+sﬁ)dA '[Q(a1+W+SU)(a1+VAV+SG)
_%'[Q(W—W)de—fg%
. [(B.=p) (e +50) = g4 (e + W) | (u—0) (W) L[
_-[Q (Aa1+va+Zsu)(al+vAv+sﬁ) d Q012+Wd

Ig(al+w;jlfsﬁv)v(;\1lvzv?/+sﬁ)dx_%fﬂ(w_w)zdX+J.Q(ﬂZa_Z#)VW

dx

dx

Y W V.Y () S
Q[az +wW Zj d Ig(al+w+su)(al+W+sﬁ)d
< (A=) (e +50) - pa (o + W) J(u - B) (W)

(o +W+su)(ey +W+si)

,ulSﬂ r ~N\2
+ —— |(w—W)"dx
fg[ 0‘12 K]
+| —(ﬂz_'uz)vwdx+j (LW—(SZJVdX
o, +w A
<0,
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due to (3) is valid. For j (t), we have
- dlo, u| 200, w-0,u dW|o,w’
J dx — d
2 (t) J.Q U J. (1+5W) X J.Q W2
~ ~ 2
|6 u| ] ;(u|axw|~|axu|dx_J. dw|o,w| g
u Q w

<,
= _IQ XlQl 1de’

u(x ),

where we define Xl(x,t)z(

trix Q, is

Accordingly, we have —>0 and
u’ u

(x,t)|) in Qx(0,0), and the ma-

2

2u
di |
WZ

2n
aw_x uj>0 as (3) holds. These

He-28)

WZ

imply V,(t)=J,(t)+J,(t)<0 and E,=(0,0,W) is globally asymptotically

stable.
3) Consider the following function
t)-w
t)d d d —d dx. 10
V,(t) f x+_ff vx+f_[ WD) wdx (10)
Straightforward computation showing
v W
t)=jgatudx+jﬂ(l—;jatvdx+jﬂ(l—wja[wdx
~ a 2
_J' ( Auw PUW _5lu]dX_J' V| X2V| dx
o +W+sU o +W+su 2y
j de_i_j V- V)(M_Lw_é‘zjdx
v(1+6w)’ A +W o, +W
- —dw|agw| dx+ | (W—W)|:I’(l—ﬂ]— A }
e w Q K) o+wW+su o, +W

=J,(t)+J, (1),
where
~ Luw oUW
() :jﬂ[a +1W+ U« +t/v+ su
1 1

+J‘ ( AU PV

a+W  a, +W
+_|'Q(w—v~\/){r(1—?

—5lujdx

—52de

w U oV
a+W+SU  a, +W |

and
~ 2
dW|\f/;W| ’

710, V|

J,(t)= jQ v

EVO W-0,V
—d —
'[ v(L+Sw)’ '[Q

Applied Mathematics
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Note that

W W W v
§:ﬁ2 L P r:M_'_/u_z

o, +W oy +W K a,+W’

jl(t):fn( AW puw —61u]dx

o, +W+su o +W+su
w
+J’ ( :Bz _ pZ _52jdx
a,+W o, +W
w u Vv
+.[(W—v”v)r1——— A .
@ K) o +w+su a,+Ww

_J'( puw___ puw —51u]dx

a +W+SU @ +W+su

+J‘ (B —p 2)(V_‘7)(W_W)d

(a, +W)(a, +W)

1,9 (W— W) ¢ Mo (o +W) (V=T (W)
-[Q(az +W)(a, +W) IQ (a, +W)(a, +W)

X

_LJ. (W_W)Z dx — de
K- Qo +W+su

:_J‘ pUuw
Qo +W+ su

J~|: ﬂz pz) ﬂz(a2+w)](v V)(W_W)d

(a, +W)(a, +W)
e (oo G
Mdm[ [M—W—Q]de

Qo +W+su e o, +W+Ssu

<I [y (B, = p2)— 1ty (@ +W) | (V—0) (Ww—W)

(oz2 +W) (e, +W)

K

W
+j9[%—5ljudx

<0,

dx

if (4) is satisfied. For J, (t), we have

L (t)=

V|0,V 00, W-0,V dw|o,wl’
o St WAL

V2 v(L+6w)’ w?
V|0,V &V|o,w|-|0,V dw c’;‘xw2
g Bl g e lo | i
:_I X,Q, X ZTdX,
where denote by X (|6V Xt)| (X t)|) in Qx(O,oo) and
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v
B 2v
Q= o dw |
v w?
2 ~
It is clear that i>0 and |Q2|__ d_vzv_ﬂ >0 since 0<&? <4‘1VY'
v? w 4 C?y

Consequently, V,(t)=J,(t)+J,(t)<0 and thus E,=(0,7,W) is globally

asymptotically stable.
4) Introducing the following time evolution Lyapunov function

)=, j“ u( X+, rv Y dvdx
(11)

f jw w( dwdx

Direct computations illustrate that
- u’ 2 w
V,(t)= J'Q {1—;} d.udx + J'Q [1—7J ovdx + IQ [1_Wj o, wdx

~ o pw _ pw
_jg(u u )(al+\jv+su 0!l+\jv+5U él]dx
fW W
v 2 e
+j (W—w*) r(l—ﬂj— o R o
Q K) ao+w+su a,+Ww

u"lo,uf’ v dw’
_.[Q u2 dx_fQ _IQ w
+j U0, w-0,u dx+j EVO W-0V .
2 u(1+ow) 2 y(1+ow)’
=3, ()+3, (1),
where
J*(t):j (u—u*) pw____ pW -5, |dx
' o o +W+SU  a +WHSU
A P,W
e
+] (W—W*){r(l—ﬂ)— A }
Q K) o+W+su a,+w
and
* 2
dw’ [0, W] i

. “lo,uf* vilov)
JZ (t):_.[g u? | dX_IQ |V2 | dx_.[{z a
xuow-o.u dx+J'

+J-Q 2 EVo,w-0,V dx
u(1+6w)

“v(1+ 5W)2
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By employing these facts

sw i oW 5. = A n AL

S =
1 * * * 1 Oy * * 1
a+W +SU" a4 +W +5SU a+W o, +W

w u’ v
r=—+——HZ A
K o+wW+su  a,+W

we can obtain

aM=],

_.[Q(

(B- )(a1+su )(u—u*)(w—w*)dx

(o +W+ su)(oz1 +w +su*)

W (B, - )(u u )2

oy + W+ su)(oc1 +W +su*)

dx

. az(ﬂz—pz)(v—v*)(w—w*) )
IQ (a, +W)(a2 +W*) d
B yz(a2+w*)(v—v*)(w—w*) )
'[“ (o, +W)(0(2 +w*) ‘

. )2
#el (W_W ) - dx—%_[ﬂ(w—w*)2 dx

N ,uiu*(w—w*)z
'L’(ozl(+w+iL)|z(oz1 ‘i\;\/(*‘i‘su**))
(o +wW ) (u—u")(w—w
-, (o +w-+su)(eq +w +su”) ‘
B - )(al—i-su )—,ul(al+w*)](U—u*)(W—W*)
(al+w+su)(a1+w*+su*)
[az(ﬂz—pz)—yz(az+W*)](v—v*)(w—w*)

L’ (a2+w)(a2+w*)

+J'Q('L2?* + 'uz\zl* —%j(W—w*)z dx

a,
<0,

dx

dx

e

dx

here we use the Condition (5). Moreover

* 2 * 2 * 2
u”[o,ul dX_J.Qv |jxv| |, dw |azxw| d

50=-1, 5

u W
jguawau Igvawavdx.
(1+5W) 1+5w)

|a u| aER dw’ [o,w|’
<[ dx— | vl jg—wz d
+J. zu |6Xw| |6Xu|dx+j EV' [0, w0,V ix

Q u @ v

=~ XsQ,XJdx,
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where the vector function X, (X, '[) is given by

X, (%) =(jpu(x ). [ov(xt)].[ow(xt)]) in Qx(0,e0) and
u -
u? 2u
v v
=l 0 5
Q v? 2v
W
2u v w
We can obtain
N R
>0 Y |=—55>0
u u?v
0 %
v
as well as
Voo v
ul v2 ov| qu” V2
Rl== * . -5 . \
Ve w2 g gy
v W 2u 2V
UV (dw &V AU
usv? | w? 4 4
>0
if
0< 2 +&%< Adw

max{u*,v*}CZ'

Thence A, isanonnegative definite matrix, which gives
J,(t)= —IQ X,Q;X5dx<0 . We conclude that E, = (u*,v*,w*) is globally
asymptotically stable. These end the proof.

5. Conclusions

This present paper deals with the global asymptotic stability of a three-species
predator-prey model with prey-taxis. This system possesses a semi-trivial equili-
brium E, = (0,0, K), two boundary equilibria E, = (G,O,W) and E, = (O,V,W) ,
and a unique positive equilibrium E, = (u*,v*,w*). By constructing some suit-
able Lyapunov functions, we establish their global asymptotic stability, respec-
tively. It is concluded that the prey-taxis coefficients y,& can not influence the
global asymptotic stability of the semi-trivial equilibrium E, =(0,0,K). Also,
the global asymptotic stability of two boundary equilibria E, =(ﬂ,0,W) and
E, =(0,V,W) rely on the single prey-taxis coefficient » and &, respectively.
However, the global asymptotic stability of the unique positive equilibrium
E, =(u*,v*,w*) is determined by prey-taxis coefficients » and &. These

phenomena suggest that the prey-taxis has an influence on the global asymptotic
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stability of the equilibria of the System (1). Consequently, we will continuously
explore the complicated dynamics of the System (1) with prey-taxis effect in the

future.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.
12002297) and the China Postdoctoral Science Foundation (No. 2021M701118).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Chen, M.]J., Cao, H.H. and Fu, S.M. (2021) Stationary Patterns of a Predator-Prey
Model with Prey-Stage Structure and Prey-Taxis. International Journal of Bifurca-
tion and Chaos, 31, Article ID: 2150038.
https://doi.org/10.1142/S0218127421500383

[2] Tu, X.Y,, Mu, C.L. and Qiu, S.Y. (2022) Global Asymptotic Stability in a Parabol-
ic-Elliptic Chemotaxis System with Competitive Kinetics and Loop. Applicable
Analysis, 101, 1532-1551. https://doi.org/10.1080/00036811.2020.1783536

[3] Bell, J. and Haskell, E.C. (2021) Attraction-Repulsion Taxis Mechanisms in a Pre-
dator-Prey Model. Partial Differential Equations and Applications, Article No. 234.
https://doi.org/10.1007/s42985-021-00080-0

[4] Ahn, I. and Yoon, C. (2020) Global Well-Posedness and Stability Analysis of
Prey-Predator Model with Indirect Prey-Taxis. Journal of Differential Equations,
268, 4222-4255. https://doi.org/10.1016/j.jde.2019.10.019

[5] Qiu, H.H,, Guo, S.J. and Li, S.Z. (2020) Stability and Bifurcation in a Bredator-Prey
System with Prey-Taxis. International Journal of Bifurcation and Chaos, 30, Article
ID: 2050022. https://doi.org/10.1142/50218127420500224

[6] Haskell, E.C. and Bell, J. (2020) Pattern Formation in a Predator-Mediated Coexis-
tence Model with Prey-Taxis. American Institute of Mathematical Sciences, 25,
2895-2921. https://doi.org/10.3934/dcdsb.2020045

(7] Miao, LY., Yang, H. and Fu, S.M. (2021) Global Boundedness in a Two-Species
Predator-Prey Chemotaxis Model. Applied Mathematics Letters, 111, Article ID:
106639. https://doi.org/10.1016/j.aml.2020.106639

[8] Choi, W. and Ahn, 1. (2019) Effect of Prey-Taxis on Predator’s Invasion in a Spa-
tially Heterogeneous Environment. Applied Mathematics Letters, 98, 256-262.
https://doi.org/10.1016/j.aml1.2019.06.021

[9] Xu, X., Wang, Y.B. and Wang, Y.W. (2019) Local Bifurcation of a Ronsenzw-
ing-MacArthur Predator Prey Model with Two Prey-Taxis. Mathematical Bios-
cliences and Engineering, 16, 1786-1797. https://doi.org/10.3934/mbe.2019086

[10] Xing, J., Zheng, P. and Pan, X. (2021) A Quasilinear Predator-Prey Model with In-

direct Prey-Taxis. Qualitative Theory of Dynamical Systems, 20, Article No. 70.
https://doi.org/10.1007/s12346-021-00508-3

[11] Wang, Q., Song, Y. and Shao, L. (2017) Nonconstant Positive Steady States and
Pattern Formation of 1D Prey-Taxis Systems. Journal of Nonlinear Science, 27,
71-97. https://doi.org/10.1007/s00332-016-9326-5

DOI: 10.4236/am.2022.138041 670 Applied Mathematics


https://doi.org/10.4236/am.2022.138041
https://doi.org/10.1142/S0218127421500383
https://doi.org/10.1080/00036811.2020.1783536
https://doi.org/10.1007/s42985-021-00080-0
https://doi.org/10.1016/j.jde.2019.10.019
https://doi.org/10.1142/S0218127420500224
https://doi.org/10.3934/dcdsb.2020045
https://doi.org/10.1016/j.aml.2020.106639
https://doi.org/10.1016/j.aml.2019.06.021
https://doi.org/10.3934/mbe.2019086
https://doi.org/10.1007/s12346-021-00508-3
https://doi.org/10.1007/s00332-016-9326-5

M. X. Chen, Q. Q. Zheng

(12]

(13]

Winkler, M. (2010) Absence of Collapse in a Parabolic Chemotaxis System with
Signal-Dependent Sensitivity. Mathematische Nachrichten, 283, 1664-1673.
https://doi.org/10.1002/mana.200810838

Amann, H. (1990) Dynamic Theory of Quasilinear Parabolic Equations II. Differen-
tial Integral Equations, 3, 13-75.

DOI: 10.4236/am.2022.138041

671 Applied Mathematics


https://doi.org/10.4236/am.2022.138041
https://doi.org/10.1002/mana.200810838

	Global Stability of a Three-Species System with Attractive Prey-Taxis
	Abstract
	Keywords
	1. Introduction
	2. Main Results
	3. Existence
	4. Proof of Theorem 2.1
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

