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Abstract

Fish ecosystems perform ecological functions that are critically important for the sustainabil-

ity of marine ecosystems, such as global food security and carbon stock. During the 21st

century, significant global warming caused by climate change has created pressing chal-

lenges for fish ecosystems that threaten species existence and global ecosystem health.

Here, we study a coastal fish community in Maizuru Bay, Japan, and investigate the relation-

ships between fluctuations of ST, abundance-based species interactions and salient fish

biodiversity. Observations show that a local 20% increase in temperature from 2002 to 2014

underpins a long-term reduction in fish diversity (*25%) played out by some native and

invasive species (e.g. Chinese wrasse) becoming exceedingly abundant; this causes a

large decay in commercially valuable species (e.g. Japanese anchovy) coupled to an

increase in ecological productivity. The fish community is analyzed considering five temper-

ature ranges to understand its atemporal seasonal sensitivity to ST changes, and long-term

trends. An optimal information flow model is used to reconstruct species interaction net-

works that emerge as topologically different for distinct temperature ranges and species

dynamics. Networks for low temperatures are more scale-free compared to ones for inter-

mediate (15-20˚C) temperatures in which the fish ecosystem experiences a first-order

phase transition in interactions from locally stable to metastable and globally unstable for

high temperatures states as suggested by abundance-spectrum transitions. The dynamic

dominant eigenvalue of species interactions shows increasing instability for competitive

species (spiking in summer due to intermediate-season critical transitions) leading to

enhanced community variability and critical slowing down despite higher time-point resil-

ience. Native competitive species whose abundance is distributed more exponentially have

the highest total directed interactions and are keystone species (e.g. Wrasse and Horse

mackerel) for the most salient links with cooperative decaying species. Competitive species,

with higher eco-climatic memory and synchronization, are the most affected by temperature

and play an important role in maintaining fish ecosystem stability via multitrophic cascades

(via cooperative-competitive species imbalance), and as bioindicators of change. More cli-

mate-fitted species follow temperature increase causing larger divergence divergence

between competitive and cooperative species. Decreasing dominant eigenvalues and lower

relative network optimality for warmer oceans indicate fishery more attracted toward
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persistent oscillatory states, yet unpredictable, with lower cooperation, diversity and fish

stock despite the increase in community abundance due to non-commercial and venomous

species. We emphasize how changes in species interaction organization, primarily affected

by temperature fluctuations, are the backbone of biodiversity dynamics and yet for functional

diversity in contrast to taxonomic richness. Abundance and richness manifest gradual shifts

while interactions show sudden shift. The work provides data-driven tools for analyzing and

monitoring fish ecosystems under the pressure of global warming or other stressors. Abun-

dance and interaction patterns derived by network-based analyses proved useful to assess

ecosystem susceptibility and effective change, and formulate predictive dynamic informa-

tion for science-based fishery policy aimed to maintain marine ecosystems stable and

sustainable.

“Oceani Sunt Servandi” (old Roman incision)

1 Introduction

1.1 Impacts of ocean warming on marine fisheries

Fish species are a vital component of marine ecosystems and remain one of major sources of

food and nutrition feeding hundreds of millions of people around the world. This is especially

important for coastal undeveloped and developing countries, where fish provide inhabitants

with as much as 50% of animal protein intake [1] and are a major economic income. Accord-

ing to annual reports from FAO, the global food fish consumption and average fish consump-

tion per capita increased at an average rate of 3.1% from 1960s, and 1.5% per year, respectively

[2]. Despite their critical role in maintaining the sustainability of marine ecosystems and global

food security, fish ecosystems are all along under increasing anthropogenic pressure from pol-

lution, habitat degradation and climate change that has been steadily warming the sea water.

Marine fish ecosystems are prototypical complex systems that are highly dynamical and sensi-

tive to external environmental factors including sea temperature (ST). Ocean warming is alter-

ing fish ecosystems with deep impacts on their ecology (behavior, biomass, range and

abundance to name just a few) and environment (for instance on biogeochemical cycles) and

hence with negative feedback on the climate itself. Data from the US National Oceanic and

Atmospheric Administration (NOAA) show that ST anomaly increased from -0.02˚C in 1974

to 0.79˚C in 2016 which is the largest anomaly observed in last 100 years [3]. By comparing ST

data from last two decades (1999–2019) to two decades before that (1979–1999), ocean warm-

ing had dramatically sped up in last two decades [3, 4]. “Fish are like Goldilocks: they don’t

like their water too hot or too cold, but just right.”, said Malin L. Pinsky, a co-author of the

study [5], where scientists found that some few species populations benefited from ocean

warming, but more of them suffered. These results stress the fact that ocean warming is mak-

ing fish species diversity and populations decline, yet threatening the sustainability of marine

ecosystems and food supply for millions of people around the world. Therefore, it is imperative

to unravel the complex relationships between marine ecosystems and anomalous changes of
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ST caused by climate change, so that stakeholders can design optimal ecosystem restoration

and policy to mitigate the negative effects of climate change on these ecosystems.

Due to increasing ecological and societal concerns about the sustainability of marine eco-

systems –where fishery are following a rapid trend of depletion [6]—coupled to environmental

degradation of habitats under ocean warming and development pressure, assessing the sys-

temic vulnerability (mode, extent, location and species) of these ecosystems is considerably

important. Fishes are particularly critical considering both their multitrophic (positive and

negative) feedback on species (from microbes to humans; examples are emerging viruses in

the oceans [7, 8]) and the environment (in terms of biogeochemical cycles affecting for

instance algal blooms and carbon sequestration [9, 10]) and their high potential as multiscale

biosensors of marine ecosystem health and change. On the one hand, most studies conduct

these research fields only by visualizing taxonomic and abundance time series and observing

the variations of species biodiversity, distribution and abundance at temporal scale. To identify

possible environmental factors responsible for the deterioration of marine fish ecosystem, lin-

ear and non-linear relationships between taxonomic and abundance indicators and climate

change are studied by comparing the observations to oceanographic climatic data. For exam-

ple, [11] found that increasingly warming ST altered the composition of marine fish catches,

with an increase in the proportion of warmer water species catches at higher latitudes and a

decrease of subtropical species catches at lower latitudes by plotting sea surface temperature in

the past four decades and calculating mean temperature as an indicator to describe the prefer-

ence temperature of fish species. [5] applied temperature-dependent population models to

measure negative effects of ocean warming on the productivity of 235 populations of 124 spe-

cies in 38 ecological regions by analyzing the data of marine fishery production from 1930 to

2010 and computed maximum sustainable yield over time. [12] plotted time-series abundance

and temperature collected in the North Sea since 1960s and west of Scotland since 1980s, and

estimated the trend of length at age and growth parameters including absolute growth rate

over time and confirmed the fact that the growth and maturation of fish species correlated to

ST, and the mean length of herring populations steadily declined across multiple age groups.

[13] examined influences of ST on global biomass transfers from marine secondary production

to fish stocks, and predicted that trophic transfer efficiency (TTE) and biomass residence time

(BRT) would decrease until 2040 and remain relatively stable after 2040, also by plotting the

past observations of the trend of TTE and BRT in marine food webs from 1950 to 2010. As

examples, these studies were conducted only by considering species abundance, composition

and richness at a globally temporal scale, and the resultant conclusions in time domain were

important and valuable, but only provided a coarse view in showing negative influences of the

rise of ST on species diversity and populations.

On the other hand, the significant increase of ST is attributed to the gradual accumulation

of imperceptible anomalous fluctuations within a season or shorter periods of time, whereas

our knowledge on seasonal variation in the composition and population of species communi-

ties related to ST is still poor. Scientists have realized the importance of deeply capturing the

relationship between marine communities and seasonal changes of ocean warming at a finer

scale (considering season or shorter time periods). Some studies have also presented apparent

seasonal fluctuations of fish abundance and biodiversity in marine ecosystems by assessing

and understanding the composition and seasonal changes of the fish assemblage and doing rel-

evant statistical analyses [14–17]. The results suggested that these seasonal variations could

derive from the migration and arrival of species and their own seasonal changes of behavior

related to the seasonality of temperature patterns. Although these results provided more specif-

ics for observing linear or non-linear relationships between fish ecosystems and ST, only show-

ing the seasonal variations of fish biodiversity and populations considering sea water
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temperature by analyzing the time-series observations of species composition and abundance

in a traditional ecological way is still inadequate. Marine fish ecosystems themselves, as a pro-

totype of holistic system, should be treated as an integral whole in a system view so that we can

study the resilience, stability and the state evolution of marine ecosystems. This scenario allows

us to further understand the feedback-and-response mechanism and how the change of ST

affects the fish community in terms of collective dynamics.

1.2 Stability, sustainability and management of marine fish ecosystems

Oceans are home to a wondrous array of plants and animals including estimated 20,000 fish

species, supporting the “ecological bank” of the planet [18], that supports the global food-web

(including humans) and maintaining the stability of global ecosystems from ocean to land and

atmosphere via the control of biogeochemical cycles [10]. Although it is impossible to know

the exact number of species in the ocean (scientists estimate that more than 80% of oceanic

species have yet to be discovered [19]), the number of species which people already knew in

the ocean is decreasing. It is urgent and important to keep marine fish ecosystems stable, sus-

tainable and well-managed for the environment and human health. Conventional methods to

understand fish community trends are typically analyzing species abundance and/or richness

fluctuations in comparison to variations of ST individually. We argue that these approaches,

especially when adopting linear models, are far from adequate to deeply understand how fluc-

tuations of ST affects the collective dynamics of fish communities that is deeply rooted into

species interactions. The latter are the cause of cascading changes in diversity and abundance.

In fish communities, there is a large number of fish species including native and invasive spe-

cies, preys and predators that interact each other non-linearly. In a dynamical system purview,

these species take distinct roles for maintaining the marine ecosystem stable (and sustainable)

and always in conjunction with the collective. Therefore, investigating fish ecosystems

accounting for ecological-environmental asymmetries and their temporal change is funda-

mental for understanding feedback between species and environmental determinants, as well

as for defining appropriate solutions to improve ecosystem resilience of to ocean warming.

Conventional linear models largely fail to capture the non-linearity—arising from time-

delayed effects and multiple interactions—to study the response of fish communities to fluctu-

ations of ST. Non-linearity that proves useful to identify the most affected species by tempera-

ture change, and the ones mostly responsible for system stability. Even though some studies

have investigated the stability of ecosystem using mathematical models [20–23], integrated

methodologies that incorporate non-linear network-inferred interaction and predictive mod-

els for understanding marine fish ecosystems are still lacking.

Intuitively speaking, biodiversity increases ecosystem stability and sustainability, but cli-

mate change or other human-driven perturbations may alter this positive relationship [24].

Therefore, this relationship has been contentious. In fact, the concept of ecosystem stability is

complex due to multifaceted understanding and types [25–27]. As for a fish ecosystem, differ-

ent types of stability describe different features that might lead to different patterns. The stabil-

ity of fish ecosystems should be explored from the perspectives of species interactions

underpinning complex food-webs (when inferred from abundance [28]), the topology (stabil-

ity) and transitions defining resilience of communities to different types (point-source and dif-

fused) of environmental perturbations [29].

For this purpose, an Optimal Information Flow model (OIF) developed in [28] is used to

investigate ecosystem changes over time and temperature and its via metrics of inferred species

interactions networks. OIF macroscopically analyzes the evolution of the fish ecosystem over

time and ST, and “microscopically” identify critical species who play a significant role in
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maintaining functional stability. The dynamical analyses over time, functional stability and

salient species assessment is novel with respect to [28]. Analyses are done as a function of time

and temperature jointly (e.g. temperature-dependent time variability) and separately (e.g.

atemporal seasonal patterns and temperature-independent stability).

1.3 Optimal information flow model and multiscale ecosystem analysis

In this study, to overcome limitations of conventional time-domain ecological analyses and

explicate how the change of ST fluctuations affect fish communities at multiple scales, we

adopt a complex system perspective. Specifically, a fish community in Maizuru Bay managed

by the Maizuru Fishery Research Station of Kyoto University [21] is used as a prototype of our

proposed information- and network-theoretic models.

Part of the work in modeling fish ecosystems lies in detecting causal interactions between

species, that is a fundamental this but challenging task in real-world ecosystems. For this pur-

pose we previously developed the information-theoretic OIF model in which causality is per-

ceived as information flow or cross-predictability of species abundance, that makes causality

as a practical computational problem of collective information gain (or uncertainty reduction

equivalently) leaving aside all ecological details underlying cross-abundance variability [28].

OIF is based on Transfer Entropy (TE) with time delays that provides an asymmetric approach

to measure directed information flow between random variables (species) from time-series

data [30, 31], and associates cause-effect relationships with directed information flow consid-

ering the extent to which one species improves the prediction of another species’ future states

in the context of the history of another species [32]. Information flows may relate to different

types of interactions, for instance, to the collective behavior of species motion (considering

data of relative position and alignment between fish species) [33, 34], or dynamical fluctua-

tions of abundance as in this study. The cause-effect relationship can be interpreted as predict-

ability between species to infer species interactions (also defined as predictive causality in [28])

in the fish community and reconstruct networks for describing the marine fish ecosystem,

allowing us to study the ecosystem on both temporal and temperature-dependent scales in a

systemic way. OIF model is improved with respect to [35] by considering its extension over

time to reconstruct dynamical information networks, the varied Markov order of random vari-

ables and a refined pattern-oriented criteria to select optimal time delay and threshold based

on maximization of mutual information. Therefore, OIF overcomes the limited TE for the

directed uncertainty reduction scheme, for the consideration of maximum information

(entropy) network [36], and MI-based maximization criteria to define the optimal time delay

and interaction threshold to accurately predict systems’ patterns (e.g. biodiversity). It is note-

worthy to mention that the optimal threshold on interactions is not necessarily within the

scale-free or maximum entropy range of inferred collective behavior. In this way, interaction

processes are clearly linked to patterns which provide relevance to the inference problem.

Additionally, OIF is dependent on the choice of appropriate time delay between variables for

TE calculation.

Specifically, to study the effects of ST on the fish ecosystem in a dynamical system purview,

the long-term abundance time-series data are categorized into five groups considering five

temperature ranges (TR):�10˚C, 10–15˚C, 15–20˚C, 20–25˚C,�25˚C. We detect mutual rela-

tionships between species and reconstruct networks for each TR to investigate how the fluctua-

tions of ST affect the collective behavior of particular fish species and the whole fish ecosystem

by conducting network-based analyses on species interaction networks. For each TR, causal

interactions between species are inferred by OIF model (computed as TE considering optimal

time delay and threshold). These OIF-inferred species interactions define the connectivity
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among species, forming OIF networks for all TRs. Structural and functional patterns are recog-

nized for OIF networks. Network-based species-specific analyses are also conducted by analyz-

ing how much a particular species interacts others, and identifying the most salient links and

critical nodes in networks.

Through comparison of functional features of interaction networks (characterizing net-

work topology or structure) as well as of critical species among five TRs, we draw conclusions

on the influence of ST fluctuations on the fish ecosystem and its stability. In particular, temper-

ature-dependent but time-independent networks are inferred and analyzed to trace the collec-

tive organization of seasonal patterns; this informs about baseline stability, and in particular

criticality (as Bak’s optimality [37]) in relation to TR network topology. Temporal networks

are also implemented to capture how these seasonal patterns change and trigger instability (as

critical slowing down a’ la Scheffer [38]), diversity, and keystone species when considering

long-term ocean warming. The study is novel in providing: (i) connections between abun-

dance and interactions patterns with identification of the most sensitive indicators to predict

changes; (ii) non-linear causal attribution of temperature on species and collective stability

(including the effect of environment-biota synchronization); (iii) entropic inference of distinct

species groups dynamically (competitive and cooperative species); (iv) and interaction-based

detection of keystone salient species for ecosystem organization. Thus, because of the novel

multiscale analyses (in terms of biota from species to collective, and of the environment from

TR to time) linking criticality to critical transitions, the work is providing a potent tool and

indicators to understand and track multitrophic stability of marine ecosystems; fish commu-

nity is an application but any species can be tracked. This is extremely valuable to formulate

accurate science-based fishery policy to maintain ecosystems stable and sustainable toward

desire states and potentially improve ecosystem resilience to ocean warming.

2 Materials and methods

2.1 Fish community abundance time-series and seasonal categorization

Long-term time-series data (in total 285 time points) of the fish community were collected by

scientists at Maizuru Fisheries Research Station, Kyoto University [21]. They conducted

underwater visual census approximately every two weeks along the coast of Maizuru Bay from

1 January 2002 to 2 April 2014 [39]. Data collection for the only species of jellyfish (A. aurita)

was different: jellyfish were counted from the pier at the Maizuru research station. For jellyfish

data, it was count data, but divided by a research area (about 150 m2), so data for this species

only have values below a decimal point. Such high-frequency time series enable the detection

of potentially causal interactions between species. The fluctuation dynamics of species was

later corroborated by eDNA species sampling [40]. Maizuru Bay is a typical semi-enclosed

water area with nearly 50 m of the shore and at a water depth of 0–10m, located in the west of

Wakasa Bay, Japan. Precipitation is rather high from summer to winter that is the rainy season

in this area. Sea-surface temperature ranged from 5.2 to 31.8˚C, sea bottom temperature from

8.5 to 29.6˚C, which were measured near the surface and at the depth of 10 m underwater dur-

ing the diving, respectively [41].

In this dataset, only 14 dominant fish species whose total observation counts were higher

than 1000 (considering non-normalized abundance [21]), and 1 jellyfish species were included

because rare species were not observed during most of census period. Rare species would

bring large numbers of zeros in the time series which may lead to difficulty in analyzing data.

As proven in other similar studies, ignoring rare species (in average abundance and without

extreme fluctuations) does not significantly change fish ecosystem results since abundance

dynamics of rare species contained within other species is typically very small; thus, the
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inclusion (or exclusion) of rare species does not alter the inferred ecosystem interaction topol-

ogy beyond just adding poorly interacting species as found in [21, 28]. Jellyfish, a non-fish spe-

cies, was involved in the dataset since it was thought to have prominent influences on the

dynamics of the fish community due to its large abundance. Note that time-series data were

normalized to unit mean and variance before analysis [21, 42] (i.e., technically normalized to

zero mean and unit variance); this is done to ensure all species have the same level of magni-

tude for comparison and to avoid constructing a distorted state space.

In this study, we aim to study the effects of ST change on ecosystem dynamics and stability

considering in particular how slow ST increase affects seasonal species organization and how

that implicates long-term changes. This is done because ecosystems have memory and ST

gradual changes accumulate over time leading to irreversible changes in the short-term

dynamics (manifesting gradually or suddenly [38]), potentially. Initially, the normalized time-

series abundance were categorized into five subsets considering five mean temperature range

(the average of surface and bottom water temperature was considered), i.e.�10˚C, 10–15˚C,

15–20˚C, 20–25˚C,�25˚C, resulting in five shortened time series with 16, 93, 58, 62, 56 time

points. This allowed us to disentangle how the fish community fluctuates seasonally with the

change of ST by separately analyzing time series of these five subsets. This is done indepen-

dently of time considering the whole period to assess potential seasonal stability via probability

distribution or network topology equivalently [43]. The data categorization picks the abun-

dance observations at time points when the mean ST is within specific TRs and rearranges the

selected abundance observations by preserving the time sequence, leading to new time series

corresponding to TRs. The subset of time series after categorization in consideration of five

TRs are still regarded as sequential time series, called TR-dependent time series here, even

though the between-TR abundance interdependence is not considered as in the continuous

temperature-dependent analysis (see Section 2.5).

2.2 Probabilistic portrayal of the fish community: Power-laws and

transitions to exponential

We estimate the probability distribution function of normalized fish abundance and of

inferred interactions between species (both are indicated as y as a generic random variable)

using power-law or exponential distribution functions [44, 45]. Theoretically, the power-law

function that has been forced a-priori (leaving the exponential distribution as the alternative

function in case of non-fitting via Maximum Likelihood criteria on Kullback-Leibler diver-

gence) has two types: discrete and continuous, of which the continuous form [46] is given by:

pðyÞ ¼
g � 1

ymin

y
ymin

!� g

; ð2:1Þ

 

where ymin� 0 is an estimated lower bound or cutoff for which the power-law starts to hold. γ
is the power-law scaling exponent underlying the criticality of the studied variable [37]. γ = �

orF if Y = X (abundance) or TE (interactions). The power-law exponent indicates how mean,

variance and higher statistical moments are defined (finite or infinite depending on γ [47]).

Specifically: for γ� 2 the regime is critical with mean and all moments that are infinite (accu-

rately, this is the only heavy-tail distribution that almost always has finite-size effects); for 2<

γ� 3 the regime is supercritical with finite mean and all higher moments as infinite; and, for γ
� 3 mean and all moments are finite. The latter regime is the last power-law regime before the

exponential one. Strictly, power-laws should be defined for two orders of magnitude at least

but we relaxed this condition due to data sparsity in this case study.
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Distributions of species variables (abundance and interactions) are visualized by computing

discrete exceedance probability distribution (epdf) that is defined as P(Y� y) = 1 − P(Y< y),
where P(Y< y) is the cumulative distribution function (cdf) [46] derived from probability dis-

tribution function p(y) (pdf), and by plotting the epdf on a log-log scale to emphasize the non-

linear power-law dynamics useful to estimate the scaling exponent. Exponents were estimated

using the approach and package of [48]. We also introduce the cutoff Ybreak to the random var-

iable whose probability distribution explicitly presents multiple regimes. In our study these

probability distribution regimes are power-law and occur with different exponents that are

separately estimated. This double Pareto distribution was highlighted in different ecosystems

and analytically formulated by [47]:

PðY � yÞ �

c1 y� g1þ1F
y
ymin

� �

for ymin < y < Ybreak

c2 y� g2þ1F
y
ybreak

� �

for y � Ybreak

;

8
>>>><

>>>>:

ð2:2Þ

where Ybreak is the break point isolating two power-law distribution regimes, c1 and c2 are two

coefficients, F(y) is a homogeneity function [47], γ1 and γ2 are power-law exponents of the two

regimes. This “broken power-law” function (or double-Pareto distribution function) is a piece-

wise function consisting of two or more components with different power-law scaling expo-

nents separated by break points [47, 49, 50]. Specifically in this study, a break point was set to

divide the epdf of species interactions for the 15–20˚C TR. The break point Ybreak estimated

from the model was much higher than the median value of species interactions for the first

power-law regime. If a power-law distribution of abundance or interaction was not feasible,

then an exponential distribution was fitted to the data, i.e. P(Y� y) * e−λy.

2.3 Species diversity and abundance characterization

To characterize the fish community macroecologically, α-diversity is introduced to describe

the fluctuations of species diversity over time and temperature. α-diversity refers to the biodi-

versity within a particular scale (time period, area or TR) and is computed as the number of

species in that scale. Given a set of unique species S = {S1, S2, . . ., Sn} whose normalized abun-

dances X = {x1, x2, . . ., xn} change over time, time-dependent α-diversity α(t) is defined as in

[35]:

aðtÞ ¼
Xn

i¼1

xiðtÞ
0
; ð2:3Þ

where xi(t) is the normalized abundance of species i at time point t. For each time point, sea

surface temperature and bottom temperature were recorded. We average these temperatures

as mean ST and reorganized α-diversity dependent on the mean temperature yielding temper-

ature-dependent α-diversity α(T).

Additionally, fish species are distinguished into fish stocks (FS) [51, 52], native and invasive

species groups as shown in S1 Table. This categorization was based on the information

retrieved from Fishbase (http://www.fishbase.org/). We separately calculate the total abun-

dance of all species, defined as Ecological Productivity (EP) that is proportional to the total

biomass [53–55], and of these species groups, FS, native and invasive dependent on time and
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temperature as:

AðTÞ ¼
Xn0

i¼1

xiðTÞ; ð2:4Þ

where T can be time or temperature, xi(T) is the normalized abundance of species i at time or

temperature T, n0 is the number of species in a particular subgroup (for all species group EP, n0

is n that is 15s).

2.4 Information-theoretic patterns and network inference

2.4.1 Abundance uncertainty. Entropic diversity indices are capable of providing

ecological information on the patterns of assembly including rarity, commonness and

fluctuation of abundance of species in ecosystems in a probabilistic way vs. taxonomic

diversity. In this study, we calculate Shannon entropy for each species in the fish community

based on pdf estimation of species abundance. Shannon entropy of species i is defined as

HðXiÞ ¼ �
Pv

m¼1
pðxiðmÞÞlog2pðxiðmÞÞ, where p(xi(m)) is the probability of an eventm of

unique normalized abundance of species i. v is the number of all unique events of abundance.

Note that event is a concept in probability theory, here we considered a unique number of spe-

cies abundance observed in the time-series data as an event. The species-specific Shannon

entropy implies the uncertainty of species observations (samples) over time, and is used as one

of information-theoretic variables to define the structure of inferred networks (the size of

nodes).

2.4.2 Optimal information flow networks as collective abundance uncertainty reduc-

tion. To investigate the collective behavior of the fish community, we estimate predictive

causal interactions between fish species by using the Optimal Information Flow (OIF) model

[28] developed by our group. Collective behavior is here analyzed by extracting networks

dependent on (i) continuous time; and (ii) continuous temperature and discrete TR groups

(without between TR-abundance interdependencies). The former and the latter are for map-

ping long-term and seasonal ecosystem organization, and time dynamics conditional to tem-

perature is also performed for identifying clearly which season and species are affected the

most by ST increase.

We quantify information processing of environmental change in species assimilated in

community abundance (due to individuals affected) that also contains information processing

of baseline species interactions. The role of the environment is likely multiplicative than addi-

tive; yet, non-linear assessment of collective interaction change is the most suitable way for

extracting environmental change effects. Transfer Entropy (TE) or information transfer, a

quantity in information theory coined in [30], is extensively used to measure information flow

between two variables and is considered as one of the most diffused non-linear methods to

quantify causal interactions. TE is commonly used as a powerful analytics to estimate mutual

interactions in non-linear ecosystems due to its explicit consideration of probabilistic asymme-

try between variables leading to their mutual predictability without making any further

assumptions on underlying ecosystem processes [28, 56–59]. TE in an energetic sense is actu-

ally energy consumption per time unit (or metabolic flux) between species [60]. Yet, ecolog-

ically TE is a proxy of the energy involved in abundance-related interactions underpinning

food-webs.

TE is mathematically defined as the amount of information that a source variable provides

about the next state of a target variable in the context of the past of the target [30]. It provides a

prediction-oriented and probabilistic-based tool in detecting directed and dynamical causal

interactions without the need of any prior knowledge on mechanisms or assuming particular
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functional forms to describe mutual interactions among elements in a dynamical system. As a

result, we depict “causal interaction” as predictability of collective dynamics (or directed

uncertainty reduction, equivalently) that is easier to interpret and mathematically formalize

[28]. The calculation of TE between two variables builds on conditional and joint probabilities

considering Markov order and historical values of these variables (i.e., the self/independent

and co-dependent predictability). TE is formulated as:

TEðq;s;uÞXi!Xj ¼
X

x;y

pðxjðt þ 1Þ; xðsÞj ðtÞ; x
ðqÞ
i ðt þ 1 � uÞÞlog

pðxjðt þ 1ÞjxðsÞj ðtÞ; x
ðqÞ
i ðt þ 1 � uÞÞ

pðxjðt þ 1ÞjxðsÞj ðtÞÞ
; ð2:5Þ

where Xi and Xj stand for two random variables, q and s denote the Markov order of variables

Xi and Xj, xi(t) and xj(t) are time-series observations, and u is the free varied source-target time

delay that yields time lagged interactions. In this study, Xi and Xj are normalized abundances

of species i and j in the fish community. TE assumes that all analyzed variables obey memory-

less stochastic Markov chain process [61]. It indicates that next states of variables are only

dependent on the current state, while not determined by states in the past. Thus, q and s are

fixed as 1 under this assumption. TE calculation is sensitive to data features including proba-

bility distribution estimation, extreme values and zeros. In this study, we apply Kernel and

Gaussian estimators (parameter-free) to test the dataset of the fish community [62] and com-

pare the results with the ones from CCM model that is another well-documented algorithm to

measure causal interaction between variables [63], and the Pearson correlation coefficient.

After calculating all TE pairs the subsequent steps of OIF [28] were implemented, i.e. detec-

tion of direct links and simplification of the network without altering collective predictability

(or systemic uncertainty reduction equivalently).

Species interaction networks are reconstructed from TE matrices to visualize directed inter-

dependencies between species. As the networks are hard to distinguish due to large numbers

of connections, we first select an appropriate time delay u that minimizes the statistical dis-

tance between species defined as Eq 2.6 [64], equivalently maximizes the mutual information

between species, to reduce redundant information.

dðXi;XjÞ ¼ e� IðXi ;XjÞ; ð2:6Þ

where I(Xi; Xj) is mutual information (MI) between species i and j. MI is given in information

theory as:

IðXi;XjÞ ¼
X

xj

X

xi

pðxiðtÞ; xjðtÞÞlog
pðxiðtÞ; xjðtÞÞ
pðxiðtÞÞpðxjðtÞÞ

; ð2:7Þ

where p(xi(t)) and p(xj(t)) are marginal distributions of species i and j and p(xi(t), xj(t)) is joint

distribution of these two species. In this study, we specify the time delay u ranged from 0 to 10.

According to Eq 2.7, time delay u is selected as an integer in the range that maximizes the

mutual information. It implies that u is determined by considering predictability rather than

“true” causality which is strenuous to concretely estimate. The maximum TE (after Eq 2.6

selecting the most likely time delay) was also used in this study to measure the inuence of tem-

perature on species and temperature on ecosystem stability.

Afterwards, an appropriate value is selected as a TE threshold considering the maximization

of prediction of α-diversity via effective α-diversity (Eq 2.10 in Section 2.5). This is the second

step to do the redundancy reduction and simplify the structure of inferred networks by remov-

ing weak interactions (links) in networks. Note that this criteria is arguably one of the most

important in reproducing macroecological patterns of species richness variability; however,
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other criteria are valid such as thresholding TE based on the “80–20” Pareto principle to iden-

tify interaction cores in communities.

The threshold step is analytically formulated as:

f ðXi ! XjÞ ¼
TEXi!Xj for TEXi!Xj � TEthre

0 for TEXi!Xj < TEthre
;

8
<

:
ð2:8Þ

where f(Xi! Xj) is the quantification of species interactions from species i to j, TEthre is the

threshold chosen to filter TE values. In this study, TEthre can be a fixed value 0.01 or top 20%

TE value [65]. These steps of MI-based time delay identification, TE estimation model selec-

tion considering data probabilistic dynamics, coupled maximization of uncertainty reduction

and removal of indirect links and optimal TE threshold selection form the proposed OIF

model [28].

2.5 Continuous time- and temperature-dependent dynamical network

analysis

Beyond the TR-constrained “seasonal” analysis (independent of time), OIF [28] was used to

extract dynamical networks considering time and temperature as continuous dependent vari-

ables to analyze the ecosystem in long-term and for smaller steps along the temperature gradi-

ent. By necessity this is done by truncating the whole time series in time and temperature units

among which networks are reconstructed. Discrete TR networks (for the groups in Section

2.1) are essentially extractable from the continuous analysis.

The total number of time-series units (number of networks and community features) on

which dynamical network inference is performed by OIF is G ¼ bL� l
Dl c þ 1, where b•c rounds G

to the smaller integer. When reconstructing time-dependent dynamical networks, L is the total

number of samples (L = 285, i.e. the whole time period), l is the length of each time-series unit

(time unit hereafter), Δl is the chosen inter-observation gap (or time step). In this study, each

time period is set as one year (the length of time-series unit l is 24 time points that guarantees

to have enough points for reliable TE inference), time step Δl is 2 time points that correspond

to one month, and then the whole time series is truncated into 131 time-series units in total

where networks are inferred. The overlap (and yet dependence of species) of data/networks is

nine months vs. 2 weeks of [21] and we believe this is a more proper choice considering that

species do not alter dynamics in a matter of weeks and more importantly independently of

previous historical trends (earlier than two weeks from the present). In this regard, our

approach considers long-term dynamics (l = 1 year data) for estimating short-term features at

a scale Δl = 1 month. This is also the scale at which stability and effective diversity were calcu-

lated. The non-linearity between species is considered via time-delayed co-predictability of

pdfs (i.e. TE); yet, more deeply than [21] that linearizes the non-linear community variability

by considering ratios of delayed species abundance every two weeks. The latter is the basis of

CCM [21], typically estimating local feature from local dynamics only (and without pdfs),

unless larger time delays are selected but those cannot be too large without compromising

computational efficiency.

When reconstructing temperature-dependent networks considering temperature as a con-

tinuous variable vs. discrete TR analysis (Section 2.1), L is the maximum temperature

rounded to the largest integer (in this dataset the maximum mean temperature is 30.7˚C, thus

L is 31), l is the upper limit of the first temperature range (for convenience we picked the range

[5 − 10]˚C and then l = 10˚C) and Δl (set to 1˚C) is the temperature step establishing the mov-

ing window (or the difference between networks over temperature, equivalently). Therefore,
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the whole time series is truncated into 22 temperature units (calculated as G ¼ bL� l
Dl c þ 1) cor-

responding to different temperature ranges whose difference is 1˚C (and overlap is 4˚C) for

providing small-scale estimates by considering continuous smooth transitions along the tem-

perature scale. Note that the temperature unit size (or range), over which temperature-depen-

dent networks are estimated, is set to l� = 5˚C that is granular enough to describe ecosystem

variations. This is in analogy to the predictability overlap concept used for the temporal net-

work inference: species interactions do not change abruptly for every Δ-temperature and yet

non-linear superposition of species along the temperature-scale should be considered. The

length of time series for different temperature units (representing somehow temperature

niches) is different due to the fact the number of species in each unit can vary; note that the

temporal sequence of abundance for different temperature units is preserved. This is different

than temperature analysis where the number of samples every time units is always the same

because of sampling design; yet the time unit size corresponds to the lower limit l. By selecting

temperature units equivalent to the defined TRs in Section 2.1 it is possible to derive the dis-

crete seasonal networks. Lastly we also performed TR-constrained dynamical analysis over

time by combining time-dependent data conditional to the discrete TR groups defined in Sec-

tion 2.1.

After time and temperature-dependent reorganization (i.e. picking abundance data within

all temperature ranges), OIF is used to infer species interaction (TE) for each time-series unit

(time or temperature unit), resulting in temporal and temperature-dependent interaction

matrices Wi,j(g) and dynamical networks. Here, g is the time point of each time-series unit for

temporal networks, while the lower limit of the temperature range for temperature-dependent

networks. We analyze dynamical networks by computing total interaction (TI), local dominant

eigenvalues and estimated effective α-diversity of each dynamical network. TI is defined as the

sum of all TE asymmetrical interactions in the interaction matrix Wi,j(g), i.e.:

TIðgÞ ¼
X

i;j

W i;jðgÞ: ð2:9Þ

The estimated effective α-diversity αe(g) is defined as the number of nodes (species)

involved in a dynamical network [28] that is formulated as:

aeðgÞ ¼
Xn

i¼1

hiðgÞ; ð2:10Þ

where

hiðgÞ ¼
0; for

Pn
j¼1
ðjW i;jðgÞj þ jW j;iðgÞjÞ ¼ 0

1; for
Pn

j¼1
ðjW i;jðgÞj þ jW j;iðgÞjÞ 6¼ 0

:

8
<

:
ð2:11Þ

Therefore, αe(g) denotes the total number of nodes whose functional degrees (considering

asymmetrical interactions [35]) are not zero in a dynamical network. We use absolute values

of W in Eq 2.11 for generality, in case interactions are generated by a model that identifies pos-

itive and negative interactions such as in CCM [21]; note that in OIF any negative TE value

does not have physical sense (or is mathematically plausible, unless a negative sign is assigned

a posteriori to opposite interaction directions between i and j) [28] and should be considered

as a numerical artifact to remove.

2.5.1 Network-based spectral ecosystem stability and species salience. The interaction

matrix, defining the connectivity of dynamical ecosystems, is widely used to analyze ecosystem

stability considering the whole dynamics and complexity [21, 22, 66–68]. It also defines the
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topological transitions of ecosystems if tracking their interaction topology, allowing us to ana-

lyze them in a systemic view. Furthermore, interaction matrices extracted from time-series

data of species abundance capture the functional information of complex ecosystems beyond

the dynamics of species abundance and richness themselves. Therefore, we study ecosystem

stability by analyzing eigenvalues of the TE matrix and its distribution in the complex plane.

In this study, species interactions are inferred by OIF [28]. Let the matrix W be the TE matrix,

if there is a vector v 2 <n 6¼ 0 that satisfies:

Wv ¼ xv; ð2:12Þ

then scalar ξ is called the eigenvalue of W with corresponding right eigenvector v. The real

part of eigenvalues determines whether and how fast the network returns to equilibrium from

a perturbation [68], yet it is a signature of ecosystem time-point resilience; more negative val-

ues indicate that the community returns to stability more quickly. The imaginary parts of

eigenvalues predict the extent of oscillations in species abundance during the return to equilib-

rium; larger imaginary components imply more frequent oscillations.

It should be noted that our approach is different than the spectral approach in [21] in sev-

eral ways. In particular we chose W = TE as the matrix reflecting “interactions strength” that is

proportional to what the theoretical Jacobian should be for canonical eigenvalue. In [21] the

Jacobian is construed on local interspecific and intraspecific interaction strengths that are

essentially the derivatives of abundance of two or the same species at different time steps

(where the maximum delay is taken as two weeks). We argue that this very local assessment in

[21] determined the very regular and periodical trend in dominant eigenvalue. In our context

interaction strength is TE so conceptually the approach is equivalent with the difference of the

eigenvalue rescaling due to the lack of consideration of ΔTE. Additionally in our approach the

overlap between interaction networks is nine months by construction (Section 2.5); yet, a

long-range interdependence is considered when assessing adjacent TEs on which more global

eigenvalues are determined.

Dynamical Stability (DS) (a’ la [38]) is calculated as the absolute value of real part of domi-

nant eigenvalue, that is the local Lyapunov stability [21, 22], as:

DSðgÞ ¼ jReðxmaxðgÞÞj; ð2:13Þ

where ξmax(g) is the dominant eigenvalue of an interaction matrix. Note that on the contrary

of [21] we do not remove seasonality from the normalized abundance data and the dominant

eigenvalue is assessed for all dynamical networks whose data overlap except for a two-week

gap of the moving window used in network inference (see Sections 2.1 and 2.5). Yet, there is

no complete independence between time units, that are two-week units, as in [21]. A dynamic

stability value of less than 1 (in discrete-time linear dynamical systems) or less than 0 (for con-

tinuous-time nonlinear dynamical systems as it is more general for ecosystems) indicates that

the community tends to recover faster from perturbations; higher values than 1 or 0 imply

higher instability and values of 1 or 0 identify critical transitions. However, absolute values are

less meaningful than dominant eigenvalue trends and fluctuations because those are highly

subjected to data in input (e.g. normalized or not according to different normalization

schemes, such as initial or maximum value or zero mean and unit variance, and how the inter-

action matrixW is built). The eigenvector corresponding to the dominant eigenvalue become

slower as the dominant eigenvalue of the interaction matrix (ideally the Jacobian) approaches

zero (for continuous non-linear dynamical systems) [67]. In many models that represent the

critical transition as a transition from one local stable equilibrium to another, the transition is

preceded by decreasing asymptotic stability of the equilibrium from which the transition
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occurs. This mathematical phenomenon is referred to as critical slowing down (CSD) and we

evaluated that for the whole time period in order to assess global stability (or instability loss

equivalently) vs local stability. Locally the equilibrium is stable if the real part of all of the

eigenvalues are negative and unstable if any real parts are positive. CSD occurs as one of the

eigenvalues approaches zero and becomes less negative and thus the return to the equilibrium

becomes slower. In a broader sense, CSD has been associated in the past to changes in infor-

mation propagation length [68, 69] (based on TE) and Ricci curvature of networks underpin-

ning systemic risks [70]: metrics that can be used analogously to the dominant eigenvalue.

To evaluate ecological importance of species based on OIF networks, we innovatively iden-

tify critical species in the fish community (indicated as nodes in OIF networks) using informa-

tion-theoretic indices and link salience. The information-theoretic index is defined as total

outgoing transfer entropy (OTE, computed as OTE(i) = ∑j TEi!j) [35] that measures how

much one species affects others totally. OTE(i) is the total information transition from species

i transmits to all other species. It can be therefore interpreted as how much one species helps

to predict others in terms of predictability. OTE index is able to measure species influences

with directions thanks to the asymmetric property of TE.

We also employ link salience that was introduced in [69] to measure the importance of

links in OIF networks. Link salience approach is based on the concept of effective distance dist
(i, j) (computed as dist(i, j) = 1/Wij). It is intuitively assumed that strongly (weakly) interacting

nodes are close to (distant from) each other. In our heterogeneous networks with real-valued

weights, the algorithm of the shortest-path tree (SPT) that identifies the most efficient routes

from a reference node r to the rest of the network is implemented for all nodes (SPT(r)). Then

SPT(r) is represented by a n × nmatrix with element sptij(r) = 1 if the link (i, j) is involved in

the collection of shortest paths, and sptij(r) = 0 if it is not. In conclusion, the link salience of

OIF network is defined as:

SAL ¼
1

n

Xn

r¼1

SPTðrÞ; ð2:14Þ

Therefore, SAL is a linear superposition of all SPTs. If the element sal(i, j) = 0, link (i, j) has no

role in networks; if sal(i, j) = 1, link (i, j) is important for all reference nodes; and if sal(i, j) = 1/

2, link (i, j) is important for only half of reference nodes [69]. Node (species) importance is

quantified by counting the frequency that one node exists in the most salient links as the refer-

ence terminal node (species).

3 Results

All models, scripts for visualizations, data and results are at https://github.com/

HokudaiNexusLab/FishCommunity.

3.1 Time and temperature-dependent abundance analyses

A simple analysis for original data of fish species abundance starts by looking into temporal

trajectories and seasonal fluctuations of sea water temperature (Fig 1A), taxonomic α-diversity

(Fig 1B) and abundance (Fig 2). It is evident that sea surface and bottom temperature, α-diver-

sity of the fish community fluctuated over time synchronously and seasonally. Approximately

since 2007, seasonal fluctuations of sea surface and bottom temperature were slightly getting

higher except for 2009 with the least fluctuation (Fig 1A), while the global trend of α-diversity

was decreasing (Fig 1B). This result implies that the change of biodiversity loss in the fish com-

munity may relate to the increasing fluctuations of ST. Total abundances of EP, FS, native and

invasive groups over time (Fig 2A and 2B) show a slight increase with fluctuations since 2007,
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Fig 1. Seasonal fluctuations of ST and α-diversity and relationship with mean temperature. A: The sea surface

temperature (red line) and bottom temperature (blue line) from June 2002 to April 2014. B: Taxonomic α-diversity

over time. C: α-diversity over mean temperature (the average of sea surface and bottom temperature). Blue points,

light green points, green points, yellow points and red points represent values of α-diversity corresponding to different

TRs:�10˚C, 10–15˚C, 15–20˚C, 20–25˚C,�25˚C, respectively. The black curve in plot C is a second degree
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that is opposite to the global trend of species diversity, with the exception of a spike in 2009

and a downward spiral in 2011. This finding implies that increasing ST makes some species

more abundant in global view, even though it negatively affects species diversity, and the latter

is very sensitive to the change of ST fluctuations via species interaction alteration.

These results can be more explicitly confirmed in Fig 2 where EP, FS, total abundance of

native and invasive species and species 1 (Aurelia aurita) are observed to increase exponen-

tially over the seasonal increase in ST [70, 71]. The abundance of species 2 (Engraulis japoni-
cus) that is a cooperative species with large geographic range (S15 Fig vs. S16 and S17 Figs for

competitive species), as an exception, decreases with the rise of ST both seasonally and over

time. It should be carefully noted that patterns over temperature (Fig 2B and 2D) characterize

the dynamics of species only across seasons and not over time; rather, changes in the exponen-

tial growth parameter over time are meaningful for tracking temporal changes. Therefore, Fig

2B and 2D characterize the baseline exponential response (X = XminexpkT where k is the growth

factor in the legend and Xm in is the abundance for the lowest temperature) of abundance

across seasons. Discordance between these patterns and patterns over time for increasing tem-

perature (e.g. for native species and fish stock) are warning of changes in species related to

polynomial fitting for α-diversity over temperature; that establishes an empirical Pareto optimal frontier for the climate

niche of fish diversity exerted by temperature. The inset is showing the potential ecosystem landscape across the whole

period where the entropy is proportional to 1 − pdf(α); transition seasons shows the highest entropy followed by

summer.

https://doi.org/10.1371/journal.pone.0246222.g001

Fig 2. Total species abundance of EP, FS, native and invasive species over time and mean temperature. Total species abundance of EP (yellow) and FS (blue) species

over time and temperature (A and B). Total species abundance of native (yellow) and invasive (blue) species over time and temperature (C and D). Abundance of species

1 (green) and 2 (red) over mean temperature (C and D).

https://doi.org/10.1371/journal.pone.0246222.g002
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other factors, such as changes in species interactions. Table 1 shows the observed ecosystem

response to temperature over time considering abundance and other metrics discussed

hereafter.

We also reorganize α-diversity considering ST, yielding α-diversity against temperature

shown in Fig 1C. It shows that α-diversity grows with the increasing temperature (over sea-

sons), while the rate of the increase of α-diversity (α0(C)) gradually declines (see the black line

fitting the α(T) points in the plot). The decreasing α0(T) implies that fish diversity does not

continuously grow with the increase of temperature. Within lower TRs, the fish community is

more sensitive to the change of temperature relative to higher TRs.

Time series of normalized abundance are categorized into five groups considering five TRs:

�10˚C, 10–15˚C, 15–20˚C, 20–25˚C,�25˚C. Epdf for these five TRs are visualized in Fig 3A.

Epdf plots show that the distribution of abundance, and hence abundance uctuations, becomes

more scale-free with the increase of temperature; note that this is a seasonal analysis that does

not reveal any temporal change. Lower power-law scaling exponent for higher TRs means fat-

ter tail of power-law distributions (with slower decay than exponential distribution, yet less

resilient Scheffer sensu). This indicates that the distribution of species abundance is less even

since some species become exceedingly more uctuating in abundance (with “black swan”

extremes) that may or may not be persistent over time (see S1 and S2 Figs show the epdf of

abundance for each species individually and competitive/cooperative groups). Power law

implies less evenness (the similarity in abundance among species is lower despite common

species are more even) but higher long-range organization and this is a beneficial properties of

biodiversity, also in an energetic sense considering the lowest entropy of scale-free organiza-

tion [35]. This is particularly evident for cooperative species (in terms of distribution rather

than extreme values) as also show in [28] and Fig 8. These results suggest that for higher tem-

perature, fish species present wider distribution in abundance compared to lower TRs. Fig 3B

shows the abundance-based Taylor’s law, i.e. standard deviation against mean abundance for

each species corresponding to each TR. The regression of log standard deviation vs. log mean

abundance for all TRs gives scaling laws with slopes less than 1. Positive slopes address that the

total variability of species abundance increases with the rise of mean species abundance. Slopes

less than 1 suggest that the per capita variability of species abundance for all TRs decreases

with the increasing mean species abundance [72]. Therein, slopes of scaling law for lower TRs

(�10˚C, 10–15˚C, 15–20˚C) slightly increase with the increasing ST, and are obviously lower

Table 1. Observed changes in ecosystem community and population metrics. Metrics are evaluated considering

2002 and 2014 observed values. Negative Δ % are for decrease in values over time. Δ/year % are the yearly changes over

12 years. Ecosystem stability is based on the real part of the dominant eigenvalue of the whole community (S12A Fig).

Ecosystem Metric Δ % Δ/year %

Temperature 20.00 1.67

Ecosystem Productivity -64.30 -5.36

Fish Stock 22.45 1.87

Native Sp. -50.00 -4.17

Invasive Sp. 150.00 12.50

E. japonicus (J. anchovy) -64.00 -5.33

T. japonicus (H. mackerel) 12.50 1.04

H. tenuispinnis (C. wrasse) 116.70 9.72

α-diversity -25.00 -2.08

Ecosystem stability -24.00 -2.00

Total Interactions -14.52 -1.21

https://doi.org/10.1371/journal.pone.0246222.t001
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Fig 3. Zipf’s and Taylor’s law of species abundance for temperature groups. A: Exceedance probability distribution functions (epdf) are fitted by power-law

distributions. |−� + 1| is the scaling exponent of the distribution. B: Taylor’s law as scaling law between standard deviation and mean species abundance for five TRs; ν/2
is the scaling exponent of Taylor’s law that is typically construed by using the variance [72], hx2i* hxiν; smaller νmeans that fluctuations in abundance are more even

and species are more regularly distributed; vice versa, species are more power-law distributed (as supported by Zip’s law) driven by stronger environmental effects [85]

(in this case ST) determining portfolio effects with potential stabilizing effects [86] (this however neglects interaction topology). All exponents for five TRs are

interpolated by black dashed lines in insets to emphasize abundance patterns transitions across TRs/seasons; transitions show a gradual second-order phase transition

with higher Pareto-distributed fluctuations for higher temperature.

https://doi.org/10.1371/journal.pone.0246222.g003
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than those for higher TRs (20–25˚C,�25˚C). It indicates that the variability of species abun-

dance is on average higher for higher TRs compared to lower TRs. This result confirms the

finding from Fig 1C that the fish community in lower TRs (�10˚C, 10–15˚C, 15–20˚C) is

more sensitive to the change of ST compared to higher TRs (20–25˚C,�25˚C). The increase of

scaling exponents implies that the fish community experiences a significant change in species

populations with impacts on the collective behavior (in terms of interactions) around 20˚C.

3.2 Interaction inference and temperature-dependent network

characterization

Different patterns in epdf and Taylor’s law of species abundances shown in Fig 3 envision the

discrepancy in species interactions and dynamics of ecosystem for different TRs. In this study,

species interaction is quantified by TE that is an information-theoretic variable measuring the

amount of directed information flow and evaluating connectivity between species. Networks

for the whole period and five TRs (see Fig 4) are therefore inferred by TE-based OIF model,

and graphically visualized with Gephi [73]. To refine network structure, links whose interac-

tions are lower than 0.01 are discarded by setting a threshold to filter TE. Optimal Information

Flow (OIF) networks present different structural and functional properties for particular TR

fish groups. Network for the whole period shown in Fig 4A provides a static overview of the

fish community without considering the dynamical change of temperature or seasonality. It

outlines causal relationships between species in the fish community, but is inadequate to tackle

the dynamics of fish ecosystems driven by the fluctuation of temperature, and identify ecologi-

cal and dynamical responses. Therefore, to understand how temperature affects the fish com-

munity in detail, networks for five TRs (�10˚C, 10–15˚C, 15–20˚C, 20–25˚C and�25˚C) are

reconstructed and listed in Fig 4 (from Fig 4B to 4F). Here we first define network size as an

indicator that is proportional to the number of nodes and the total amount of interactions

between species. By looking at the structure of networks (Fig 4B–4F) and taking total interac-

tions over temperature (S12F Fig) into consideration, it is obviously observed that network

size is the largest for the fish community within a higher TR. Nodes connected by links with

warm colors are regarded as a cluster in which species are significantly affecting others or

affected by others. Network of 15–20˚C group shows a larger cluster with stronger interactions

between species compared to other TRs. Yet, the distribution of species interactions in this TR

presents more evenness considering the gradient of links’ color in networks. This finding can

be obviously observed by comparing Fig 4B’–4F’ describing the phase mapping of interaction

matrices. OIF-based interactions for 15–20˚C group are distributed more randomly. This ran-

domness reveals that OIF-inferred network for 15–20˚C group seems to be less scale-free ver-

sus other networks, and stands on a critical point where the fish ecosystem is experiencing a

phase transition from a stable state to a metastable state. When considering specific species

within different TRs, except for the�10˚C and 10–15˚C groups in a globally stable state, spe-

cies 6, 7, 8, 9 are always the nodes with warm color (high OTE) (see Fig 4A and 4C–4F) in net-

works. Yet, interactions between these species are higher than others considering the phase

mapping of TE matrices shown in Fig 4.

We also set a threshold as top 20% TE considering the Pareto principle (also known as the

“80/20 rule”) which specifies that roughly 80 percent of the consequences come from 20 per-

cent of the causes in many events [65]. TE threshold following this rule is generally higher

than 0.01. It would further reduce network size, making inferred networks briefer relative to

the networks shown in Fig 4. OIF networks (S6 Fig) for the whole time period and five TRs

with the threshold of top 20% TE are reconstructed using the same regulation used in Fig 4.

After the further reduction of network size, networks in S6 Fig ignore more functional details,

PLOS ONE Temperature drives critical slowing down

PLOS ONE | https://doi.org/10.1371/journal.pone.0246222 October 20, 2021 19 / 43

https://doi.org/10.1371/journal.pone.0246222


Fig 4. OIF-inferred species interaction networks and matrices. The OIF model is used to infer the causal interactions between all pairs of

species, yielding average interaction (TE) matrices for the whole time period and five TRs. TE values in interaction matrices are normalized to 1

and drawn in plots A’, B’, C’, D’, E’ and F’. After removing weak interactions by setting a threshold (TE = 0.01) to filter TEs, species interaction

networks are reconstructed using Gephi (https://gephi.org/) and shown in plots A, B, C, D, E and F. The size and color of nodes is proportional to

the Shannon Entropy of species abundance and the total outgoing transfer entropy (OTE) (the greater OTE, the warmer the color); the width and
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but are clearer to identify the structural difference between networks compared to Fig 4. Fur-

thermore, it is possible to statistically analyze the structural degree, in- and out-degree of

nodes for each network. Statistical analysis for nodal degree is shown in S7 Fig. Structural

degree, in- and out-degree get higher with the increase of temperature as a whole. This result

implies that warmer conditions make the fish community more socially connected. Separately,

pdf of structural degree (see S7A Fig) shows that structural degree of nodes increases with the

increasing temperature, and favors bimodal distribution with different shapes for�10˚C, 10–

15˚C, 15–20˚C, 20–25˚C groups, while roughly uniform distribution for�25˚C group. For

�10˚C group, most structural degrees are distributed within the lower unimodal range from 1

to 3. With the increasing temperature, more and more values of structural degree are distrib-

uted in the higher unimodal range. However, for the highest TR (�25˚C) group, the pdf of

structural degree presents more evenness within the range from 0 to 10 (uniform distribution)

compared to other groups. This result implies that structural degree does not increase continu-

ously with ST, and that the fish community would become less interacting when ST is too

high. Analogous features can be observed in the distribution of in-degree (S7B Fig) and out-

degree (S7C Fig). For each TR, OTE and average abundance are calculated for each species

without considering any threshold for TE. Species’ OTE favors bimodal distribution with

short range for�10˚C and 10–15˚C groups, and broad range for 15–20˚C, 20–25˚C and

�25˚C groups (see S8A Fig). This result suggests that overall effects of species on others grow

with the increasing temperature. In addition, OTE is scaling with mean abundance (a recur-

rent pattern known as Kleiber’s law as found for other ecosystems [35]) and abundance stan-

dard deviation that is mass-independent (S11A and S11B Fig, respectively).

3.3 Interaction spectrum, phase transition and system stability

The probability distribution of species interactions is characterized by calculating discrete

exceedance probability, then fitted using power-law function (see Fig 5). Among five TRs, the

greatest interaction occurs in the highest TR (�25˚C) group, indicating that species interac-

tions overall increase with ST. The scaling exponent of the power-law distribution (computed

as 1 − φ) is lower for�10˚C, 10–15˚C,�25˚C groups and the first regime (black fitting) of 15–

20˚C group compared to 20–25˚C group and the second regime (green fitting) of 15–20˚C

group. The power-law model fits the epdf of TE better for�10˚C and 10–15˚C groups relative

to other TRs. The better fitting demonstrates that the distribution of species interactions pres-

ents more scale-free patterns, implying a globally stable state for these two groups. With the

rise of temperature, the fish community begins to get more interacting gradually and two

regimes therefore appear in the distribution of species interactions for 15–20˚C group. The

distribution of species interactions for 15–20˚C group is divided into two sections by a break

point (ymin = 0.584 that is higher than the median value of TE, 0.263) estimated from power-

law fitting; yet, the scaling exponents of the two epdf regimes are very different (-0.357 and

-4.468, respectively) identifying a critical and subcritical regime, respectively [49, 50]. The crit-

ical regime is more stable (optimality sensu) due to higher scale-free organization vs. the sub-

critical that is less optimal but more dynamically stable or resilient (a la’ Scheffer). The two

different regimes for the 15–20˚C range suggest that the fish community stands on a critical

color of the link between species are proportional to species interactions computed as TE (the greater TE, the warmer/wider the link’s color

width). Each network is plotted independently from the others so colors and sizes are relative to each TR range. The arrow of links defines the

direction of species interaction (TE) that are bidirectional and asymmetrical. High/low values of TE define competitive/cooperative species

dynamics that is associated to different network motifs (small-world and scale-free, respectively); increases in temperature over time leads to

scale-free loss and increased high interactions with dominance of competitive species with summer-like dynamics.

https://doi.org/10.1371/journal.pone.0246222.g004
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point where the fish ecosystem is experiencing a phase transition from global stability to meta-

stability, and that the collective dynamics of species is experiencing a significant change driven

by ST. The change of collective behavior is also reflected by the fluctuations of species popula-

tions and richness. The power-law of species interactions for 20–25˚C group shows the highest

scaling exponent, and the distribution of species interactions tend to be the most exponential

among five TRs. The power-law model was forced for the tail of the distribution in order to

provide a phase-space plot as a function of power-law exponents; however, the maximum like-

lihood solution is an exponential distribution for TR 20–25˚C and above 25˚C. Species interac-

tions continue to increase in magnitude as temperature rises, and a large number of weak

interactions emerge simultaneously, leading to a distribution pattern where most interactions

Fig 5. Exceedance probability distribution function of species interactions and phase-space dependent on surface temperature. A, B, C, D and E: Epdfs

of OIF-based interactions (after filtering with a threshold of 0.01) between all pairs of species for five TRs:�10˚C, 10–15˚C, 15–20˚C, 20–25˚C,�25˚C. The fit

is with a power-law function. In plot F, all power-law exponents are connected by dashed lines. Scaling exponents for different TRs are displayed in a phase-

space where x-coordinates are middle values of TRs (note that 7.5˚C and 27.5˚C are selected as middle temperature values for TRs lower than 10˚C, and

higher than 25˚C, respectively); points are empirically connected by a dashed line from low to high temperature to emphasize phase-transition of interactions.

Note that for the 15–20˚C group, epdf of species interactions presents two power-law regimes that are separately fitted by a power-law functions. The double-

Pareto distribution reflects the presence of two strange-attractors and a critical unstable transition at 15–20˚C. Critical regimes are defined according to

power-law criteria defining finiteness of statistical moments (see [35]).

https://doi.org/10.1371/journal.pone.0246222.g005
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are clustered from low to intermediate range forming a small-world network topology. This

distribution pattern exhibits a less scale-free topology compared to other TRs. Therefore, fish

ecosystems within 15–20˚C and 20–25˚C groups are metastable (also see Fig 4D, 4E, 4D’ and

4E’). With the continuous increase of ST (�25˚C), the power-law scaling of the species interac-

tion distribution shows a significant decrease that is opposite to ST. The power-law fitting

model fits the epdf of species interactions better for�25˚C compared to the critical group of

15–20˚C and exponential group of 20–25˚C. This result indicates that several major species

interactions continue to rise, while minor interactions disappear, leading to a flatter distribu-

tion and more scale-free pattern relative to 15–20˚C and 20–25˚C groups. The fish ecosystem

returns to another relatively stable state after perturbations caused by ST. This finding con-

firms the fact that the fish community would not get more interacting continuously with the

increase of ST, yet the activity of fish species would decrease when temperature is too high.

The trend of scaling exponents (Fig 5F) shows that the fish ecosystem is subjected to a phase

transition from global stability to metastability in 15–20˚C group, and finally returns to local

stability (globally unstable Bak sensu, but resilient Scheffer sensu) with the increase of temper-

ature. A fold-like bifurcation occurs considering the transition of species interaction at 15–

20˚C. This result reveals that, during the phase transition from global stability to local stability,

the fish ecosystem stands at a critical point within 15–20˚C where the fish community experi-

ences a significant change in collective dynamics. These changes result in different functional

features for the fish ecosystem (and potential environmental transitions, e.g. in biogeochemical

cycling) within different TRs as graphically shown by functional interaction networks (see Fig

4).

In this work, the dominant eigenvalue of species interaction (TE) matrix is studied as a

representation of network structure and to analyze the stability of the fish ecosystem. Accord-

ing to the above analysis of species interaction spectrum, OIF-inferred networks representing

the fish community present different structural patterns for different TRs. As a part of the

complex marine ecosystem, these structural differences may relate to numerous relevant biotic

and abiotic factors. To prove ST to be an important factor affecting the structure and function

of networks, we infer dynamical networks over time for each TR, then calculate the informa-

tion flow from ST to the real part of the dominant eigenvalues of dynamical TE matrices

underlying network stability (see Table 2). Table 1 reports various ecosystem metrics of species

populations and community considering time variability of the environment. The information

ow from ST to network structure increases from�10˚C to 20–25˚C group, then slightly

declines. The lower information ows for�10˚C and 10–15˚C groups manifest less effect of ST

on these TRs, implying more stable states with higher resilience to the fluctuation of ST com-

pared to other groups. In contrast, 15–20˚C and 20–25˚C groups show high information ows

from ST to network structure, implying strong effect of ST on the fish community. This

Table 2. Predicted causality between temperature and ecosystem stability for different temperature groups. The

potential effect of temperature variability over time on ecosystem stability is calculate as Transfer Entropy (TE)

between temperature (within TR groups) and the real part of the dominant eigenvalue (see S12A Fig for the latter). The

larger TE the larger the predictive causality.

TRs TE(T!Re{ξmax(t)})

�10˚C 0.50

10–15˚C 0.99

15–20˚C 1.17

20–25˚C 1.26

�25˚C 1.06

https://doi.org/10.1371/journal.pone.0246222.t002
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corresponds to the relatively unstable state (metastability) where these groups undergo a sig-

nificant change in system state and dynamics. The slight decrease in information ow from 15–

20˚C and 20–25˚C groups to�25˚C group means the reduction in the effect of ST on (the

improvement of system stability for)�25˚C group. These results extraordinarily conform to

the findings from the probabilistic analysis of species interactions for TRs. Therefore, the

change of ST is considered as an important factor that drives structural changes and state shifts

of the fish ecosystem.

Eigenvalues of species interaction matrices for each TR are scattered together in a complex

plane (Fig 6). This method displays the position of all eigenvalues in the form of an ellipse [22,

68]. There are 8 eigenvalues for�10˚C group, 14 eigenvalues for 10–15˚C group, 14 eigenval-

ues for 15–20˚C group, 15 eigenvalues for 20–25˚C group and 15 eigenvalues for�25˚C

group. Eigenvalues correlate with the stability and resilience of the fish ecosystem in both mag-

nitude and variance. When only considering the eigenvalues with positive real parts that may

result in instability, there are 2 eigenvalues with positive real parts (2.028 and 0.009) for�10˚C

group, 5 eigenvalues with positive real parts (2.262, 0.002, 0.002, 0.003 and 0.0003) for 10–

15˚C group, 1 eigenvalue with a positive real part (4.998) for 15–20˚C group, 1 eigenvalue with

a positive real part (4.934) for 20–25˚C group and 2 eigenvalues with positive real parts (6.143

and 0.052) for�25˚C group. It is observed that each TR has eigenvalues with positive real

parts that may bring instability to the ecosystem, while positive real parts are greater for higher

TRs (especially for 15–20˚C, 20–25˚C and�25˚C groups). Sea temperature is quite likely the

strong causal factor. This result confirms the finding that the fish ecosystem presents more

instability for 15–20˚C, 20–25˚C and�25˚C TRs.

3.4 Network-based ecological importance and critical species identification

Biological importance and critical species identification are performed by further analyzing

structural features of OIF networks and combining interaction spectrum with abundance

spectrum. To this end, we first measure the salience for all links in OIF networks [69]. Link

salience computation is based on the effective proximity dij defined by the strength of mutual

interactions: dij = 1/TEij. It is intuitively assumed that strongly (weakly) interacting nodes are

close to (distant from) each other. Link salience matrices shown in Fig 7 illustrate that species

7 (Pseudolabrus sieboldi) is always the reference node of the most salient links with the excep-

tion of�10˚C group where the reference node of the most salient links is species 15 (Rudarius
ercodes) instead of species 7. According to the website of fishbase (http://www.fishbase.org/

summary/Pseudolabrus-sieboldi.html), species 7 (Pseudolabrus sieboldi) is a native species in

northwest pacific ocean and mainly distributed in Japan waters [74]. These results reveal that

native species 7 has the most critical influence on other species in the fish community, and

plays a vital role in maintaining structure and function of networks.

We also calculate Shannon entropy for species to measure the fluctuation and uncertainty

of species abundance, and compute species’ OTE as another nodal (species) property to quan-

tify how much a species totally influences others in OIF networks. Then, species rankings con-

sidering top 5 Shannon entropy and top 5 OTE are listed and shown in S9 Fig. On the one

hand, the species ranking of Shannon entropy (left figures in S9 Fig) shows that species 2 or

(and) 5 always have the greatest Shannon entropy that represents the highest uncertainty in

abundance for these two species. This finding also can be observed in the original time series

of abundance plotted in S3 Fig. Species 2 and 5 have the highest fluctuations and diverse values

of abundance. On the other hand, the species ranking of OTE (right figures in S9 Fig) shows

that for all TRs except the�10˚C group, species 7 always has the greatest OTE, and species 5,

6, 7, 8 and 9 are often involved in top 5 OTE ranking especially for higher TRs. These species
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Fig 6. Eigenvalue spectrum of TE interaction matrices across temperature ranges and ecosystem relative stability

over time. Eigenvalue distribution of TE interaction matrices are scattered in a complex plane (five different colors

correspond to five TRs) (A). Dynamical stability of the fish community is computed as the real part of the dominant

eigenvalue of TE interaction matrices; this is show over time (B) for competitive (4–9 species) and cooperative species.

The total interaction of dynamical networks over time (as sum of all TE interactions) (C) is mirroring the fluctuations
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are dynamically competitive species a’ la [28] and with higher temperature fitness as well as

smaller geographic range tendentially. For instance species 5 Trachurus japonicus (Horse

mackerel) in S15 Fig is native of Japan while species 9Halichoeres tenuispinnis (Chinese

wrasse) despite being mostly distributed in Japan is invasive with origin in SE China. These

finding imply that these competitive species have significant effects on other species in the fish

community, of which species 7 is the greatest. This result is in accordance with the results of

link salience matrices shown in Fig 7. In a word, through measuring link salience and OTE,

species 5, 6, 7, 8, 9 can be identified as the critical species in the fish community. Additionally,

we also calculate TE, MI, species abundance vs. ST in semi-log scale, Pearson correlation coef-

ficient (indicated as cc) and causality coefficient ρ of CCM [63] (Table 3) between species

of the eigenvalue relative stability. Note that fluctuations of the eigenvalue and interactions are increasing over time

and manifesting critical slowing down (CSD) toward a suboptimal ecosystem state with small-world/random high

interactions (Fig 5) with large fluctuations in abundance synchronized with temperature (Figs 1 and 3). Total

interaction dynamics is dominated by cooperative species but extremes are regulated by competitive species that are

much more synchronized with ST fluctuations. This is because cooperative species are more numerous and abundant

than competitive species and the latter are synchronized with temperature extremes.

https://doi.org/10.1371/journal.pone.0246222.g006

Fig 7. Link salience matrices highlighting Pareto links. Link importance is measured as link salience for all OIF networks corresponding to the whole period and five

TRs, yielding 15 × 15 matrices. The values of link salience are normalized to 1, and drawn in plots A, B, C, D, E and F, respectively. Pareto links are between keystone

species responsible for the stability of the ecosystem.

https://doi.org/10.1371/journal.pone.0246222.g007
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abundance and ST to identify which species are most affected by ST. The identification is done

by comparing the aforementioned linear and non-linear methods that were also used to com-

pare inferred species interactions (see S5 Fig, and [28]). The slope of the abundance-tempera-

ture relationship in semi-log scale is the parameter of the exponential function of species

abundance growth dependent on ST (see S4 Fig). In Table 3, TE from ST to species abundance

for species 5, 6 and 7 is higher than other species. MI, Pearson correlation coefficient and ρ are

overall higher for species 5, 6, 7, 8 and 9. Therefore, species 5, 6, 7, 8 and 9 are considered as

the species that are most affected by ST; this is not necessarily a negative impact of temperature

but rather a signature of importance of temperature in constituting the ecological niche of

these species. It is interesting that these species are also recognized as critical species in the fish

community by measuring link salience (dependent on TE) and OTE ranking of importance

for predicting collective dynamics. These competitive species (dynamically speaking as in [28])

are highly concordant with each other and more synchronized with temperature, yet more

likely affected by temperature fluctuations directly. We also find that TE values from species

abundance to ST are very small. This result is expected since fish species do not affect ocean

temperature. By looking into S4 Fig, the abundance of species 5, 6, and 7 exponentially grows

with ST more obviously than other competitive species. Competitive species have the strongest

and positive exponential fit with seasonal temperature versus cooperative species whose

response to seasonal temperature is less exponential and more frequently negative (implying a

decay); the exception is for species 15 that is dynamically the most similar to competitive spe-

cies. Competitive species (dynamically speaking as in [28]) are highly concordant with each

other and more synchronized with temperature, yet more likely affected by temperature fluc-

tuations directly. The exponential fit is not by chance a by-product of the synchronized expo-

nential fluctuations of ST and fish abundance, while cooperative species fluctuations are more

power-law distributed (S2 Fig) (although in terms of range than critical regime). This signifies

that cooperative species are affected also by other factors such as fishing beyond linkages with

competitive species-ST.

Moreover, probability distribution functions of abundance for all species (see S2 Fig) show

that species abundances of these species are more evenly distributed within relatively small

Table 3. Indices measuring the relationship between ST and species abundance.

Species TE(T!si) TE(si!T) MI slope cc ρ
1. Aurelia aurita (Moon jellyfish) 0.023 0.005 0.316 0.137 0.157 0.095

2. Engraulis japonicus (Japanese anchovy) 0.001 0.014 0.132 -0.082 -0.066 0.290

3. Plotosus lineatus japonicus (Sea catfish) 0.029 0.002 0.198 0.277 0.289 0.310

4. Sebastes inermis (Black snapper) 0.014 0.031 0.411 0.092 0.278 0.318

5. Trachurus japonicus (Horse mackerel) 0.171 0.014 0.620 0.066 0.615 0.624

6. Girella punctata (Blackeye seabream) 0.107 0.000 0.472 0.129 0.476 0.385

7. Pseudolabrus sieboldi (Wrasse) 0.071 0.044 0.691 0.112 0.712 0.690

8. Halichoeres poecilopterus (Rainbow wrasse) 0.021 0.007 0.712 0.043 0.506 0.447

9. Halichoeres tenuispinnis (Chinese wrasse) 0.007 0.006 0.707 0.099 0.501 0.424

10. Chaenogobius gulosus (Goby) 0.002 0.009 0.127 0.119 0.105 0.063

11. Pterogobius zonoleucus (Blue/Yellow striped Goby) 0.004 0.001 0.276 0.166 0.258 0.120

12. Tridentiger trigonocephalus (Chameleon Goby) 0.010 0.024 0.264 -0.016 0.151 0.316

13. Siganus fuscescens (Rabbitfish) 0.026 0.010 0.207 0.250 0.243 0.294

14. Sphyraena pinguis (Red barracuda) 0.039 0.005 0.194 -0.012 0.229 0.199

15. Rudarius ercodes (Pigmy filefish) 0.023 0.015 0.389 0.079 0.237 0.227

https://doi.org/10.1371/journal.pone.0246222.t003
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ranges (the least range is [0,45) for species 7) compared to other species with wide distributions

and extreme values. It demonstrates that trajectories of species abundance for species 6, 7, 8

and 9 are remarkably divergent from other species. Species with wider distributions and more

extreme values present more uncertainty in abundance, that is, Shannon entropy of these spe-

cies is higher than that of species 6, 7, 8, 9. Intuitively, TE-s from source variables (species)

with low uncertainty (more deterministic information) in abundance (species 6, 7, 8, 9, for

instance) to target variables with high uncertainty (see left figures in S9 Fig) are supposed to be

high. Considering species 6, 7, 8 and 9 themselves, within the small range of abundance distri-

bution, relatively speaking, these species also present transparent divergences (dissimilarity) in

the distribution of species abundance. Therefore, causal interactions (transfer entropy)

between these species are relatively high. These results address that the distribution of species

abundance can be used as a proxy of interactions by comparing similarity and divergence.

Take species 2 (Engraulis japonicus) as an extreme example, TE-s from species 2 to others are

relatively low as expected since the original abundance data of species 2 have many zeros or

values close to zero that lead to lower uncertainty despite the asynchrony and divergence.

Considering the whole time period, rather than solely estimate the simple continuous pdf

of abundance for each species (S2 Fig), we probabilistically characterize distributions of abun-

dance by computing epdf and using power-law fitting. The scaling exponent of power-law fit-

ting is considered as another species property in terms of the distribution of abundance (see S1

Fig). Thereafter, abundance-interaction phase-space describing relationships between power-

law scaling and species OTE (power-law exponents vs. OTE for all species, indeed) is shown in

Fig 8.

For a selected species, the higher the exponent of the power-law, the more abundance val-

ues are distributed within a narrower range (S1 and S2 Figs); additionally, the higher OTE, the

more strongly the species interacts with others.

The phase-space mapping in Fig 8 shows a trend where the power-law exponent of species

abundance is proportional to the species OTE with species 3 and 6 as outliers. This result sug-

gests that species whose abundance has a wide distribution with a fat tail have relatively low

total effects on other species (these are cooperative species, while species whose abundance is

more evenly distributed within a narrow range have high total effects on other species (species

7, 8, and 9 but in general all competitive species). These findings, that highlight the duality

between abundance and interaction distribution, are also extractable from the mapping of

interactions for the whole time period shown in Fig 4A’. Previous research showed that species

with more exponential distribution of abundance have a competitive role in the fish commu-

nity dynamics [28]; this is beneficial for species abundance growth and regulation of other spe-

cies. The former are acclimatized species where temperature affect them positively with higher

ecological memory while the latter are affected by multiple environmental pressure such as

temperature and fishing (temporally and likely spatially in the geographical area considered)

and are likely more sensitive to short-term conditions. In S9 Fig, OTE vs. mean abundance

shows that for most species, effects on other fishes are proportional to the abundance of species

(S9A Fig) (this is known as Kleiber’s law [35]), while inversely proportional to the standard

deviation of the abundance of species (S9B Fig).

3.5 Time- and temperature-dependent dynamical interactions and stability

Considering both dimensions of time and temperature, time- and temperature-dependent

dynamical species interaction (TE) matrices are inferred from time series of each time and

temperature unit, respectively. On the temporal scale, S12A Fig shows the real part of the dom-

inant eigenvalue of TE matrix (blue line) and adjacency matrix (red line) underlying the
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Fig 8. Abundance-interaction atemporal pattern and distribution of species interactions for competitive and cooperative species. (A) Considering the whole time

period for the 15 species, � is the slope of the Zipf’s law (on pdf) of species abundance (see Fig 3) and OTE is the sum of all interactions of a species (that is how much

one species influences the collective on average). Black continuous and dashed curves are the linear and non-linear (second-degree polynomial) fitting for the

abundance-interaction pattern. Cooperative species, asynchronized with temperature, are characterized by more power-law distributed fluctuations in abundance (see

S1, S3 and S4 Figs) manifested by the lower � and wide scale-free distributed total interactions (Figs 4 and 5, and 8B) (with relatively low average) that are more stable

over time (Fig 6); this underlines the weak-interaction induced stability of ecosystems. Increasing temperature leads to a predominance of small-world distributed high
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structure of temporal networks. The real part of the dominant eigenvalue of TE matrix over

time is lower than that of adjacency matrix, yet the former presents an obvious seasonal fluctu-

ation. In the first half-year period (approx. from winter to early summer), it is observed that

the real part of the dominant eigenvalue increases over time and reaches a spike during this

period. Then it decreases in the second half-year period, while increases again at the end of

year. The increasing trend or the high level of the real part of the dominant eigenvalue always

appears within the time period with higher changes (fluctuations) of ST (from April to June or

from October to December) in a year which probably corresponds to 15–20˚C to 20–25˚C

TRs. These results suggest that the fluctuation of species interactions becomes higher and fluc-

tuates more frequently during the time period with higher fluctuations of ST, and that the fish

ecosystem tends to be metastable as the fish community becomes active. For adjacency matrix,

the high level of the real part of the eigenvalue appears synchronously with that of TE matrix,

while it is hard to identify the seasonality due to lower fluctuations. S12B Fig shows the magni-

tude of total interactions over time that is computed as the sum of TE values in interaction

matrices of temporal networks. Total interaction over time presents clear seasonal fluctuations

that highly synchronize with the seasonality observed in eigenvalues of TE matrix shown in

S12A Fig (blue line). This finding verifies the result that species interactions in the fish com-

munity increase during the time period with high fluctuations of ST. S13 Fig shows how the

dominant eigenvalue is the largest for intermediate and high TR as much as the functional net-

work degree. Furthermore, species OTE is calculated for each temporal network, obtaining

256 OTE-s for each species. Pdfs of species OTE show that critical species 6, 7, 8, 9 have higher

effects on other species in the fish community compared to others (see S14 Fig).

Considering temperature, S12E Fig shows how the real part of the dominant eigenvalue of

TE matrix (blue line) and adjacency matrix (red line) underlying the structure of temperature-

dependent networks changes with the increase of temperature, respectively. Both curves show

that the real part of the dominant eigenvalue rises with the increasing temperature as a whole,

while that of TE matrix has more informative fluctuations with higher frequency in contrast to

the adjacency matrix. S12F Fig shows the magnitude of total interactions over temperature

stemmed from TE matrices of temperature-dependent networks.

It is clearly observed that total interactions fluctuate analogously to the real part of the dom-

inant eigenvalue of interactions (S12E Fig), as well as to the estimated effective α-diversity

derived from dynamical top 20% TE interactions (S12H Fig). These results indicate that inter-

actions between species in the fish community are more sensitive to fluctuations of ST com-

pared to macroecological α-diversity that is a byproduct of interactions. Fluctuations of species

interactions provide a potent indicator to monitor and predict ecosystem dynamics especially

as a function of changes due to environmental stress. The effective α-diversity in temporal and

temperature-dependent dimensions is shown in S12C, S12D, S12G and S12H Fig.

4 Discussion

Growth, reproduction and living habits of organisms in the ocean, as well as external environ-

mental factors including ST and daytime present a transparent seasonality. Therein, ST is

interactions of competitive species (whose abundance is synchronized with temperature and distributed more exponentially); this causes the loss (or a shift) of Pareto

salient links (Fig 7) and the higher fitness of invasive species with “hybrid” dynamics. (B) Epdf of interactions of competitive and cooperative species. Interactions are

estimated via the OIF model for the whole time period. The number of cooperative species is higher and their scale-free distribution wider than competitive species as

well as much more stable due to the lower power-law exponent; this is when considering the extreme competitive interactions as power-law although the whole

distribution is exponential (P(Y� y)* e−λy). The rarity of competitive species is manifested by the narrower distribution with lower stability (Bak sensu). The legend

shows in black the dominant dynamical regime for competitive and cooperative species (for the former only the exponential dynamics is substantiated); the inset is the

species interaction network for the whole period (Fig 4A) with the competitive core highlighted.

https://doi.org/10.1371/journal.pone.0246222.g008
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often perceived as a dominant determinant that drives the biological behavior of organisms in

marine ecosystems [75–77]. Sea temperature has been affected by ocean warming caused by

both global climate change and local anthropogenic stress. Ocean warming determined signifi-

cant negative impacts on local fish communities and the whole marine ecosystem. In this

paper, we first study the multispecies fish community in Maizuru bay by conducting abun-

dance, macroecological and dynamical analyses over time. Particularly, these analyses are also

conducted considering five TRs to investigate how ST affects fish community abundance and

interactions. Temperature-dependent analyses capture the difference in macroecological indi-

cators of the fish community among five TRs. Same analyses for EP, FS, native and invasive

groups and two species (species 1 and 2) are performed to identify important trend in species

groups. These analyses capture the seasonal fluctuations of ST, species populations and diver-

sity, and the results support a speculation that the change of biodiversity in the fish community

can be a biological response to the increasing fluctuations of ST. The species abundance of fish

groups shows an overall slight increase since 2007 that is related to ST. Take 2009 as an exam-

ple, the highest total abundance of species in EP, FS and native groups in this year is likely

owing to the least fluctuation of ST. The increase of species abundance may improve species

competition in the fish community. Those species whose abundances decrease with the

increasing ST are supposed to compete with other species and present disadvantage in species

interactions. This competitive disadvantage may lead to departure and extinction of some spe-

cies, resulting in the global decrease of species diversity in the fish community. These valuable

results are obtained from the analysis considering species abundance and diversity, while it is

not sufficient to completely display the impacts of ST on the fish community, and limited to

describe internal mechanisms of how ST affects the dynamics of the fish ecosystem.

To better understand biological responses of the fish community to the fluctuations of ST,

the proposed information-theoretic OIF is employed to study the fish community considering

species interactions and their dynamics over time. In information theory that has attracted

considerable attention in complex networks, entropy (information) is used to quantify the

uncertainty of a variable and its computation is based on the probability distribution of data.

Transfer entropy is an asymmetric variable that measures directed relationships between two

random variables by estimating the directed information flow between variables. In this study,

time-series observations of species abundance, as research materials, are used by OIF to infer

causal networks for the fish community. Information flow is therefore interpreted as the trans-

fer of information about species abundance between species. The amount of the information

flow quantifies how much one species can help predict another species in terms of species

abundance [28]. In addition, information flow can represent the information transfer between

other indicators in ecosystems dependent on research subjects and objectives, for instance,

energy transferred between organisms in food webs, material flow through ecosystems, metab-

olism expenditure and net primary production.

The fundamental work of studying ecosystems via complex networks is to detect complex

interdependencies comprised of a large number of causal interactions between species. The

intuitive and heuristic notion in information theory for species interaction detection is transfer

entropy. Therefore, OIF model is deployed in this study to detect potential species interactions

that form information flow networks to model the fish ecosystem. Networks inferred from

OIF model illustrate differences in structure and function among five TRs. These structural

and functional differences imply different system states and dynamics the fish ecosystem pos-

sesses within different TRs. For�10˚C and 10–15˚C groups, the fish ecosystem lies on a glob-

ally stable state, then presents a shift of system state from stability to metastability in

intermediate TRs, and finally returns to a locally stable state. Fish community on global stabil-

ity is in the situation that the fish ecosystem is highly resistant to long-term perturbations
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(change of species composition, ST, for instance) [78, 79], and intra- and inter-specific interac-

tions are not too strong [80]. The newly established stable state is interpreted as locally stable

state which addresses the fish ecosystem only resistant to small short-lived disturbances

(minor fluctuations of ST, for instance) [81]. As well, different patterns are recognized for

internal mechanisms of the fish ecosystem within different TRs by probabilistically character-

izing species interactions. These shifts of ecosystem state and dynamics explain how ST sub-

stantially affects the fish community. In addition, eigenvalues of the interaction matrix are

computed as indices to assess the ecosystem stability of the fish community [22, 68]. The deter-

mination of eigenvalues and eigenvectors of a system is extremely important to many prob-

lems in physics and engineering including stability analysis, oscillations of vibrating systems,

to name only a few. It provides three measures of stability in terms of species interactions: (i)

whether the fish community will return to the previous state after a certain perturbation, (ii)

how fast the return will occur, and (iii) what the interactome dynamics of the fish community

look like during the process of the return.

It is important to note that different species may respond to fluctuations of ST in different

ways. As one of the many causal factors, temperature may lead to different species responses

that can also improve the stability of fish ecosystems; some fish species for instance may expo-

nentially grow as a function of ST (e.g. due to acclimatization or due to their higher fitness for

the new dominant TR) and shift the ecological niche of the community. Yet, to further tackle

the complexity ecosystem dynamics and identify the importance of some critical species under

the conditions of ocean warming, species-specific analyses are conducted via network-based

analyses to define which critical keystone species underpin shifts and stability.

Link salience is assessed as one of the network metrics to classify salient pairs in the fish

community based on an importance estimate (consensus a’ la [69]) of those pairs for of all

nodes. Native species 7 (Pseudolabrus sieboldi) is the most frequently observed species in the

salient links as a reference node. This result means that species 7 is likely to play a more signifi-

cant role in maintaining the fish ecosystem stable compared to other species. Secondly, OTE

that counts the total effects of one species on others is calculated for each species as a nodal

property in networks. TE and OTE are considered as the strong indicators of ecosystem

dynamics for pairwise and nodal functional characterization since those variables are related

to species interdependence in the view of complex networks [35]. These information-theoretic

indicators based on species interdependencies rather than species abundance and macroecolo-

gical indicators lead to more informative ecological information and offer better characteriza-

tion and understanding for the dynamical evolution of the fish ecosystem. In this study, OIF-

inferred networks are predictive interaction networks. They can be used, given source species,

to measure the uncertainty reduction of target species. Cause-effect relationships between two

species are asymmetrical and the asymmetry is captured by the model. OTE is a variable mea-

suring how much one species contributes to the prediction of next states of the fish ecosystem.

From this framework, species 6, 7, 8 and 9 are identified as critical species often involved in

top 5 OTE ranking, and species 7 has the greatest OTE for all TRs, except for the�10˚C

group. The results from OTE coincides with those from salient link assessment. This finding

means that species 6, 7, 8 and 9 are core species in the fish community that are interacting

strongly with each other, present quite different behavior compared to other species, and play

a vital role in maintaining the stability of the ecosystem. More importantly, these species are

native species in Maizuru bay (see S1 Table). The abundance of species 6, 7, 8 and 9 presents

remarkable divergence from other species (see S2 and S3 Figs).

We also develop dynamical networks dependent on time and temperature. Relationships

between eigenvalues (real part of the dominant eigenvalue of TE matrices as in [21, 22]) and

system stability, species interactions (total interaction and interaction topology) and effective
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diversity indicators (effective α-diversity) are discussed. Dominant eigenvalue provides infor-

mation on local stability which is a specific equilibrium point the system is around after pertur-

bations and will return to on its own in some time. Its fluctuations over time reveal less

stability for the fish ecosystem during the period with higher fluctuations of ST in one year. It

means that given a specific stable state (equilibrium point), the ecosystem within this period is

easier to oscillate around the equilibrium point and may take more time to recover. This result

is in line with the relatively unstable state of 15–20˚C and 20–25˚C groups concluded in sec-

tion 3.3, since these two TRs are more likely to appear in spring and autumn which have rela-

tively high temperature fluctuations in one year. Dominant eigenvalues over temperature also

suggest that in a certain TR (�18˚C), the increasing temperature rapidly makes the fish ecosys-

tem more interacting, but less stable. Total interaction of dynamical networks present equiva-

lent fluctuations to eigenvalues on both scales that explicitly imply the relationship between

species interaction and system stability. Moreover, effective α-diversity from OIF networks is

able to roughly track the real taxonomic diversity. Therefore, dynamical network analyses pro-

vide a real-time and temperature-dependent monitor that could directly display the system

states and species activeness in view of system dynamics. This is important and useful to

understand how fish ecosystems respond to the change of ST, especially in conditions of ocean

warming, in order to preserve their function along sustainable targets.

5 Conclusions

Ocean temperature is the dominant environmental factor shaping marine ecosystems, and

specifically affecting fish species niche by modulating their collective behavior (interactions).

Increasing trend and abnormal fluctuations of ST caused by global climate change, and ampli-

fied by local habitat pressure such as biogechemical loads and increased fishing, have created

significant and likely irreversible challenges for fish ecosystems in the last 50 years [82]. In this

study, the fish community in Maizuru Bay, Japan, is studied along time and temperature dim-

newnsions considering patterns of interrelationships of community abundance, species inter-

actions, taxonomic and effective diversity, and interaction network species salience. The

following results are worth mentioning.

• 12-year species abundance and taxonomic α-diversity time series present increased seasonal

fluctuations associated to ST mean and variance increase. Critical slowing down (a’ la Schef-

fer [38]) is manifested by the decreasing trend of abundance, especially for highly commer-

cially valuable species, larger fluctuations in interactions, and dominant eigenvalue

approaching zero defining frequent transitions. This lead to a more homogenous state domi-

nated by competitive species with low or non-commercial value as well as invasive species

increase with higher synchronicity with temperature (yet likely suitability) to occupy the cli-

mate niche of cooperative species. We use a previously developed Optimal Information Flow

model [28] (validated on the same dataset) to infer species interaction networks for the

period 2002–2014 and for each temperature group. The dominant eigenvalue, derived from

a stability analysis of in the ecosystem interaction matrix, is mildly decreasing over time,

potentially implying higher resilience; however, that coincides with a state like summer

where interactions are high as well as their fluctuations due to their exponential distribution.

This state has higher entropy and persistence than winter like states. Additionally, competi-

tive species for which instability is increasing (considering both interaction and dominant

eigenvalue over time) are enhancing fluctuations of cooperative species that are decreasing

in abundance. Overall, an increasing divergence in the competitive-cooperative dynamics is

observed over time.
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• Seasonal interaction patterns are analyzed by considering the phase diagram of interaction

organization. This provides an expected average behavior of interaction as a function of tem-

perature. OIF-inferred networks for�10˚C and 10–15˚C groups lie on a globally stable state

considering their power-law distribution of interactions underpinning persistence (or self-

organized criticality that reflect functional optimality) of cross-abundance correlation (that

is defining interactions) a’ la [37] (see also [83]). High temperatures (20–25˚C and�25˚C)

are locally stable because they show high value of interactions that are more frequent and

regular than scale-free low temperature interactions. Ecosystem alterations can affect high

temperature interactions largely and rapidly including their ability to bounce back to their

dynamics. This confers a higher resilience a’ la [38] but intrinsically lower global optimality

considering the less organized state of interactions. Yet, higher resilience does not corre-

spond to criticality a’ la [37]. Based on the phase diagram, it is expected that with the contin-

uous increase of ST, the fish community becomes more interactive; the ecosystem presents

three different regimes, one critically stable, one unstable, and one subcritical. A critical

phase transition from global stability (�10˚C and 10–15˚C groups) to critical instability

occur in between 15–20˚C and 20–25˚C. When ST continues to rise to�25˚C, the fish com-

munity becomes more interacting (in terms of extremes’ frequency) and the ecosystem

reaches a locally stable state with higher resilience but lower organization. Nodal degree is

increasing from�10˚C to�25˚C from a normal to a uniform distribution associated to a

non-linear transition in interaction network topology from a scale-free to a exponential/

small-world network. This also emphasizes how structural network features are poorly

descriptive of functional network topology underpinning ecosystem function.

• Network-based effective salience identified keystone species as the ones with the highest inter-

action and predictability of other species based on the defined effective distance inversely

proportional to species interactions. Across time and seasons the most salient species are

species 5 and 7 that are Trachurus japonicus (Horse mackerel) and Pseudolabrus sieboldi
(Wrasse). These species (that are actually rather central in spring and fall) have the highest

fitness with temperature and smaller autocorrelation over space, and yet have the highest

role in the stability/instability of the ecosystem. Specifically these “Pareto” species, due to

their Pareto-distributed interactions, have the largest portfolio effect, and in the studied

period and community considered, they are increasing in abundance and affecting nega-

tively cooperative species such as Engraulis japonicus (Japanese anchovy) whose geographi-

cal extent is much larger than competitive species. Interestingly, in winters Rudarius ercodes
(Pigmy filefish), that is an invasive species, is the keystone species and this is likely caused by

a weakly interacting community and increasing temperature creating potential niche for

new species introduction. Blue/Yellow striped Goby and Chameleon Goby (sp. 11 and 12)

are also quite central after Pigmy filefish (sp. 15). The latter species as well as Horse mackerel

(that is reported as Near Threatened globally) and Wrasse are keystone species in the sum-

mer, which reflects the protracted species dynamics of winter and intermediate seasons.

• Dynamic temporal networks present increasing seasonality instability considering the

increasing fluctuations of the dominant eigenvalue over time. During transitions seasons

with high fluctuations of temperature (spring and autumn) the real part of the dominant

eigenvalue from the interaction matrix is high, suggesting that the fish community is more

interacting and less stable. For intermediate temperature ranges the dominant eigenvalue

increases over time. This dynamical instability increases in summer and despite the domi-

nant eigenvalue for the highest TR decreases over time the fluctuations increase. We confirm

how organized interaction or degree distributions tend to stabilize food webs (captured as

cross-abundance species interactions), and that average interaction strength has little

PLOS ONE Temperature drives critical slowing down

PLOS ONE | https://doi.org/10.1371/journal.pone.0246222 October 20, 2021 34 / 43

https://doi.org/10.1371/journal.pone.0246222


influence and information on community stability (compared also to the the effect of inter-

action variance and cross-correlation). Scale-free interaction networks have fewer trophic

dependencies than random networks whose connectivity increases exponentially. Therefore,

diversity should not be considered as a stability metric but a byproduct of interaction whose

topology is fundamental for ecosystems function.

• The dominance of “weak” interactions is higher in the summer (relatively speaking in terms

of distribution or probability in comparison to others than in magnitude) but extreme inter-

actions are also present due to the persistent presence of competitive species. Higher species

diversity during summer periods are associated with apparently higher dynamic stability

over time and higher population fluctuations. On the contrary of [21] we emphasize how

this apparently higher dynamic stability (across seasons) is decaying over time manifesting

potential “critical slowing down”. The divergence between dominant eigenvalue of competi-

tive and cooperative species is also increasing over time, where the former and the latter are

increasing and decreasing instability. This cross-dynamics emphasizes an overall increase in

extreme competition between species group over time despite the decay in average interac-

tions that is only related to species that are no more connected and likely “pushed out” the

community. In summer, stability a’ la Scheffer is higher (dominant eigenvalue is lower) but

the ecosystem is less critical a la’ Bak. Vice versa, in winter, higher (network) complexity is

associated to lower diversity, higher persistence/optimality (a la’ Bak, with a strange attractor

for interactions) but lower dynamical resilience a’ la Scheffer. This emphasizes the duality

between optimality and temporal resilience: an ecosystem can be highly optimized but that

corresponds to fragility due to the more locked configuration. Vice versa, high entropy net-

works recover faster from random and targeted perturbations [44]. The winter state corre-

sponds majorly to power-law distributed interactions of competitive species (with

exponentially distributed abundance) determining stabilizing portfolio (Pareto) effects. The

total directed interaction is the best suited indicator for characterizing species influence on

all others and largely related to species pair salience. Rising temperature fluctuations are

increasing ecosystem entropy (i.e., the number of ways species can get organized without

any change into the overall state determined by diversity; yet, a random network can be ran-

dom in many more ways than a scale-free one) and total entropy reduction (i.e. total interac-

tions) is decreasing, implying ecosystem’s lower predictability. In conclusion, summers are

more deterministic in terms of biodiversity but present much higher energy dissipation due

to larger entropy/disorganization of the species interaction network. Disorganization that is

increasing due to rise in temperature fluctuations and favoring competitive “black swan”

species (considering their extremes and not the distribution) with higher fitness to seasonal

temperature oscillations and less subjected to fishing pressure. Pareto links between these

species and cooperative “white swan” species are getting weaker, yet increasing the rarity of

these “weak” interactions (in magnitude rather than frequency).

• Extreme interactions are larger and more probable for competitive species, reflecting the

summer dynamics where competitive are predominant and less stable (as also reflected by

the dominant eigenvalue in Fig 6) on the contrary of what found by [21]. Competitive spe-

cies are less stable (Bak sensu) considering both the exponentially distributed abundance

and interactions—underpinning niche local determinants—as well the dominant eigenvalue

(higher), but are more resilient (Scheffer sensu) precisely because of their exponential persis-

tent dynamics (synchronized with temperature) reflected by their small-world interaction

network. Cooperative species are more stable (yet more self-organized Bak sensu, where crit-

ical interactions are necessary for their punctuated equilibrium [37]) considering both the

power-law abundance and interactions—underpinning neutral large-scale determinants—as
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well the dominant eigenvalue (lower than competitive), but less resilient (Scheffer sensu)

considering their distribution of abundance and interactions (less regular and persistent in

one direction of growth) reflected in their scale-free interaction network. Temperature

increase causes a disruption of Pareto links (species 5 and 7 interactions) via instability of

competitive species that determines a transition in the distribution (from power-law to expo-

nential) of cooperative species. This shift is also manifested by the temporal decrease of the

relative entropy (or Kullback-Leibler divergence) or increase of the dominant eigenvalue

divergence (Fig 6B) of interactions between competitive and cooperative species. Yet, aver-

age lower interactions (Figs 6 and 8A) and higher relative stability of cooperative species are

not good signs, because these changes are associated to organizational decays as corrobo-

rated by the loss of criticality. These results (Fig 8) show how stability or persistence (deter-

mined by the self-organized optimality over long periods due to the likely pressure of other

factors) and resilience (especially of seasonal factors such as temperature) are two different

things that do not necessarily overlap. The duality between abundance and interactions

exists when both are considered for different temperature groups, e.g. power-law

abundance fluctuations in summer are associated to exponentially distributed interactions.

Similarity or coherence between abundance and interactions exist when considering them

in their whole spectrum, e.g. competitive species have an exponential distribution of abun-

dance that is associated to exponential small-world interactions. Duality appears when con-

sidering extreme dynamics while congruence arises when considering the whole collective

dynamics.

As a final chiosa, we emphasize how different ecosystem indicators and/or patterns reveal

information of ecosystem change differently. Namely, a sudden collapse in interactions is

reflected by the cross-seasonal interaction phase-space while a gradual change is reflected by

abundance and α-diversity patterns (such as Zipf’s and Taylor’s laws informing about potential

community vulnerability and macrotrends). Macroecological indicators such as taxonomic

diversity can just reveal trends of ecosystems but are poorly capturing any early warning of

transitions. Additionally, it is important to distinguish ecosystem optimality and resilience

that are complementary of each other and not necessarily overlapping as well as not

coinciding with desired states. Cross-species abundance variability (via targeted eDNA and

metabarcoding monitoring), informing food-web changes, is proposed as the most meaningful

indicator to track ecosystem state and alterations. Causal systemic attribution of ecosystem

change to global and local environmental factors should be carried out by non-linear models

that consider factor and area interdependencies vs. one species/area/factor at a time

approaches. This will also allow to detect critical salient species (or keystone pairs) to protect

for multitrophic stability. Yet, critical interactions should guide the formulation of Multispe-

cies Conservation Values (such as the IUCN ecosystem index [84]) and quantitative fishery

policy aimed to protect marine ecosystems and improve community and species resilience to

ocean warming.

Supporting information

S1 Table. Maizuru fish community species information. Species ID considering the Maizuru

dataset (raw data available at https://www.dropbox.com/s/q0z9hiaw9t752hx/Maizuru_

dominant_sp_var.xlsx?dl=0), scientific and common name, categorization in terms of fish

stock, location endemicity (native/invasive), and reported IUCN conservation status (up to

December 2020). Status is provided in three categories: Not Evaluated (NE), Near Threatened

(NT), Least Concern (LC). Source: http://fishbase.sinica.edu.tw/. All models, scripts for
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visualizations, data and results are at https://github.com/HokudaiNexusLab/FishCommunity.

(PDF)

S2 Table. Fish species total outgoing and incoming species interactions and mean/standard

deviation of abundance.

(PDF)

S3 Table. Salience of top-5 species pairs for five temperature ranges and the whole period.

(PDF)

S1 Fig. Epdf of species abundance. Epdf of species abundance and power-law fitting.

(PDF)

S2 Fig. Epdf of species abundance for competitive and cooperative species. Both are power-

law with infinite mean and variance (critical regime) due to �� 2, but competitive species

have a finite-size exponential decay (in the tail of the distribution) and a narrower range of

criticality. This implies a more exponential set of interactions (Fig 8). Vice versa cooperative

species are closer to a supercritical regime (less “heavy tail”) with larger extreme abundance

and higher evenness resulting in power-law interactions. This emphasizes the duality between

abundance and interactions.

(PDF)

S3 Fig. Continuous probability distribution function of species abundance. The pdf of

mean temperature across the whole period is shown as inset in the pdf of species 1.

(PDF)

S4 Fig. Species abundance and mean temperature over time. Abundance is show in blue

while temperate in red (equal for all species). Green, yellow, an red dots are informing about

increasing, stationary, and decreasing abundance with increasing temperature considering the

whole period. Note that all cooperative species (species excluding 4–9), except for species 1

(i.e. A. Aurita), are decreasing in abundance over time, that underlines their lower fitness with

temperature and yet the higher impacts due to the temperature variability in conjunction with

other unexplored factors.

(PDF)

S5 Fig. Relationships between species abundance and mean temperature. Species abun-

dance on log scale vs. mean temperature is linearly fitted a first degree polynomial model (red

line). Yet, abundance is changing superlinearly with temperature causing nontrivial changes in

species abundance.

(PDF)

S6 Fig. Species interaction inference model intercomparison. A: causal interaction inference

CCM model developed by [63]. B: linear association between species computed as Pearson

correlation coefficient. TE-based causal interaction inference using Kernel and Gaussian esti-

mators (C and D, respectively) in JIDT developed by [62].

(PDF)

S7 Fig. OIF-inferred interaction networks of top 20% greatest TEs. The size of nodes is pro-

portional to the Shannon Entropy of the species; the color of node is proportional to the total

outgoing transfer entropies (OTE) (the higher OTE, the warmer the node’s color.); the width

and color of the link between species are proportional to the TE between species pairs (the

higher TE, the warmer/wider the link’s color/width).

(PDF)
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S8 Fig. Pdfs of nodal degree of OIF networks for the top 20% (Pareto) TE interactions. A:

Pdf of the structural degree, B: pdf of the in-degree, C: pdf of the out-degree, of species in OIF

networks for the five TR groups.

(PDF)

S9 Fig. Pdf of OTE and OTE vs. species abundance. A: Pdf of OTE of all species for five TR

groups. B: allometric scaling of OTE as a function of mean species abundance. The latter is the

community Kleiber’s law relating directed information exchange and species abundance (pro-

portional to community metabolic rate/energy expenditure and biomass [35]). Each point

refer to a species that can occur in multiple TR groups.

(PDF)

S10 Fig. Top 5 species with the largest Shannon entropy and OTE. Left plots show top 5 spe-

cies with the highest Shannon entropy (i.e. uncertainty, or vice versa disorganized/relative

information content implying lower predictability) for the five temperature ranges. Right

plots show the top 5 most active species in terms of OTE (yet, affecting the community the

most) for five temperature ranges. Due to the definition of salience (Eq 2.10) these are also

largely coinciding with the species involved in the most salient pairs.

(PDF)

S11 Fig. Allometric scaling of TE against mean and standard deviation of species abun-

dance. A: community Kleiber’s law [35] at the species scale independent of temperature shows

a non-significant trend of total directed interactions as a function of mean abundance. Vice

versa, B shows how directed interactions are tendentially higher for rarer species whose fluctu-

ations and mean of abundance are small. This supports the duality between abundance and

interaction patterns and the fact that species popularity and species with extreme fluctuations

(especially if asynchronous from the collective like for species 2) are not determining with

Pareto interactions. In simple terms, species commonality does not increase inter-species

interactions with all others but rather likely intra-species interactions only.

(PDF)

S12 Fig. Time and temperature-dependent dynamical networks. The stability of the fish eco-

system is indicated by the dominant eigenvalues of the TE interaction matrix. The total inter-

actions are calculated as the sum of TE values in the TE matrix. Effective α-diversity is the

number of connected nodes (species) in dynamical networks derived from OIF-inferred TE

matrices; statistically insignificant TEs define non-connected species. Dashed red lines empha-

sized the highest temperature/summer periods. A: Real part of the dominant eigenvalue from

temporally dynamical TE matrices (blue line) and adjacency matrices (red line); B: Total inter-

actions of temporally dynamical TE interaction matrices; C: Effective α-diversity of temporally

dynamical TE interaction matrices without threshold (certain species were taxonomically non

reported at certain times); D: Effective α-diversity of temporally dynamical TE interaction

matrices for top 20% TEs; E: Real part of the dominant eigenvalue of temperature-dependent

TE and adjacency matrices (blue and red line, respectively); F: Total interactions of tempera-

ture-dependent TE interactions; G: Effective α-diversity of temperature-dependent TE interac-

tions without threshold; H: Effective α-diversity of temperature-dependent TE interactions for

top 20% TEs.

(PDF)

S13 Fig. Temporal dominant eigenvalue and functional interaction network degree for

temperature groups. The real part of the dominant eigenvalue of time-varying interaction

matrices is calculated for different temperature groups. Species abundance values within
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each temperature groups are used independently to calculate the dominant eigenvalue. The

lowest TR has the shortest time series due to the limited duration of winters in the Maizuru

Bay.

(PDF)

S14 Fig. Continuous probability distribution functions of OTE for all species. Interactions

are inferred via the OIF model of [28] considering the whole time series.

(PDF)

S15 Fig. Least Concern Engraulis japonicus (Japanese anchovy) native range. Native species

with cooperative behavior characterized by low directed interactions (OTE), salience (for

encompassing connections), and asynchronized decreasing abundance for growing tempera-

ture. Time series are persistent, irreversible over time on average, and with low entropy. Fish-

ing peaks (in winter) are asynchronized with temperature fluctuations but synchronized with

abundance; thus, temperature is likely a second-order determinant of abundance. Abundance

over time and habitat suitability (map) is power-law distributed. Source: AquaMaps; Reviewed

Native Distribution Map for Engraulis japonicus (Japanese anchovy); Retrieved June 01, 2021

from http://www.aquamaps.org/preMap.php?cache=1&SpecID=Fis-29947 (material licensed

under a Creative Commons Attribution-NonCommercial 3.0 Unported License).

(PDF)

S16 Fig. Near Threatened Trachurus japonicus (Horse mackerel) native range. Native spe-

cies with competitive behavior characterized by high directed interactions (OTE), salience (for

encompassing connections), and synchronized increasing abundance for growing temperature

(implying lower ecological memory). Time series are antipersistent, reversible over time on

average, and with high entropy. Fishing peaks (in summer) are synchronized with temperature

fluctuations and abundance; thus, abundance fluctuations, driven by fishing and temperature,

overlap and temperature is likely a first-order determinant. Abundance over time and habitat

suitability (map) is more exponentially distributed with smaller autocorrelation than coopera-

tive species. Higher connections and power-law like interactions define this species as a key-
stone species able to affect and predict ecosystem changes. Source: AquaMaps; Reviewed

Native Distribution Map for Trachurus japonicus (Horse mackerel); Retrieved June 01, 2021

from https://www.aquamaps.org/receive.php?type_of_map=regular (material licensed under a

Creative Commons Attribution-NonCommercial 3.0 Unported License).

(PDF)

S17 Fig. Least Concern Halichoeres tenuispinnis (Chinese wrasse). Invasive species, origi-

nally from SE China, with transitory (dynamically competitive) behavior characterized by

intermediate directed interactions (OTE), salience (for encompassing connections) and mildly

synchronized increasing abundance for growing temperature. Abundance over time and habi-

tat suitability (map) is exponentially distributed with fat-tail and bimodal autocorrelation

emphasizing the transitory dynamics. Source: AquaMaps; Reviewed Native Distribution Map

forHalichoeres tenuispinnis (Chinese wrasse); Retrieved June 01, 2021 from https://www.

aquamaps.org/receive.php?type_of_map=regular (material licensed under a Creative Com-

mons Attribution-NonCommercial 3.0 Unported License).

(PDF)

S1 File.

(PDF)
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