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Abstract: Swirling has a significant effect on the main characteristics of flow and can lead to its
fundamental restructuring. On the flow axis, a stagnation point with zero velocity is possible, behind
which a return flow zone is formed. The apparent instability leads to the formation of secondary
vortex motions and can also be the cause of vortex breakdown. In the paper, a swirling flow with a
velocity profile of the Batchelor vortex type has been studied on the basis of the linear hydrodynamic
stability theory. An effective numerical method for solving the spectral problem has been developed.
This method includes the asymptotic solutions at artificial and irregular singular points. The stability
of flows was considered for the values of the Reynolds number in the range 10 ≤ Re ≤ 5× 106. The
calculations were carried out for the value of the azimuthal wavenumber parameter n = −1. As a
result of the analysis of the solutions, the existence of up to eight simultaneously occurring unstable
modes has been shown. The paper presents a classification of the detected modes. The critical
parameters are calculated for each mode. For fixed values of the Reynolds numbers 60 ≤ Re ≤ 5000,
the curves of neutral stability are plotted. Branching points of unstable modes are found. The
maximum growth rates for each mode are determined. A new viscous instability mode is found.
The performed calculations reveal the instability of the Batchelor vortex at large values of the swirl
parameter for long-wave disturbances.

Keywords: swirling flow; hydrodynamic stability; spectral problem; neutral curves; singular points

1. Introduction

Swirling flows of liquid and gas are often found in nature (tornadoes, funnels). They
are widely used in various technical applications. Current potential areas of application
for swirling flows includes the following [1,2]: the creation of efficient facilities for the
combustion of pulverized fuel for modern thermal power plants; optimization of the
operation of gas turbine engines through the use of swirling flow in combustion chambers;
the development and design of cyclone-type devices for cleaning gas from dust, separating
particles, separating liquid mixtures, for example, for cleaning manufactured petroleum, as
well as vortex nozzles for liquid spraying; and the usage of the Ranque–Hilsch effect in
vortex tubes for the separation of flows by temperature.

In hydraulic engineering, swirling flows are used for the development of suction pipes
for hydraulic turbines, vortex spillways, counter-vortex energy absorbers, counter-vortex
aerators for the cleaning of natural and artificial reservoirs, settling ponds and storage
tanks in the biological and chemical industries.

Studies of the hydrodynamic stability of swirling flows are very important. The loss
of flow stability often leads to disruption of the designated mode of operation, through
increased vibration effects and, ultimately, damage.

There are several general criteria for evaluating the stability of swirling flows. For
a flow of the free vortex type, they were formulated in [3,4]. These criteria are sufficient.
However, they do not accurately define the parameters of flow stability.

The main tool for investigating the hydrodynamic stability of vortex flows is numerical
simulation based on the perturbation method. In recent years, much attention has been
paid to the study of the Batchelor vortex (often called Q-vortex) [5]. First, the stability
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of Batchelor’s trailing vortex model with respect to non-axisymmetric perturbations of
the form exp[i(αz + nϕ− αct)] for the inviscid flow was studied numerically by Lessen
et al. [6]. The authors paid particular attention to disturbances with n ≤ −1, since they
proved to be more unstable than disturbances with positive n.

The authors went on to numerically investigate the effect of viscosity on the stability
of a free vortex [7]. The smallest critical Reynolds number corresponded to disturbances
with n = −1. Two viscous modes of Q-vortex instability for n = 0 and n = 1 were found in
the works [8,9]. The maximal growth rate of viscous modes decreases monotonically with
increasing Reynolds number Re→ ∞ .

In the inviscid formulation, the transition from an absolute instability to a convective
one for the Batchelor Q-vortex, was studied by Olendraru et al. [10]. They observed absolute
instability modes n = −1,−2,−3 in jet flows. For wake-type flows, absolute instability
was found only for the n = −1 mode. The works [11–13] provide a generalization of these
studies with allowance for the compressibility of the flow.

Article [14] presents similar studies for the Rankine vortex in the inviscid formulation,
and paper [15] shows it for shear swirling flows.

A selective analysis of the absolute instability for a Q-vortex with allowance for vis-
cosity was conducted by the method of direct numerical simulation in [16]. Systematic and
detailed studies in a wide range of Reynolds numbers were performed by Olendraru and
Sellier [17]. The investigation of the absolute and convective instability in the compressible
boundary layer on a rotating disk are presented by Turkyilmazoglu et al. [18–20].

The results of experiments on the stability of swirling flows and the structure of the
axial recirculation zone during vortex breakdown are presented in the works [21–25].

Oberleithner et al. [26] considered the issues of global instability which follow a vortex
breakdown. The relation between the vortex breakdown phenomenon and the stability of
the swirling flow is shown in [27].

In regard to the problems of heat flow separation in Ranque–Hilsch tubes, flow stability
was studied in the work [28] and in article [29] for a stratified medium.

The analysis of scientific works shows great interest in the study of the stability of
swirling flows. The Batchelor vortex has a velocity distribution in which such flows are
significantly reduced. The matter of Batchelor vortex stability is therefore an important and
urgent problem. Currently, the effect of viscosity on stability characteristics has not been
studied in sufficient depth. There is no detailed topography of instability in the presence of
instability modes occurring simultaneously in the flow. The stability of a Q-vortex for large
swirl numbers has not been investigated sufficiently.

The subject of this work is the study of the stability of swirling flow using the Batchelor
vortex as an example. For this, an effective numerical method has been developed taking
into account the behavior of solutions at singular points. This method is used to solve a
multiparameter spectral problem.

The aim of this work is to study the interaction of unstable modes. The novelty of
the work consists of a detailed study of the spectrum of instability and calculation of the
critical parameters of the swirling flow.

2. Hydrodynamic Flow Model and Numerical Method

Studies of the hydrodynamic stability of swirling flows of a viscous incompressible
fluid are based on the Navier–Stokes equations. In a cylindrical coordinate system (r,ϕ, z),
with respect to the velocity-pressure variables, it can be represented as follows that the flow
is axisymmetric [30,31]:
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Here, Vz, Vr, Vϕ are axial, radial and azimuthal velocity components, respectively, p is
pressure, and Re is the Reynolds number.

The profiles of the axial Vz and azimuthal Vr components of the velocity of free swirling
flows and internal flows in channels (with the exception of the near-wall region) can be
rather well described through the following expressions [32,33]:

Vz = W1 + W2 exp(−br2), Vϕ =
K
r
[1−W2 exp(−br2)], (5)

where W1, W2, K and b are constants defined empirically, and r is the dimensionless distance
from the axis. Using elementary transformations, the profiles (5) can be reduced to the
following form:

U = exp(−r2), W =
q
r
(1− exp(−r2)) (6)

where q is the swirl number (the inverse value to the Rossby number). Profiles (6) are
deduced from Batchelor’s self-similar solution of the Navier–Stokes equations for a viscous
swirling wake under the assumption that the flow is plane-parallel [5]. Distribution (6) for
q = 1 is shown in Figure 1.
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Here, ϕVVV rz ,,  are axial, radial and azimuthal velocity components, respectively, 
p  is pressure, and Re  is the Reynolds number. 
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Figure 1. Batchelor’s profiles of axial U  and azimuthal W  velocities (curves 1, 2). 

Let us consider small flow disturbances (7) as solutions of the linearized Na-
vier–Stokes equations of the periodic traveling wave type (normal modes): 
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Figure 1. Batchelor’s profiles of axial U and azimuthal W velocities (curves 1, 2).

Let us consider small flow disturbances (7) as solutions of the linearized Navier–Stokes
equations of the periodic traveling wave type (normal modes):{

V′z , V′r , V′ϕ, p′
}
= {F, iS, H, P} exp[i(αz + nϕ− αct)] (7)

in which α is the wave number; n is the disturbance mode (n = 0;±1;±2; . . .) and where
positive values of n correspond to the propagation of the wave in the direction of swirl and
negative ones in the opposite direction; c is the wave propagation speed; i is the imaginary
unit; and F(r), S(r), H(r) and P(r) are the complex amplitude functions.

After the linearization of Equations (1)–(4) and the substitution of expressions (6)
and (7) for complex-valued amplitude functions, we obtain the following system of
equations [7]:

r2γF + αr2P + r2SU′ =
1

iRe
[r (r F′)′ − (α2r2 + n2)F] (8)

r2γS + 2rHW − r2P′ =
1

iRe
[r(rS′)′ − (α2r2 + n2 + 1)S− 2nH] (9)
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r2γH + r2S
(

W ′ +
W
r

)
+ rnP =

1
iRe

[r(rH′)− (α2r2 + n2 + 1)H − 2nS] (10)

αrF + (rS)′ + nH = 0 (11)

where γ = α(U − c) + nW/r, prime designates the derivative with respect to r.
The boundary conditions for Equations (8)–(11) are derived by Batchelor & Gill [34]:

The set of conditions is presented in Table 1.

Table 1. The boundary conditions.

n Amplitude Functions

r = 0
n = 0 S = H = 0, F, P are bounded

n = ±1 F = P = 0
|n| > 1 S = H = F = P = 0

r = ∞
∀n S = H = F = P = 0

It is possible to consider the disturbances (8) as periodic in respect of z, the amplitude
of which changes with time. Then, α is a real number (α = 2π/λ, where λ is the disturbance
wave length), and c = cr + ici is an imaginary one; cr is the speed of propagation of the
disturbance in the direction z (phase velocity), ci is the rate of increase of the disturbance
in time. The amplitudes of disturbance (8) decay for ci < 0 (the flow is stable), and they
increase over time (the flow is unstable) for ci > 0. Thus, ci must be defined as a function
of α.

In another case, we investigate the behavior of periodic perturbations (8) with an
amplitude that changes in the z direction; however, this does not depend on time. It
follows that the oscillation frequencyω = αrc should be considered as real (c is the phase
velocity) and the value α = αr + iαi as complex; αi determines the spatial growth rate of
the perturbation. The disturbance dies out (the flow is stable) for αi > 0, and it grows for
αi < 0 (the flow is unstable). In this case, it is important to determine the relation between
αi andω.

The method for eigenvalues calculation includes several stages. First, we obtain
asymptotic solutions near the singular points r = 0 and r = ∞ using the Frobenius method.
This method for solving the stability problem was first introduced by Lessen & Paillet [9].
The same approach is used in this work. We transfer the boundary conditions from the
points r = 0 and r = ∞ and to the points r = ra and r = rd, respectively. The solution at
these points is defined as a power series. A detailed description of the applied method
is presented in [35]. Then, we perform numerical integration from ra and rd inside the
computational domain to the point rc (ra < rc < rd), at which the solutions are merged in
accordance with the condition

3

∑
j=1

ajyi,j =
3

∑
j=1

aj+3yi,j+3 (i = 1, 2, . . . , 6) (12)

where yi,j are solutions obtained by integration from rd to rc, yi,j+3 are solutions obtained by
integration from ra to rc and aj is an arbitrary constant. The vanishing of the determinant
for the linear system (12) is achieved by selecting cr, ci (or αr, αi) according to Newton’s
method. To calculate the eigenvalues, the parameter step was determined automatically by
the number of iterations kit in Newton’s method for solving the characteristic equation. The
value kit was in the interval 3 ≤ kit ≤ 7. In order to accelerate convergence, the next initial
value of the eigenvalue was determined by linear extrapolation using Newton’s method.

We write the system of Equations (8)–(11) in the form of six differential equations
of the first order z′ = f (r, z) for numerical integration. The solution of this system was
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determined on the basis of the Kutta–Merson method with an automatic selection of the
integration step.

When solving problems of hydrodynamic stability, the fundamental difficulty in the
implementation of this method is the rapid (parasitic) growth of one or several solutions
during integration. As a result of this growth the linear independence of solutions is lost.
In order to avoid this, we applied an orthogonalization procedure for each calculated point.

The values ra = 0.01 and rc = 2 were used in the calculations; the rd value was selected
for each set of parameters individually, based on the specified accuracy of determining the
eigenvalue and varied from rd = 2.7 to rd = 150. The widest region of integration was
required for long-wavelength perturbations at large values of the Reynolds numbers and
the swirl parameter.

3. Results and Discussion

Let us consider the boundary value problem (8)–(11), in which there are three defining
parameters: Re, q and α. We investigate the stability of the flow (6) for the wavenumber
value n = −1, since, according to [7,8], this type of disturbance is the most dangerous. The
eigenvalue c = cr + ici of the considered spectral problem for ci > 0 determines the mode
of temporal instability. This study shows the existence of several unstable modes that can
be simultaneously observed in the flow. Each numbered mode is characterized by a set of
parameters that determine the critical values of the Reynolds number Rem

c , swirl qm
c , and

wavenumber αm
c at which instability appears. This set corresponds to an eigenvalue crm,

cim ≈ 0, from which it is possible to construct numerically a parametric continuation with
respect to Re, q, or α. The most important is the continuation by the use of the Reynolds
number. Table 2 shows the calculated values of Rem

c , αm
c and qm

c at critical points for eight
detected instability modes.

Table 2. Critical values of unstable modes.

Mode Rem
c αm

c qm
c

1 13.905 0.415 0.337
2 43.934 0.5012 0.6603
3 165.56 0.5962 0.4576
4 428.086 0.5062 0.6095
5 887.79 0.5547 0.6403
7 1579.73 0.6054 0.700
8 3526.77 0.5679 0.6131

First, mode 1 was discovered by Lessen and Paillet [7]. It has the smallest critical
Reynolds number, the largest growth rate and causes the development of convective
instability in the flow. In addition, this is the only mode that is unstable in both non-
swirling and swirling flows. The critical parameters presented for it in Table 1 completely
correspond to the previously obtained values in the papers [7,9].

The modes investigated are of a different nature. Modes 1 and 3–8 are inviscid. The max-
imal growth rate in this case tends to a certain limiting positive value ωi = αci → const 6= 0
at Re→ ∞ . Table 3 presents the maximal growth rate ω∗i for inviscid modes 1 and 3–6,
the critical values of the wavenumber α∗ and swirl q∗ which correspond to them and were
calculated for Re = 105. The obtained eigenvalues can be considered as asymptotic for
Re→ ∞ , since they change insignificantly with the increases in Re. Comparison with the
corresponding values of the inviscid theory [9] confirms the reliability and high accuracy of
the results obtained in the work.
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Table 3. Comparison with the results of the inviscid theory.

Re = 105 Re = ∞ (Reference [9])

Mode q∗ α∗ ω∗i q∗ α∗ ω∗i

1 0.4581 0.8117 0.2424 0.46 0.81 0.2424
3 0.7534 0.5518 0.1112 0.75 0.55 0.1116
4 0.7972 0.5402 0.0797 0.8 0.54 0.08046
5 0.8091 0.5263 0.0609 0.82 0.53 0.06222
6 0.8098 0.5146 0.0483 0.83 0.53 0.05030

Comparison of the critical Reynolds number values for inviscid modes 1 and 3–8
(Table 2) and the corresponding values of the maximal growth rate (Table 3) shows that the
smallest critical Reynolds number corresponds to the more unstable mode.

Mode 2 is viscous. For it, ωi → 0 when Re→ ∞ . It was first discovered in the
work [36] and studied in more detail in [37]. Two other viscous unstable modes for flow
(7) were found in [8,9]. One of them was observed for axisymmetric disturbances (n = 0),
the other (more unstable) for non-axisymmetric disturbances with a positive azimuthal
wavenumber (n = 1).

Figure 2 shows the spectral characteristics for mode 2. The phase velocities of distur-
bances with wavenumbers corresponding to the maximal growth rate are negative, i.e.,
unstable disturbances in this case propagate upstream. Table 4 presents comparison of the
spectral characteristics for mode 2 with the results of [17]. The viscous mode 2 has growth
rates that are higher by an order of magnitude than the previously obtained mode at n = 1.
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ber for Re = 100, q = 0.3; 0.4; 0.5; 0.6 (curves 1–4); the growth rate has a peak-like distribution.
(b) Dependence of the growth rate from the swirl for α = 0.3, Re = 300, 1000, 5000, 10,000 (curves 1–4).

Table 4. Comparison of viscous modes.

n = −1 (Mode 2) n = 1 (Reference [17])

Re 100 1000 5000 100 1000
ω∗i × 102 8.8 2.83 1.28 0.96 0.166

q∗ 0.7 0.7 0.7 0.475 0.24
α∗ 0.824 0.868 0.848 0.418 0.21

Let us turn to the study of eigenvalue solutions for the problem under consideration
in the plane of free parameters (α, q) for Re = const. In this regard, we note one important
property of eigenvalue solutions. There are points in the space Re, q and α at which the
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eigenvalue problem has a multiple root c(k) = c(m). This means that the solutions for the
two modes coincide at such a point, and the branching of these modes occurs in close
vicinity. In this case, different pairs (k, m) from the set of unstable modes existing at the
selected value Re can branch.

The regions of stability and instability of the flow (6) to disturbances (7) are separated
in the plane (α, q) of the neutral curve by the line on which the conditionωi = 0 is satisfied.
A corresponding neutral curve can be plotted for each mode of instability. The neutral
curve of mode m is described by a separate closed contour only for values Re > Rem

c , which
are close to the critical one for this mode, for example, modes 1 and 2 for Re = 60 (Figure 3),
mode 4 for Re = 450 (Figure 4c) and mode 5 for Re = 1000 (Figure 4d). When we move
along Re from the critical point, its bifurcations appear with newly emerging modes. In
this case, the shape of the instability region changes qualitatively. An abrupt change in the
boundaries of the instability regions occurs, and the neutral curves are combined into a
single curve of complex shape with points of self-intersection.

Let us consider the branching process in more detail using the first two modes as
an example. When the Reynolds number increases, the regions of instability of the two
modes intersect, and the neutral curves are combined into one curve. Part of this curve
corresponds to the first mode, while the other corresponds to the second. Figure 4a shows
the typical instability region for Re = 140 with branch point qb = 0.689. Inside this region,
the flow instability (8) can be determined by either one or two modes simultaneously,
depending on the values (α, q).

When the parameter q passes through qb, two branching modes exchange parts of the
dependences ωr(α), ωi(α) and, as a consequence, by the values αmax, αmin characterizing
the boundaries of the regions of instability. This mode transformation is clearly seen from
Figure 5 plotted for modes 1 and 2. The values of the αwavenumber, at whichωi = 0 in
the upper part of the neutral curve, are 1.323 for modes 1 and 2; 0.67 for q = 0.68 (Figure 5a)
and 0.653; and 1.305 for q = 0.69 (Figure 5b). At the branch point qb = 0.689 (the branch
points are indicated by the dotted line in Figure 4), the original eigenvalue problem has
a multiple root, and the phase velocities and growth rates of the two modes coincide:
ω1

r = ω2
r ≈ 0.027,ω1

i = ω2
i ≈ 0.055 for α ≈ 0.602.
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Figure 3. The lines depict the constant growth rate of the valuesωi = αci = const in plane (α, q) at
Re = 60: (a) mode 1; (b) mode 2. The outer contour corresponds to the neutral curve on whichωi = 0.
The flows are unstable inside it, and one is stable outside it.
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Figure 4. Neutral curves: Re = 140; 300; 450; 1000 (a–d); modes 1–6. The dashed lines correspond to
the q values at the branch points.
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Figure 5. The growth rate ωi (solid lines) and oscillation frequency ωr (dashed lines) vs. the
wavenumber for modes 1 and 2 (curves 1–2) at Re = 140: (a) q = 0.68; (b) q = 0.69. In the particular
case, when Re = 115 at the branch point q = 0.65 of modes 1 and 2, perturbations (8) generate
standing waves: ω1

r = ω2
r = 0,ω1

i = ω2
i = 0.061 for α = 0.527.
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Mode branching occurs in a similar way in all other cases, and new branch points
appear with increasing Re with new unstable eigen solutions of the spectral problem under
consideration.

Figure 4d shows the neutral curves for six unstable modes for Re = 1000. The
instability region of mode 5 has a separate contour. Neutral curves for other modes are
depicted as one curve with branch points qb = 0.225, 0.495, 0.675 and 0.76 between modes 4
and 6, 2 and 4, 2 and 3 and 1 and 2 respectively. Parts of the curve can be seen to correspond
to modes 1, 2, 4, 6, 4, 2, 3, 2, 1 if one moves around it in the positive direction from the point
q = 0, α = 1.15. Note that mode 6 is formed from a part of mode 2 for 900 < Re < 1000,
and its neutral curve does not have a separate closed contour. This is distinct from all other
investigated modes.

The neutral curves have the most composite structure, including eight branch points
at Re = 5000 (Figure 6). The neutral curves of the first five modes are depicted by one
intersecting curve with branch points qb = 0.37, 0.73, 0.745, 0.54 and 0.68 between modes
1 and 3, 3 and 1, 1 and 2, 2 and 5 and 2 and 4 respectively. When passing along it in the
positive direction from the point q = 0, α = 1.18, the sections of the curve correspond to
modes 1, 3, 1, 3, 1, 2, 5, 2, 4, 2, 3, 1. Neutral curves of modes 6–8 are depicted by two closed
curves. The first one contains modes 6 and 7, the second modes 6, 7 and 8 with branch
points qb = 0.36, 0.43, 0.71 and 0.78 between modes 8 and 7, 6 and 7, 7 and 6 and 7 and 8.
Table 5 presents the set of branch points of modes 1–8 for all the calculations performed.

Mathematics 2022, 10, x 10 of 14 
 

intersecting curve with branch points 37.0=bq , 73.0 , 745.0 , 54.0  and 68.0  between 
modes 1 and 3, 3 and 1, 1 and 2, 2 and 5 and 2 and 4 respectively. When passing along it 
in the positive direction from the point 0=q , 18.1=α , the sections of the curve corre-
spond to modes 1, 3, 1, 3, 1, 2, 5, 2, 4, 2, 3, 1. Neutral curves of modes 6–8 are depicted by 
two closed curves. The first one contains modes 6 and 7, the second modes 6, 7 and 8 with 
branch points 36.0=bq , 43.0 , 71.0  and 78.0  between modes 8 and 7, 6 and 7, 7 and 6 
and 7 and 8. Table 5 presents the set of branch points of modes 1–8 for all the calculations 
performed. 

Table 5. Branching points of modes. 

Re ),( mkqb  
140 0.689 (1,2) — — — — 
300 0.74 (1,2) 0.52 (3,2) — — — 
450 0.755 (1,2) 0.595 (2,3) — — — 
1000 0.76 (1,2) 0.675 (2,3) 0.495 (2,4) 0.225 (4,6) — 
5000 0.78 (7,8) 0.745 (1,2) 0.73 (3,1) 0.71 (7,6) — 

 0.68 (2,4) 0.54 (2,5) 0.43 (6,7) 0.37 (1,3) 0.36 (8,7) 

 

α

q1 2

1

2

3

1

1
3

3
2

6
7

2 3

7
8

8
6

5

2

4

76
8

6

3

1
4

5
6

7

1

0    
Figure 6. Neutral curves for Re = 5000; modes 1–8 (curves 1–8). The dashed lines correspond to the 
q values at the branch points. Mode 3 is unstable at a much larger swirl of the flow compared to the 
known value 5.1=q  for mode 1. 

The present calculations have established that modes 4–6 are also unstable at 
5.1>q . Figure 7 shows the dependences maxq  on the Reynolds number for modes 1 to 7. 

The behavior of modes 4–6 (curves 4–6) with increasing Re is the same as for the previ-
ously studied mode 3 (curve 3), and the highest swirl values are =q  3.06, 1.654 and 
1.575 for 5108Re ⋅= , 5105⋅ and 5101⋅  and =α  0.3, 0.6 and 0.6 for modes 4–6, respec-
tively. The dependences for inviscid modes 7 and 8 have a similar characteristic of 

Figure 6. Neutral curves for Re = 5000; modes 1–8 (curves 1–8). The dashed lines correspond to the q
values at the branch points. Mode 3 is unstable at a much larger swirl of the flow compared to the
known value q = 1.5 for mode 1.



Mathematics 2022, 10, 99 10 of 13

Table 5. Branching points of modes.

Re qb(k,m)

140 0.689 (1,2) - - - -
300 0.74 (1,2) 0.52 (3,2) - - -
450 0.755 (1,2) 0.595 (2,3) - - -

1000 0.76 (1,2) 0.675 (2,3) 0.495 (2,4) 0.225 (4,6) -
5000 0.78 (7,8) 0.745 (1,2) 0.73 (3,1) 0.71 (7,6) -

0.68 (2,4) 0.54 (2,5) 0.43 (6,7) 0.37 (1,3) 0.36 (8,7)

The present calculations have established that modes 4–6 are also unstable at q > 1.5.
Figure 7 shows the dependences qmax on the Reynolds number for modes 1 to 7. The
behavior of modes 4–6 (curves 4–6) with increasing Re is the same as for the previously
studied mode 3 (curve 3), and the highest swirl values are q = 3.06, 1.654 and 1.575 for
Re = 8× 105, 5× 105 and 1× 105 and α = 0.3, 0.6 and 0.6 for modes 4–6, respectively. The
dependences for inviscid modes 7 and 8 have a similar characteristic of change, however,
these modes remain stable at q > 1.5. The maximum calculated values, at which modes 7
and 8 are unstable, are q = 1.409 and 1.366 for Re = 5× 105 and α = 0.7.
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Figure 7. The maximum values of the swirl q, at which the flow is unstable: modes 1–7 at α = 0.4;
0.6; 0.2; 0.3; 0.6; 0.7; 0.8 (curves 1–7). The swirl value, at which the instability is observed for mode 3,
reaches q = 4.882 at Re = 5.5× 106.

For moderate Reynolds numbers Re < 2000, the value of the maximum swirl, at which
mode 1 (curve 1) is unstable, increases. It subsequently decreases with increases in Re.
For Re = 105, mode 1 becomes stable for q > 1.5, corresponding to the results previously
obtained using the inviscid theory [7]. For the sole viscous mode 2, the maximum swirl
value, at which the flow instability remains, practically unchanged with increasing Re, is
q = 0.9 for α = 0.6.

Now, let us consider perturbations (7), which are periodic in time. In this case, the
oscillation frequency ω = αrc should be considered as real, and the wave number α as
complex. When αi > 0 the disturbances dampen and when αi < 0, they grow. Negative
values correspond to the propagation of disturbances upstream.

Analysis of the spatial flow instability (6) shows that the detected modes remain
unstable in space. Thus, all of the basic conclusions obtained in the study of temporal
instability are preserved: The most unstable mode is inviscid mode 1, there is the only one
viscous mode 2, neutral curves also contain branch points, and flow instability persists at
large values of the swirl parameter q. For example, the maximum growth rates −α∗i for
mode 3 are 0.00608, 0.01298 and 0.01581 for q = 2.4; at the same time,ω = −2.077, −2.091
and −2.102 for Re = 5× 103, 104 and 2× 104, respectively.
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Figure 8 shows a typical picture of the growth rate change due to the oscillation
frequency for the first four modes. For a given oscillation frequency at Re ≈ 3450, the
source eigenvalue problem has a multiple root, and the values of αi, αr for modes 2 and
3 coincide. When the Reynolds number increases, an explosive change appears in the
boundaries of the instability region for each of these modes. For example, the values ω
on the upper part of the neutral curve (αi = 0) in the (ω, Re) plane are ω = 0.451, 0.454
and 0.133 at q = 0.7 for mode 2. The analogous values for mode 3 areω = 0.119, 0.126 and
0.457 for Re = 3300, 3400 and 3500, respectively. The branching of modes 1 and 2 and 2
and 4 occurs in the same way for Re ≈ 7000 andω ≈ 0.06.
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For Re = 104, mode 1 is the most unstable. The non-viscous modes 3 and 4 are weaker.
The growth rate of the viscous mode has a peak-like distribution. The triangular symbols in
Figure 8c show the dependence of the growth rate on the frequency for mode 1 obtained on
the basis of the inviscid theory [10]. Here, numerical studies were limited by the existence
of only one unstable mode. Comparison of the results obtained confirms the reliability of
the calculations and explains the nature of growth rates distribution in inviscid modes with
two local maxima.

4. Conclusions

The stability problem of a swirling flow in the form of Batchelor’s trailing line vortex
with respect to non-axisymmetric disturbances has been considered. An efficient numerical
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method for studying the spectrum of eigenvalues has been presented. The calculation
results show the existence of up to eight simultaneously observed unstable modes.

The behavior of each mode separately and the properties of the full spectrum of
modes have been studied. The branching property of eigen solutions has been found and
investigated. The coordinates of the branch points have been calculated. This has permitted
construction of the curves of neutral stability at fixed values of the Reynolds numbers. It
has been shown that the branching of modes and the explosive change in the boundaries of
the regions of instability are associated with the existence of multiple roots in the source
eigenvalue problem.

The existence of a new viscous mode of instability has been shown. The growth rates
of this mode are an order of magnitude higher than the values of other previously known
viscous modes. This fact confirms the significant effect of viscosity on the stability of
swirling flows.

The phenomenon of vortex breakdown is associated with flow instability. The main
contribution to the destabilization of the flow is made by the first fundamental mode
of instability. Weaker modes can lead to secondary instability. Studies have shown that
in a highly swirling Batchelor vortex flow, it is these modes which remain unstable for
long-wave disturbances.
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Nomenclature

r,ϕ, z radial, azimuthal and axial coordinates, respectively
p pressure
V velocity
t time
Re Reynolds number
U, W Batchelor’s components of axial and azimuthal velocities, respectively
q swirl number
F, S, H, P complex amplitude functions
α complex axial wave number
n azimuthal wave number
c complex eigenvalue
ω complex frequency
λ disturbance wavelength
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