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Abstract 
An uncatalyzed and easily accessible synthetic approach for the preparation 
of 3-aroylindoles was investigated using nitrosoarenes and aromatic terminal 
ethynyl ketones. Indole derivatives were produced in good yields and excel-
lent regioselectivity. Functionalizations of the indole products were carried 
out affording highly valuable and versatile compounds. The indolization pro-
tocol was studied as a fundamental step for the preparation of pravadoline and 
1-butyl-3-(1-naphthoyl)indole (JWH-073), bioactive molecules showing an-
tinociceptic properties. 
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1. Introduction 

Conjugated alkynones are generally known as an extremely useful and flexible 
class of organic compounds [1] [2] [3] [4] that can be used in a multiplicity of 
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reactions giving a deep variety of derivatives [5] [6] [7]. Their role as Michael 
acceptors was investigated and recently reviewed by different research groups [8] 
[9] [10] [11]. Although the feasibility to build heterocycles using conjugated 
carbonyl derivatives is well-known, a particular class of heterocyclic compounds 
accessed via chalcones and alkynones can also show biological activity [12]-[17]. 
In the last decades, nitroso(hetero)arenes have emerged as valuable precursors 
for the synthesis of heterocyclic rings [18] [19] [20]. Indole, which was nicely 
referred to as “The Lord of the Rings” [21] [22] [23], and indole derivatives are 
among the most developed and studied heterocycles found in nature. Research 
groups from both academia and industry introduced innovative synthetic ap-
proaches to achieve indolization [24]-[31], which are documented in numerous 
reviews and books [32]-[37]. Indole compounds have always received deep con-
sideration for their relevant role in medicinal chemistry [38]-[43]. Particularly, 
3-aroylindole derivatives [44] [45] [46] have attracted great attention due to 
their potential bioactivity (Figure 1), which has consequently propelled the in-
troduction of novel synthetic routes in recent years [47] [48] [49] [50] [51]. 

2. Results and Discussion 
Synthesis of Indole Compounds by Cycloaddition of  
Nitrosoaromatics with Alkynones 

Our previous studies have led to the development of an innovative strategy for 
accessing the indole skeleton via cycloaddition of C-nitrosoaromatics with al-
kynes, starting from nitrosoarenes and conjugated aromatic alkynes [52] [53] 
[54] [55] [56]. By these method indoles, N-hydroxyindoles and N-alkoxyindoles 
are produced in moderate to good yields in a very atom-economical fashion. A 
major drawback of our procedure was the requirement of a stoichiometric excess 
of the alkyne coupling partner. However, when investigating ethynylpyrimidines 
for the synthesis of meridianins and related compounds [57], which are known 
as kinase inhibitors [58], an equimolar ratio between the nitrosoarene and the 
alkyne could be used. 
 

 
Figure 1. Synthetic and natural bioactive 3-(hetero)aroylindole compounds. 
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In our more recent work describing the synthesis of 3-aroylindoles with con-
jugated alkynones and nitrosoarenes, the optimal 1:1 stoichiometric ratio be-
tween the two coupling partners was also achieved [59] [60] [61]. Thus, the use 
of conjugated alkynones instead of simple aromatic alkynes has dramatically 
improved our indolization strategy. Alkynones can be easily prepared by oxida-
tion of the corresponding alkynols, which, in turn, are obtained from aromatic 
aldehydes and ethynylmagnesium bromide. C-Nitrosoaromatics are instead eas-
ily accessible via oxidation of the corresponding anilines with different oxidizing 
agents (Oxone® [62], Na2WO4-H2O2 [63], Mo(O)2(acac)-H2O2 [64], Selenium 
derivatives [65]). 

Herein, we report a more comprehensive investigation of the substrate scope 
with respect to both nitrosoarenes and (hetero)arylalkynones coupling partners 
for our recently disclosed strategy for accessing (N-hydroxy)-3-aroylindole deriva-
tives. Moreover, the synthethic versatility of some targeted compounds deriv-
ing from our indolization method was also demonstrated by their consequent func-
tionalisation, achieving valuable molecular diversity. 

In Table 1, novel combinations of nitrosoarenes and conjugated arylalkynones 
were investigated, affording N-hydroxy-3-aroylindole compounds and, in some cas-
es, simple 3-aroylindoles. Although the reason behind N–OH/N–H selectivity is still 
under investigation in our laboratories, while nitrosoarenes that bear highly elec-
tron-withdrawing (EWG) groups preferentially yield N-OH-3-aroylindoles (entries 
1-6, 13), nitrosoarenes with moderately EW substituents or EDGs afford ei-
ther mixtures of N–OH and N–H compounds (entries 8, 10, 12) or selectively 
3-aroylindoles (entries 7, 9, 11). To the best of our knowledge, this single-step 
procedure represents a synthetic shortcut to generate 3-aroylindoles via the si-
multaneous formation of new C–N and C–C bonds. 

Exploring different alkynone substrates 19a - k to broaden the scope of the 
reaction, we then used heteroarenes and other arenes with terminal alkynyl ke-
tone motifs and fragments. Indole derivatives were produced regioselectively 
and in moderate to good yields (Table 2). The structure of the indole products 
was determined by spectroscopic data. Recently, a X-ray characterization led us 
to determine the regioselectivity of the reaction and results were detected here 
by analogy [60]. The indole compounds were collected as the major products, 
together with the azoxyarene by-products that originate from the reductive dime-
rization of nitrosoarenes [66]. Most of the products of this substrate scope survey 
show promise to be further functionalized. Our future and next study will be to 
employ the annulation of nitrosoarenes with alkynones for the total synthesis of high 
valuable compounds, natural products, and interesting frameworks with potential 
bioactivity. Compounds that are formed by the reactions of alkynones with 
4-nitronitrosobenzene and other electron-poor C-nitrosoaromatics generally pre-
cipitated from the reaction mixture affording N-hydroxyindoles as major prod-
ucts [61]. Pictures and photos of used reactants and afforded products are re-
ported in Supplementary Materials. 
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Table 1. Nitrosoarene-alkynone cycloaddition reactions. 

 
Entrya ArN=O X ArC(O)C≡CH Y R Prod. Yield (%) 

1 1a 4-NO2 2a H OH 3 54b,c 

2 1a 4-NO2 2b 2-Br OH 4 52b,c 

3 1a 4-NO2 2c 2-I OH 5 37b,c 

4 1b 4-COOH 2a H OH 6 62c,d,e 

5 1b 4-COOH 2b 2-Br OH 7 50d,f 

6 1b 4-COOH 2d 3-NO2 OH 8 84c,d 

7 1c 4-CN 2a H H 9 41f 

8 1d 4-Br 2a H OH 10 15f 

 1d 4-Br 2a H H 11 35f 

9 1e 4-CF3 2a H H 12 33f 

10 1f 4-Cl 2a H OH 13 15f 

 1f 4-Cl 2a H H 14 36f 

11 1a 4-NO2 2e 2-NO2 H 15 48e,f 

12 1g 4-CH3 2a H OH 16 23f 

 1g 4-CH3 2a H H 17 15f 

13 1h 2-NO2 2a H OH 18 46f 

aAll the reactions, unless otherwise specified, were carried out using ArN=O (1 mmol) 
and ArC(=O)C≡CH (1 mmol) in 10 - 15 ml of toluene; bthis reaction was carried out even 
using a large excess of alkyne but no better yields were collected and only faster reaction 
times were registered; cproduct precipitated; dreaction carried out in dioxane; eproduct 
recrystallised; fproduct isolated by chromatography. 
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ported (see Supplementary Materials). 
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Table 2. Synthesis of different 3-aroylindoles and 3-heteroaroylindoles. 

 

Entrya ArN=O X 
Ar-C(O)C≡CH or 
Hetar-C(O)C≡CH 

Ar or Het R Prod. Yield (%) 
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can be extraordinarily versatile tools for many organic transformations and we 
tested some functional group interconversion reactions only in a preliminary 
and explorative study. Functionalization procedures were subsequently carried 
out using N-hydroxy-3-aroyl-5-nitroindoles 3 - 5 as starting materials as shown 
in Scheme 1. The methylation was carried out using potassium carbonate as 
base and dimethyl sulphate as alkylating agent. The products 39 - 41 were af-
forded quantitatively, 96% and 89% yields respectively (Scheme 1, (path (a)). 

As a model reaction to obtain an aromatic C–H functionalization, substrate 39 
was treated with Mn(OAc)3 and dimethyl malonate in acetic acid resulting in a 
6-membered ring formation [74], to give the benzo [b]-carbazole 42 in 67% yield 
(Scheme 1, path (b)). This last procedure is an oxidative free radical reaction. 
Functionalization at C2 on the indole ring was achieved by reaction of 3 with 
DCC (dicyclohexylcarbodiimide) and triethylamine in acetonitrile as solvent 
(Scheme 1, path (c)) [75] [76] [77]. The urea-like Compound 43 was efficiently 
prepared in quantitative yield. Some potentially selective reactions to reduce the 
N–OH group to N–H were explored: attempts were carried out on compound 
3 by using nitrosobenzene, azobenzene and Hantzsch ester (diethyl 1,4-dihydro- 
2,6-dimethyl-3,5-pyridinedicarboxylate) as reactants with the aim that one of 
these could play as reductant. However, no reduction of N–OH indoles to N–H 
indoles was observed. Nevertheless, some recent reports by Wojciechowski, Zhou 
and Liu and coworkers [78] [79] show that N-hydroxyindoles can be selectively 
and very efficiently reduced using phenacyl bromide and triethylamine at room 
temperature. Substrate 3 was thus converted to 3-benzoyl-5-nitroindole 44 in 75% 
yield (Scheme 1, path (d)). N-hydroxy-3-benzoyl-5-nitroindole 3 did react as a  
 

 
Scheme 1. Functionalization reactions of Compounds 3 - 5. 
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nucleophile with Michael acceptors like methyl propiolate 45 and 1-phenyl- 
prop-2-yn-1-one 2a by running the reaction in acetonitrile in the presence of 
DABCO (1,4-diazabicyclo[2.2.2]octane) as base. Products 46 and 47 were re-
spectively obtained in 85% and 80% yield (Scheme 2, path (e)). This kind of 
reactivity can enable the preparation of a diverse library of compounds by 
changing both the donor and the acceptor of the Michael-type addition. Another 
interesting reaction was carried out on Compound 46 by heating it at reflux in 
CH3CN and furnishing the indole Compound 48 as the major product in 41% 
yield through a rearrangement, as reported by Lobo and co-workers (Scheme 1, 
path(f)) [80]. 

Product 23 (Table 2, entry 4) was tested as a potential precursor to [2,3-b]- 
indolocarbazole. Indolocarbazoles are extremely relevant compounds, since most 
of them show biological activity and are deeply investigated due to their poten-
tial as anti-cancer drugs [81]. Starting from Compound 23, produced by cycloaddi-
tion between 1a and 19d, a protective procedure by reaction with K2CO3/ Me2SO4 
was performed affording Compound 49 in quantitative yield. The reaction of 
49 with Mn(OAc)3 and dimethyl malonate was finally carried out and led us to 
isolate the indolo [2,3-b]carbazole 50 in 78% yield (Scheme 2). 

Moreover, other compounds from Table 2 can be diversely functionalized in 
different ways. Their versatility led us to explore the opportunity to prepare oth-
er annulation products. To our delight, Compound 37 was used to afford biin-
dole product 51 by a Cadogan-Sundberg type cyclization with PPh3 under mi-
crowave irradiation (Scheme 3, path (a)) in 19% yield. Compound 35 was a pri-
vileged substrate to get quinoline derivative 52 in 16% yield by reduction with In 
metal and NH4Cl in MeOH/H2O (Scheme 3, path (b)). 

We were interested in testing our synthetic protocol using an internal alky-
none. A very good opportunity to try this cyclization came from an alternative  
 

 
Scheme 2. Synthesis of an Indolo [2,3-b]-carbazole. 

 

 
Scheme 3. Syntheses of indole and quinoline derivatives. 
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synthesis of Pravadoline, an analgesic drug [82] [83] [84] [85], via annulation of 
nitrosobenzene 1i with alkynone 53. Compound 53 was prepared by the addi-
tion of prop-1-ynylmagnesium bromide to p-anisaldehyde and subsequent oxi-
dation by CrO3/H2SO4 in acetone. Reaction of 53 with nitrosobenzene 1i, under 
the standard conditions, furnished indole 54 and this latter compound was sub-
sequently alkylated by reaction with 4-(2-chloroethyl)morpholine 55, affording 
pravadoline 56, but only in 16% overall yield starting from nitrosobenzene (Scheme 
4). The synthetic process is unfortunately characterized by an Achilles’ heel in the 
indolization ring closing reaction, the lower reactivity of internal alkynes. Other 
previous experiments carried out using internal acetylenic derivatives showed lower 
yields than the reactions with terminal alkynes. Future investigation on the reaction 
conditions will be devoted to try to improve these results optimizing the prod-
ucts yield. 

SAR (Structure-Activity Relationships) studies on novel cannabinoid mimet-
ics revealed that the replacement of the monocyclic 4-methoxybenzoyl group of 
Pravadoline (Figure 1 and Scheme 4) with a naphthalene moiety increased the 
potency by nearly 10-fold in the antinociception activity [86]. Among these 
compounds, 3-naphthoyl indole derivatives were introduced by the Huffman 
research group, who found a role for this class of molecules as cannabinoid mi-
metics with interesting selectivity in the interaction with CB1 and CB2 receptors 
[87]. JWH-018 and JWH-073 are two studied and developed compounds, inves-
tigated as synthetic cannabinoids that show a stronger affinity than that of THC 
for CB1 receptors [88]. With our procedure both JWH-018 [60] and JWH-073 
were easily prepared. JWH-073 57 was synthesized by reaction of nitrosoben-
zene and 1-naphthoylprop-2-yn-1-one 19g followed by an alkylative step with 
n-butyl bromide in 25% yield (Scheme 5). 

 

 
Scheme 4. Alternative synthesis of pravadoline. 

 

 
Scheme 5. Alternative synthesis of JWH-073. 
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3. Experimental Section 
Representative Procedure for the Synthesis of Indole Compounds 

Nitrosoarene (1.0 mmol) and alkynone (1.0 mmol) were combined in toluene 
(or 1,4-dioxane) (8 ml) under an inert (nitrogen) atmosphere and heated at 
80˚C. The reaction was carried out till the complete conversion of the reactants 
(monitoring by TLC). Products were isolated by filtration or column chromato-
graphy. Detailed procedures are reported in Supplementary Materials. 

4. Conclusion 

A substrate survey using different conjugated alkynones and various nitrosoa-
renes led us to expand the synthetic scope of the indolization procedure obtain-
ing different 3-aroylindole products. The procedure shows a general efficiency 
and versatility with high functional group tolerance. N-hydroxy indoles were 
afforded as the major products using electron-poor C-nitrosoaromatics. Using 
other nitrosoarenes, N–H indoles were isolated as the major products. The forma-
tion of N-dehydroxylated products is evidence of a plausible redox step in the reac-
tion mechanism. This step will be further and deeply studied by a mechanistic in-
vestigation even using electrochemical methods and voltammetry techniques. So 
far some initial experiments to determine the presence of oxidized compounds 
via transfer from N-hydroxylated products were unfruitful. The annulation occurs 
through the formation of new N1–C2 and new C3–C3a bonds. A wide library of 
functionalizable compounds, that could be easily investigated as privileged substrates 
for the preparation of highly valuable products, was produced. The indole products 
can be involved in post-cycloaddition procedures affording scaffolds, build-
ing blocks, useful reactants, intermediates for ulterior transformations, and 
fine chemicals that could find application both in materials science and even for 
medicinal chemistry studies. Due to the biological activity of different 3-acyl- and 
3-aroylindoles a direct synthetic route to this class of compounds is a powerful 
tool for synthetic organic chemistry. 
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Supplementary Materials 

In Supplementary Materials, characterization of indole compounds and their 
precursors are provided. Further, images of some synthesized compounds and 
representative NMR spectra were reported. 
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