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The role of Zip1 and Zip3 in
cadmium accumulation in Fujian
oyster (Crassostrea angulata)
Huanhuan Li, Zhixiu Liang, Longping Wu, Yizhou Ke,
Huayong Que and Bo Shi*

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen,
Fujian, China
Oysters are notably susceptible to accumulating substantial amounts of

cadmium (Cd), leading to food safety concerns, yet the molecular mechanisms

are not fully understood. Previous study identified a significant correlation

between polymorphisms in the Zip1 and Zip3 of Fujian oyster (Crassostrea

angulata) and the levels of Cd accumulation. Zip1 and Zip3, belonging to the

Zip family, are primarily responsible for the cellular transport of zinc and other

metal ions. To delve deeper into their roles in Cd transport within oysters, this

research cloned and analyzed the sequences of Fujian oyster Zip1 and Zip3. The

open reading frames for Zip1 and Zip3 were 960 and 978 bp, respectively,

encoding proteins of 319 and 325 amino acids. Following Cd exposure, the

expression levels of these genes in the mantle, gills, and other tissues initially

increased significantly before decreasing, demonstrating a dose-dependent

response. The lowest expression levels were observed in the adductor muscle,

with Zip1 reaching its highest expression in the mantle and Zip3 in the visceral

mass. In vitro RNAi experiments revealed that silencing Zip1 led to a 1.26-fold

decrease in new 113Cd accumulation in the mantle, whereas silencing Zip3

resulted in a 1.29-fold increase. Immunohistochemistry showed weak

expression of Zip1 and Zip3 proteins in the connective tissue of the mantle. In

summary, Zip1 and Zip3 in Fujian oyster can transport Cd as a substrate, and

played different roles in the absorption and efflux of Cd.
KEYWORDS

Fujian oyster, cadmium accumulation, Zip1, Zip3, expression analysis, RNAi,
immunohistochemistry
1 Introduction

Oyster represents a significant aquaculture specie cultivated widely across the globe.

According to 2022 FAO statistics, oyster cultivation reached a production of 6.06 million

tons, accounting for 34.2% of the global mollusk farming volume (FAO, 2022). In recent

years, rapid urbanization and industrialization in coastal areas have led to metal pollution,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1412127/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1412127/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1412127/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1412127&domain=pdf&date_stamp=2024-05-24
mailto:shibo@jmu.edu.cn
https://doi.org/10.3389/fmars.2024.1412127
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1412127
https://www.frontiersin.org/journals/marine-science


Li et al. 10.3389/fmars.2024.1412127
posing substantial challenges to oyster farming. Oysters possess a

remarkable capacity to accumulate metals, particularly cadmium

(Cd), zinc (Zn), and copper (Cu) (Ke and Wang, 2001; Pan and

Wang, 2009). The bioaccumulation factor of Cd can exceed 48,000

(Wu et al., 2013). After consumption, humans can absorb 78.3–

87.8% of Cd from oysters, with the frequency and amount of

consumption significantly correlating with Cd levels in human

blood (Copes et al., 2008; He and Wang, 2013). Cd, a non-

essential element for humans, can accumulate in the body

through various pathways. Excessive intake may lead to acute

poisoning and irreversible damage to the kidneys, liver, bones,

and reproductive systems (Kumar and Sharma, 2019; Wang et al.,

2021). Consequently, countries have established safety limits for Cd

content in oysters (Satapathy et al., 2019). However, excessive safety

limits of Cd are not uncommon. An investigation in India found an

average Cd concentration of 10.6 μg/g dry weight in oyster soft

tissues, 19 times higher than that of the surrounding water (Patra

et al., 2021). In some areas of the South China Sea, the Cd

concentration in oyster tissues ranged from 5.87 to 17.62 μg/g dry

weight (Luo et al., 2018). The health risks posed by consuming

oysters with excessive Cd content significantly limit the sustainable

development of the oyster industry. Several scholars have made

considerable progress in reducing metal content through genetic

improvements by elucidating the molecular mechanisms of metal

hyperaccumulation plant (Delhaize et al., 2004; Sasaki et al., 2004;

Tang et al., 2017). Referring to these studies, exploring the

molecular mechanisms controlling Cd accumulation in oysters

and attenuating this capability through genetic improvements is

of paramount importance.

Oysters, as typical Cd-accumulating organisms, have been

studied for Cd accumulation kinetics and detoxification methods

through isotope tracing and gel chromatography (Engel, 1999;

Boisson et al., 2003; Mark et al., 2005). Most current researches

focus on toxicodynamics, the impact of Cd exposure on gene or

protein expression, and the estimation of the heritability of Cd

accumulation. Toxicodynamic studies have partially explained the

phenomenon of oyster Cd accumulation: oysters absorb Cd at a rate

higher than other bivalves but excrete it more slowly (Ke andWang,

2001; Pan and Wang, 2012). Although some scholars have

investigated the molecular mechanisms behind oyster Cd

accumulation, such as the relationship between Cd exposure and

oyster gene polymorphisms (Meng et al., 2021), the specific roles of

particular genes in Cd accumulation remain unknown. Thus,

further exploration of the molecular genetic mechanisms

is necessary.

Previous genome-wide association analyses in Fujian oyster

identified a strong linkage between Cd accumulation traits and

gene polymorphism on chromosome 3, where Zip1 and Zip3 were

located (Wu et al., 2023). Prior research indicates Zip1 is

ubiquitously expressed in human tissues, serving as the primary

Zn uptake transporter in K562 leukemia cells and prostate cells,

transporting Zn from outside to inside the cytoplasm (Franklin

et al., 2003; Zhao and Eide, 1996; Gaither and Eide, 2001). Besides

Zn, Zip1 has also been found to transport other metal ions, such as

Cd, manganese, and iron, in yeast and Arabidopsis (Gitan et al.,

1998; Korshunova et al., 1999; Connolly et al., 2002). However, in
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oysters and scallops, only the expression correlation between Zip1

and Cd exposure duration has been confirmed (Engel, 1999; Zhao

et al., 2020). Zip3 is related to Zn uptake in mammalian cells and is

widely expressed in many tissue types (Kelleher and Lönnerdal,

2005; Eide, 2006). Studies suggest that in cabbage varieties with high

Cd levels, Zip3 expression is higher than in those with low levels,

hypothesizing that it may transport Cd from the roots to the shoots

(Yu et al., 2017). Therefore, further exploration of Zip1 and Zip3’s

functions in Cd transport of oyster is warranted.

Fujian oyster is the most cultivated oyster specie in southern

China. This study selected Fujian oyster as the research subject,

cloning cDNA encoding Zip1 and Zip3 and analyzing their

expression levels to explore their correlation with Cd

accumulation. We then identified the Cd accumulation levels

after Zip1 and Zip3 RNA interference (RNAi). Additionally, we

attempted to explore the tissue and cellular localization of Zip1 and

Zip3 in response to Cd stress. The results of this study provide a

basis for researching the differential molecular mechanisms of

oyster Cd accumulation and for breeding oyster strains with low

Cd content.
2 Materials and methods

2.1 Oysters and Cd exposure

The oysters (C. angulata) used in the experiment were one-

year-old, with an average weight of 74 ± 16 g, and were sourced

from an oyster farm near Xiaocheng Town, Lianjiang City, Fujian

Province. Approximately 400 similarly sized and well-formed

oysters were collected, brought back to the laboratory, cleaned,

removed from their attachment, and domesticated for one week.

The oysters were cultured in twelve 30 L polyethylene containers,

with daily complete water changes. They were fed commercial

Chlorella spp. powder at a rate of approximately 2% of their soft

tissue dry weight per day.

After a 7-day acclimation, oysters were randomly divided into

three groups. Each group was subjected to different exposure

conditions: 0ppb, 2ppb, and 5ppb Cd2+. Stock solutions of 10

ppm Cd (CdCl2; MW:183.32 g/mol; Sigma-Aldrich) were

prepared with Milli-Q-filtered water. After exposure, eight

individuals per group were randomly sampled at 0 d, 1 d, 3 d, 7

d, and 15 d. Their soft tissues were rinsed several times with distilled

water before dissecting for mantle, gills, adductor muscle, and

visceral mass. Samples were partly designated for Cd

concentration determination and partly in liquid nitrogen and

stored at -80°C for gene expression pattern analysis.
2.2 Zip1 and Zip3 ORF clone

Total RNA from the oyster mantle was extracted using TRIzol®

Reagent (Invitrogen, USA) (Ni et al., 2013). First-strand cDNA was

synthesized using M-MuLV reverse transcriptase (Thermo Scientific,

USA). Zip1 and Zip3 were amplified by PCR using primers Zip1-F

and Zip1-R listed in Table 1, based on mRNA sequences for encoding
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Zip1 and Zip3 selected from our lab’s mantle transcriptome database.

The PCR protocol was as follows: 1 cycle of predenaturation at 94°C

for 5 min, 35 cycles of 94°C for 30 s, Zip1 is 55.3°C for 30 s; Zip3 is

52.5°C for 30 s, and 72°C for 1 min, followed by a 10 min extension at

72°C. All primer sequences are provided in Table 1. Nucleotide and

protein sequences were characterized with DNAMAN software.

Multiple sequence alignment was performed using Clustal W

(University College Dublin, Dublin, Ireland) and MEGA 7.0’s

neighbor-joining (NJ) method, generating a phylogenetic tree.
2.3 Gene expression pattern analysis

2.3.1 Quantitative real-time PCR analysis
The expression levels of Zip1 and Zip3 in different tissues under

Cd stress were detected using qRT-PCR. RNA extraction from Cd-

exposed samples followed the method described in Section 2.2. Each

20 mL PCR reaction contained 10 mL 2×ChamQ Universal SYBR

qPCR Master Mix (Vazyme, Nanjing, China), 4 mL of fivefold

diluted cDNA, and 10 μM of gene-specific primers (Table 1). The

amplification conditions were: 95°C for 30 s, followed by 40 cycles

of 95°C for 10 s and 60°C for 30 s, with a final extension at 95°C for

15 s and 60°C for 60 s, ending with 95°C for 15 s. EF1a from Fujian

oyster served as the reference gene. Each sample was analyzed in six

biological replicates, with relative expression levels of Zip1 and Zip3

calculated according to the 2−DDCT method (Rao et al., 2013).
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2.3.2 Cd content determination in oyster tissues
Cd content in oyster tissues was determined using Inductively

Coupled Plasma Mass Spectrometry (ICP-MS-7700, Agilent) (Luo

et al., 2014; Weng and Wang, 2014). Oyster samples were dried at

80°C for 24 hours until constant weight, digested with nitric acid at

room temperature for 12 hours, followed by hot digestion at 80°C

for 12 hours until complete dissolution. After appropriate dilution,
114Cd concentration in oyster samples was measured by ICP-MS. A

multi-element standard solution (Agilent) was used for ICP-MS

calibration, with 103Rh as an internal standard to correct for

instrumental drift and sensitivity changes. Quality control

involved re-measuring a previously tested sample every

twenty samples.
2.4 Immunohistochemistry assays

The localization of Zip1 and Zip3 within Fujian oyster tissues

was determined via immunohistochemistry (Kingtong et al., 2007).

Oysters subjected to 5ppb Cd stress were dissected on the third day

of the experiment to collect mantle tissue, which was then fixed in

4% paraformaldehyde for 24 hours. Subsequently, the tissues

underwent hydration in graded ethanol and dewaxing in xylene.

The samples were incubated overnight at 4°C with polyclonal

antibodies against Zip1 and Zip3 (1:20) (GL Biochem, China).

The control group used pre-immune serum at the same
TABLE 1 Primers used in this study.

Primers Sequence (5’-3’) Application

Zip1-F ATGGTCGTGACCTCCGTG
cDNA cloning

Zip1-R TCATGGCGTCGGCGG

Zip1-qF AGCAAAATCCAAGCGTCCTC
qRT-PCR

Zip1-qR TCCGCTCCTTTCTGCTGTTA

dsZip1-F TAATACGACTCACTATAGGGAGGCCTTATACCGTTTGCCT
RNAi

dsZip1-R TAATACGACTCACTATAGGGTTGCCCTTTTTATCCGTGTC

Zip3-F ATGAAATCCACCGCCAAAATTATTT
cDNA cloning

Zip3-R CTATTCACTGTCATGTAAAAACTCCACC

Zip3-qF CCAAGGACGCAATGACAGAC
qRT-PCR

Zip3-qR GCACACAGAGTCGGGAGTAT

dsZip3-F TAATACGACTCACTATAGGGGAAATCCACCGCCAAAATTA
RNAi

dsZip3-R TAATACGACTCACTATAGGGTTTCACGTTCCACCATTTGA

M13–47 AGGGTTTTCCCAGTCACG
cDNA cloning

M13–48 GAGCGGATAACAATTTCACAC

EF1a-F ACCACCCTGGTGAGATCAAG
qRT-PCR

EF1a-R ACGACGATCGCATTTCTCTT

pEGFP-N1-F GCGACGTAAACGGCCACAA
plasmid construction

pEGFP-N1-R CGAACTCCAGCAGGACCATG
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concentration, followed by three 5-minute washes in 0.01M

phosphate-buffered saline (PBS). Goat anti-rabbit IgG conjugated

with horseradish peroxidase (HRP) (GL Biochem, China) was used

as the secondary antibody (1:50) and incubated at room

temperature for 1 hour before developing with DAB. A separate

set of identical samples was stained with HE (Liu, 2022) and

observed under a light microscope for comparison of tissue

structures with those subjected to immunohistochemistry.
2.5 RNA interference

2.5.1 dsRNA synthesis
PCR was employed to amplify cDNA fragments of Zip1 and

Zip3, along with a GFP cDNA (612 bp) fragment from the pEGFP-

N1 plasmid for in vitro transcription and dsRNA synthesis. Primers

designed using siDirect 2.1 (University of Tokyo, Japan) included a

T7 promoter sequence (5’-TAATACGACTCACTATAGGG-3’) at

the 5’ end for dsRNA synthesis. Linear templates were amplified

using these primers, followed by DNA precipitation with ethanol.

T7 RNA Polymerase (Thermo Scientific, USA) was used for in vitro

transcription to synthesize dsRNA, which was then stored at -80°C

after electrophoresis verification and concentration measurement.

2.5.2 Ex vivo tissue culture and
dsRNA interference

Following dsRNA preparation, tissue culture and RNAi were

conduted according to the methods of in vitro culture of the mud

crab (Scylla paramamosain) tissue and the calm (Meretrix meretrix)

primary cells with slight modifications (You et al., 2012; Liu, 2022).

Furthermore, based on qPCR results and existing studies on metal

accumulation, the mantle is identified as the primary tissue for metal

accumulation and target gene expression (Shi et al., 2019a). Hence,

we have selected the mantle as the tissue material for our in vitro

RNA interference experiments. Mantle tissue was excised under

sterile conditions, washed thrice in sterile seawater containing 100 U/

mL penicillin, 100 mg/mL streptomycin, and 0.25 mg/mL

amphotericin B (filtered through 0.22 mm), with each wash lasting

20, 60, and 100 minutes, respectively. Tissues were then cut into 1

mm3 pieces and pre-cultured in modified sterile L15 medium

(Gibco, USA) supplemented with 1 g/L glucose, 2.4 g/L HEPES, 12

g/L NaCl, 1.2 g/L NaHCO3, and 5 g/L yeast extract, along with the

aforementioned antibiotics, in a 48-well cell culture plate

(LABSELECT, Beijing) at 26°C for 60 minutes. After confirming

no significant change in medium color, the medium was replaced.

The tissues were divided into three groups: Zip1 interference,

Zip3 interference, and Zip1+Zip3 interference, with each group

including an EGFP dsRNA as a control. L15 medium containing the

respective dsRNA (final concentration 1 mg/μL) was gently mixed

into the culture plates. After 24 hours of RNAi, samples from the

experimental and control groups were collected for Cd content

determination. Additional corresponding dsRNA was then added to

the remaining tissues to maintain RNAi efficiency, along with 113Cd

to a final concentration of 5 mg/L. After a further 24 hours of RNAi
and 113Cd exposure, mantle tissues were collected for qRT-PCR
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analysis and 113Cd content determination. Each group had

three replicates.

2.5.3 113Cd concentration measurement
To assess the changes in 113Cd accumulation in the mantle

tissues following Zip1 and Zip3 interference, the concentrations of
113Cd and 111Cd were measured using the method described in

section 2.3.2, and calculated following the approach by Zhong et al.

(2020). The newly accumulated Cd in oyster tissues was calculated

using the formula:

new½113Cd� = (½total Cd�113 − ½total Cd�111)� 12:22%

Here, [total Cd]111 and [total Cd]113 are the total Cd

concentrations measured by ICP-MS when selecting 111Cd and
113Cd for analysis, respectively. 12.22% represents the natural

abundance of 113Cd. Thus, this formula allows for the calculation

of newly accumulated Cd in oyster tissues.
2.6 Statistical analysis

All data are presented as mean ± SE (n=8 or 3). Statistical

significance was determined through two-way ANOVA and paired

sample T-tests. Graphs were created using GraphPad Prism 9.0 (San

Diego, USA), with statistical significance set at p< 0.05.
3 Results

3.1 Sequence and phylogenetic analysis of
Zip1 and Zip3

The ORF of Fujian oyster Zip1 was 960 bp (GenBank accession

number: OR759776), encoding a protein of 319 amino acids with a

predicted molecular weight of 35.7 kDa and an isoelectric point (pI) of

5.78. The predicted Zip1 protein lacks a signal peptide but contains

eight transmembrane helices located at amino acids 10–31, 43–65, 80–

102, 160–182, 192–214, 223–245, 260–279, and 292–310 (Figure 1A).

The ORF of Zip3 was 978 bp long (GenBank accession number:

OR759777), predicted to encode 325 amino acids, with a molecular

weight of 35.9 kDa and a pI of 6.27, featuring eight a-helical
transmembrane domains located at amino acids 10–31, 44–66, 81–

103, 176–198, 203–225, 237–259, 269–289, and 302–321 (Figure 1B).

Phylogenetic trees constructed by comparing the amino acid

sequences of Zip1 and Zip3 from a variety of published organisms

revealed that Fujian oyster, like other animals, plants, and fungi,

have eight transmembrane helices. All possess an extended

sequence of 12 amino acids (underlined in blue) within the fourth

transmembrane domain, characteristic of the Zip family, containing

conserved histidine, serine, and glycine residues (highlighted in

yellow). Notably, the serine has been replaced by methionine in

mollusks, differentiating them from mammals. Additionally, Zip3

features a conserved amino acid difference (marked in red)

compared to Zip1, whose function and significance remain

unclear. The evolutionary tree indicates that the Fujian oyster is
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B

C D

A

FIGURE 1

Illustrates the multiple sequence alignment and phylogenetic tree analysis of Zip1 and Zip3 with amino acid sequences from other species. Similar
amino acids are highlighted, and the eight presumed transmembrane domains (TM) are denoted by solid and dashed lines. The fourth presumed
transmembrane domain includes conserved histidine, serine or methionine, and glycine residues (highlighted in yellow boxes). (A) Multiple sequence
alignment of Zip1 with amino acid sequences from various species. (B) Multiple sequence alignment of Zip3 with amino acid sequences from
different species. (C) Phylogenetic tree analysis of Zip1. (D) Phylogenetic tree analysis of Zip3. Zip1 and Zip3 proteins were submitted to the GenBank
database, with other GenBank accession numbers as follows: Homo sapiens (Zip1, NP_001258888.1), Mus musculus (Zip1, NP_038929.2),
Crassostrea gigas (Zip1, XP_011453296.2), Drosophila busckii (Zip1, ALC42177.1), Crassostrea virginica (Zip1, XP_022330862.1), Ostrea edulis (Zip1,
XP_048736341.1), Crassostrea gigas (Zip1, XM_011454994.3), Crassostrea virginica (Zip1, XM_022475156.1), Malus domestica (Zip1,
NM_001294116.1), Saccostrea echinata (Zip1, XM_061318195.1), Saccostrea cucullata (Zip1, XM_062749567.1), Mytilus trossulus (Zip1,
XM_063579755.1), Mercenaria mercenaria (Zip1, XM_045356306.2), Haliotis rubra (Zip1, XM_046712745.1), Mizuhopecten yessoensis (Zip1,
XM_021487195.1), Ruditapes philippinarum (Zip1, XM_060749981.1), Drosophila hydei (Zip1, XM_030225087.1), Triticum aestivum (Zip1,
XM_044496491.1), Oryza sativa (Zip1, NM_001397949.1), Oncorhynchus mykiss (Zip1, NM_001124481.1), Mus musculus (Zip1, NM_001411505.1),
Homo sapiens (Zip1, NM_001271957.2), Arabidopsis thaliana (Zip1, NM_112111.3), Malus domestica (Zip1, NM_001294116.1), Homo sapiens (Zip3,
NP_653165.2), Drosophila busckii (Zip3, ALC45898.1), Mus musculus (Zip3, NP_001345827.2), Ostrea edulis (Zip3, XP_048735000.2), Crassostrea
virginica (Zip3, XP_022330863.1), Ylistrum balloti (Zip3, XP_060079049.1), Crassostrea gigas (Zip3, XM_034467256.1), Ostrea edulis (Zip3,
XM_048879043.2), Saccostrea echinate (Zip3, XM_061316256.1), Pecten maximus (Zip3, XM_061316256.1), Ylistrum balloti (Zip3, XM_060223066.1),
Dreissena polymorpha (Zip3, XM_052384496.1), Mercenaria mercenaria (Zip3, XM_053532146.1), Ruditapes philippinarum (Zip3, XM_060744456.1),
Haliotis rubra (Zip3, XM_046728897.1), Epinephelus fuscoguttatus (Zip3, XM_049588280.1), Mus musculus (Zip3, NM_001358898.2), Danio rerio
(Zip3, NM_001080619.1), Arabidopsis thaliana (Zip3, NM_128786.4), Oryza sativa (Zip3, NM_001419857.1), Triticum aestivum (Zip3,
XM_044469838.1). Multiple alignments were performed using Clustal W with default parameters. Identical and similar residues are displayed against
black and grey backgrounds, respectively. a-helices are represented by horizontal lines and dashed lines in the figures and red triangle symbol
indicate the location of Zip1 and Zip3.
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separately clustered with other bivalves, showing the highest

similarity with the Pacific oyster (Figures 1C, D).
3.2 Gene expression pattern

3.2.1 Cd accumulation in oyster tissues
Cd content of Fujian oyster tissues (gills, mantle, adductor muscle,

and visceral mass) was detected using ICP-MS before and after Cd

stress (Figure 2). Before exposure, the average Cd content was in the

order: visceral mass> gills> mantle> adductor muscle; after exposure,

the average Cd content followed: gills> mantle> visceral mass>

adductor muscle. As the exposure time and Cd dose increased, the

accumulation of Cd in all tissues also increased, reaching the highest on

the 15th day after exposure. In the gills of the oysters exposed to 5ppb,

the Cd content on the 15th day was 138 times that of the control group.

3.2.2 Expression spectrum of Zip1 and Zip3 after
Cd exposure

To analyze the expression patterns of Zip1 and Zip3 in oysters

during Cd exposure, oysters were exposed to different concentrations

of Cd. As shown in Figures 3A–D and 4A–D, at the same Cd

concentration, the expression levels of Zip1 and Zip3 in all tissues

generally first increased and then decreased over exposure time.

Before Cd exposure, the highest expression of Zip1 was in the gills,

with the lowest in the adductor muscle. Zip3 was most highly
Frontiers in Marine Science 06
expressed in the visceral mass and least in the gills. After Cd

exposure, the highest expression of Zip1 was in the mantle, while

Zip3 was most highly expressed in the visceral mass, with both

showing the lowest expression in the adductor muscle. Within the

same exposure time, the expression levels of Zip1 and Zip3 overall

showed dose-dependency, increasing with the concentration of Cd

exposure. In the 5ppb group, the expression of Zip1 reached its peak

on the 3rd day in the adductor muscle and visceral mass, while in the

mantle and gill, it peaked on the 7th and 1st days, respectively, before

gradually decreasing to control levels. In the gills, the expression of

Zip3 also peaked on the 3rd day, while in the mantle, it was highest on

the 1st day, and in other tissues, it peaked on the 7th day.
3.3 Histological structure and tissue-cell
localization of Zip1 and Zip3

Further investigation into the localization of Zip1 and Zip3within

Fujian oyster tissues was conducted through immunohistochemistry.

Location in the connective tissue was confirmed through comparison

with a hematoxylin and eosin–stained mantle tissue section, which

provided a more refined image of the target mantle structures

(Figures 5A, B). No signal was detected in mantle tissue of control

sections treated with preimmune sera (Figures 5C, D). Zip1

(Figures 5E, F) and Zip3 (Figures 5G, H) showed weak expression

in the connective tissue of the mantle.
B

C D

A

FIGURE 2

Accumulations of 114Cd in mantle (A), gills (B), adductor muscle (C) and visceral mass (D) of Fujian oyster after Cd exposure. Data are presented as
mean ± SE (n=8). Different lowercase letters indicate significant differences between different Cd concentrations at the same exposure time
(p<0.05), while * indicates significant differences between different exposure times at the same Cd level. (*p<0.05, **p<0.01).
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3.4 The impact of dsRNA-induced silencing
of Zip1 and Zip3 on Cd accumulation

3.4.1 mRNA expression levels after silencing Zip1
and Zip3

We conducted individual as well as combined interference

experiments on Zip1 and Zip3. After 48 hours of interference, the

expression levels of both Zip1 and Zip3 significantly decreased, as

shown in Figure 6. Compared to the control group, silencing Zip1

and Zip3 for 48 hours resulted in a reduction of expression by 84%

and 52%, respectively. Simultaneous silencing of Zip1+Zip3 for 48

hours led to a reduction in their expression by 64% and 62%,

respectively, demonstrating that the addition of dsRNA in vitro

significantly reduces the expression levels of Zip1 and Zip3 in

mantle cells.

3.4.2 Cd content in mantle tissue after dsRNA-
induced silencing of Zip1 and Zip3

The data in Figure 7 revealed that, although Cd content

significantly increased in both dsGFP and dsZip1 groups after

silencing Zip1 for 48 hours, but the Cd content in the dsGFP

group was 1.26 times that of the dsZip1 group. Thus, Zip1 silencing

significantly reduced the accumulation of Cd in the mantle. After

silencing Zip3, the Cd content in the dsZip3 group was 1.29 times

that of the dsGFP group. The Cd content in the group with both
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Zip1 and Zip3 silenced was 1.15 times that of the control group,

slightly lower than the individual interference group.
4 Discussion

Our preliminary genome-wide association analysis of Cd

accumulation traits in Fujian oyster revealed significant correlations

between Cd accumulation and the polymorphisms of Zip1 and Zip3,

suggesting their potential involvement in the regulation of Cd

accumulation in oysters. To date, research on Zip1 and Zip3 in

aquatic animals has primarily focused on their role in Zn transport

regulation in fish (Chen et al., 2020, 2020; Puar et al., 2020), crabs (Liu

et al., 2023), and bivalves (Zhao et al., 2020; Meng et al., 2021).

However, in bivalves, only the expression changes of Zip1 and Zip3

following Cd stress have been observed, with their involvement in the

cellular transport of Cd in oysters remaining unclear. To further

elucidate the function of Zip1 and Zip3 in bivalves and uncover their

role in Cd transport, we cloned the cDNA of Zip1 and Zip3 from

Fujian oyster. Multiple sequence alignments and phylogenetic

analysis show that Zip1 and Zip3 are highly conserved and closely

related to orthologues in other bivalve and gastropod species. Like

other members of the Zip family, they contain eight a-helical
transmembrane domains and similar topologies, demonstrating

strong conservation across animals, plants, and fungi (Eide, 2006).
B

C D

A

FIGURE 3

Gene expression analysis of Zip1 in mantle (A), gills (B), adductor muscle (C) and visceral mass (D) of Fujian oyster. qRT-PCR data are represented as
mean ± SE (n=8). EF1a was used as an internal reference to normalize Zip1 expression levels. Different lowercase letters indicate significant
differences between different Cd concentrations at the same exposure time (p<0.05), while * indicates significant differences between different
exposure times at the same Cd level. (*p<0.05, **p<0.01).
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Between their TM3 and TM4 domains lies a His-rich loop region

associated with metal-binding capacity. Studies have shown that,

besides Zn, this region can also bind Cd and cobalt (Eide, 2006),

indicating the potential of Fujian oyster Zip1 and Zip3 to bind Cd.

Moreover, a conserved amino acid difference in TM4 between Zip3

and Zip1 suggests functional divergence.

In this study, as Cd exposure concentration and duration

increased, oyster tissues exhibited similar Cd accumulation

patterns, showing dose and time-dependent increases, peaking on

the 15th day. Another study also reported significant increases in

oyster Cd content after continuous exposure to various Cd

concentrations for 96 hours (Moncaleano-Nino et al., 2017).

Additionally, before Cd exposure, the highest Cd accumulation was

in the visceral mass, followed by gills and least in the adductor

muscle. After exposure, the highest accumulation shifted to the gills,

then the mantle, with the visceral mass third. Previous research has

shown that oyster tissues acquire Cd from both water and food, with

increased waterborne Cd concentrations leading to rapid internal

accumulation through the mantle and gills (Cao et al., 2018). The

expression patterns under Cd stress indicated that Zip1 and Zip3 in

the mantle, gills, adductor muscle, and visceral mass are rapidly

upregulated by Cd stress, significantly increasing before gradually

returning to control levels over time, showing dose and time-

dependent changes. Similar Cd-induced expression of Zip1 and

Zip3 has been observed in Pacific oyster, suggesting their potential

role in regulating oyster Cd accumulation (Meng et al., 2021).

Existing studies confirm that Zip1 and Zip3 expression in different
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mouse cells is associated with Zn homeostasis and tightly regulated by

Zn (Bogdanovic et al., 2022). In humans, high Zn levels activate the

transcription factor RREB1, which downregulates Zip1 (Zou et al.,

2011) and upregulates Zip3 (Franklin et al., 2014) to regulate cellular

Zn homeostasis. Thus, Cd stress may activate transcription factors for

oyster Zip1 and Zip3, causing gene expression changes. Additionally,

competition for binding sites between Zn and Cd in oyster cells may

occur (Kandhol et al., 2023; Liu et al., 2023). During exposure, Cd

may compete with Zn for ion channels, leading to changes in the

homeostasis of Zn and thereby enhancing the expression of Zn

transporters (Fontanili et al., 2016). Moreover, the significant

expression of Zip1 and Zip3 in the mantle and gills, the primary

Cd accumulation tissues, compared to lower accumulating tissues like

the adductor muscle, and higher expression in individuals with

greater accumulation (Wu et al., 2023) suggests their involvement

in the transport and accumulation of Cd in oyster cells.

Zip1 and Zip3 show weak expression in the blood or nerve cells

within the connective tissue of the oyster mantle. Studies in humans

and mice have found Zip1 expressed in almost all tissues, localized

on the plasma membrane, whereas Zip3’s localization on the plasma

membrane or intracellular compartments is influenced by Zn ion

concentration (Franklin et al., 2003; Jeong and Eide, 2013; Bowers

and Srai, 2018). The mantle, composed of inner and outer epithelia,

connective tissue, muscle fibers, and secretory gland cells, acts as a

filter-feeding tissue directly in contact with the external

environment and is well-supplied with blood vessels, participating

in oyster respiration and secretion, indicating the mantle serves as a
B
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FIGURE 4

Analysis of Zip3 gene expression in mantle (A), gills (B), adductor muscle (C) and visceral mass (D) of Fujian oyster, following the same presentation
and statistical notation as Zip1. Different lowercase letters indicate significant differences between different Cd concentrations at the same exposure
time (p<0.05), while * indicates significant differences between different exposure times at the same Cd level. (*p<0.05, **p<0.01).
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primary barrier between the environment, hemolymph, and

internal organs. Previous studies have shown that Cd stress in

oysters activates the “hemocyte-neuron” neuroendocrine-immune

axis in connective tissue and induces oyster hemocyte apoptosis to

mediate neuroimmune regulation (Sokolova et al., 2004; Liu et al.,

2017). Furthermore, hemocytes in connective tissue can store large

amounts of metals like Zn, Cu, and Cd (Shi et al., 2019b). Based on

the localization of Zip1 and Zip3 in the mantle’s connective tissue, it

is speculated that ZIP transport proteins are involved in Cd

absorption and accumulation in the mantle.

Cd is a non-essential element for biological systems, and its

absorption and excretion processes require the utilization of

channels for other essential metals. Studies in animals, plants, and

fungi have shown that Cd can enter cells via transport channels for
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Ca (Washko and Cousins, 1976; Min et al., 2008, 2015), Fe (Ragan,

1977; Flanagan et al., 1978), Zn (Waalkes and Perantoni, 1988;

Dalton et al., 2005; Girijashanker et al., 2008) and Mn (Sun et al.,

2019). The mantle is an important organ for oysters to accumulate

metals (Shi et al., 2019a). In our study, disruption of Zip1 led to a

significant reduction in Cd accumulation in the oyster mantle

compared to controls, indicating that Zip1 transcription levels

affect Cd accumulation in oyster mantles. Zip1 has been

confirmed to transport Zn from the extracellular environment

into cells in humans, mice, and yeast (Zhao and Eide, 1996;

Dufner-Beattie et al., 2003; Wang et al., 2004). Furthermore,

research has indicated that in Arabidopsis thaliana, genome-wide

bioinformatics screening revealed a significant upregulation of the

expression of Zinc Transporter Protein 1 (Zip1) upon exposure to
FIGURE 5

The distribution of Zip1 and Zip3 expression in the mantle was examined using optical microscopy images of immunoperoxidase-stained sections
from paraffin-embedded Fujian oyster material exposed to 5ppb Cd for 3 days, counterstained with hematoxylin and eosin (H&E). Panels (A, B)
display H&E-stained mantle sections from the same tissue not exposed to Cd. Panels (C, D) serve as negative controls for the mantle structure not
exposed to Cd. Both Zip1 (E, F) and Zip3 (G, H) are weakly expressed in the connective tissue of the mantle.
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Cd. It is hypothesized that this may play a certain role in the uptake

of Cd in plants (Zheng et al., 2018). Thus, we propose that Zip1 in

oyster cells is a crucial transport protein for Cd absorption.

Silencing of Zip1 reduced Cd absorption, leading to decreased Cd

accumulation in the mantle. However, Cd accumulation still

occurred in the mantle after Zip1 silencing, suggesting that the

interference was not completely blocking (efficiency of 84%) or that

Cd might enter cells through other metal transport channels.

After disrupting Zip3, we observed a significant increase in Cd

accumulation in the mantle. Zip3 has been confirmed to have

multiple Zn transport functions across the plasma membrane and

intracellular compartments (Costello et al., 2011). Studies have shown

that in Zn-deficient yeast, Zrt3 can transport Zn stored in vacuoles to
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the cytoplasm (Zhao and Eide, 1996). Additionally, in Zn-deficient

mice, Zip3 is localized on the surface of mammary epithelial cells;

after Zn treatment, the protein relocates to intracellular

compartments of secretory-type mammary epithelial cells,

facilitating Zn transport from the cytoplasm into these

compartments, which helps transfer Zn from maternal circulation

to milk (Kelleher and Lönnerdal, 2005). When oysters face metal

stress, they can mitigate metal toxicity through enhanced excretion,

metal chelation, and compartmentalization (Engel, 1983; Liu and

Wang, 2016). Some studies on human and mouse Cd exposure have

shown that absorbed Cd enters blood cells or lysosomes, forming Cd-

metallothionein (MT) complexes, where Cd is released fromMT and

appears in the cytoplasm, altering the electrochemical gradient on
B
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FIGURE 6

mRNA expression levels of Zip1 and Zip3 after gene silencing. (A) Silencing efficiency of Zip1 after 48 hours. (B) Silencing efficiency of Zip3 after 48
hours. (C) Silencing efficiency of Zip1 after dual silencing of Zip1 and Zip3 for 48 hours. (D) Silencing efficiency of Zip3 after dual silencing of Zip1
and Zip3 for 48 hours. The significant differences compared to controls are denoted with *. (*p<0.05,**p<0.01).
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membranes to facilitate Cd excretion through renal tubules with

urine (Nordberg, 2009). In addition, numerous studies have

investigated transport proteins involved in Cd ion transportation in

plants. A. thaliana AtABCG36/AtPDR8, a member of the ABC

transporter family, is localized to the cell membrane. It functions

by transporting Cd from the cell interior to the exterior, reducing Cd

toxicity in plants and correlating with lead tolerance (Kim et al., 2007;

Park et al., 2012). Additionally, the three genes of the ABCC family,

AtABCC1, AtABCC2 and AtABCC3, sequester Cd by transporting it

from the cytoplasm into vacuoles, thereby mitigating Cd’s harmful

effects on plants (Park et al., 2012; Brunetti et al., 2015). Based on the

reported mechanisms of Cd efflux and the results of this experiment,

we hypothesized that Cd efflux was blocked after Zip3 interference,

resulting in a significant increase in Cd content in the mantle.

Therefore, based on the expression patterns, interference, and

expression localization analysis of Zip1 and Zip3, we hypothesize

that they play pivotal roles in the accumulation of Cd in oysters.

Further research is needed to evaluate the roles of Zip1 and Zip3 in

intracellular and intercellular Cd transport in oysters.
5 Conclusion

Genetic improvements are highly beneficial for the sustainable

development of the oyster aquaculture industry. This study has

identified tissue-specific expressions of Zip1 and Zip3 in Fujian

oyster. Results from RNAi and immunohistochemistry further

confirm the critical roles of Zip1 and Zip3 in Cd accumulation in

Fujian oyster. Altogether, these findings provide a basis for future

research into the molecular mechanisms of Cd accumulation in

Fujian oyster and the cultivation of low-Cd oyster strains.
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