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Abstract: In contrast to the hypothesis that aging results from cell-autonomous deterioration pro-
cesses, the programmed longevity theory proposes that aging arises from a partial inactivation of a
“longevity program” aimed at maintaining youthfulness in organisms. Supporting this hypothesis,
age-related changes in organisms can be reversed by factors circulating in young blood. Concor-
dantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells
(htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However,
the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-
aging effects remain unexplored. Using experimentally validated miRNA–target gene interactions
and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we
identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks
that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA
levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs
modulate pathways associated with senescence and cellular stress response, targeting crucial genes
such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive
to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA
target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific
miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting
genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism
triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a
youthful transcriptional signature.
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1. Introduction

The progressive decline in physiological functions as individuals age has traditionally
been attributed to the accumulation of stochastic damage in macromolecules, a concept that
aligns with the free radical theory of aging [1]. Additionally, aging can be conceptualized
as a diminishing capacity of protective, reparative, and regenerative mechanisms that
normally maintain youthfulness. This notion of a “longevity program”, orchestrated by
endocrine factors, is evidenced by the rejuvenation effects observed in aged organisms
undergoing heterochronic parabiosis with a younger counterpart [2].

Circulating exosome-packaged miRNAs are emerging as promising candidates capable
of exerting systemic effects within a potential anti-aging program. These miRNAs are small,
noncoding RNAs that function within ribonucleoprotein silencing complexes, pairing with
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target mRNAs to induce their degradation or translational repression [3]. Their ability
to regulate numerous genes simultaneously, coupled with their capacity for intercellular
communication via various carriers found in bodily fluids, including exosomes (nanosized
vesicles released by cells), makes miRNAs well-suited for orchestrating cellular functional
programs at the organismal level [4].

The paramount cell program associated with aging is cellular senescence, a response
activated by various types of damage including genotoxic, mitochondrial, or oxidative
injuries [5]. As organisms age, the accumulation of senescent cells intensifies, leading to the
secretion of multiple extracellular mediators known as the senescence-associated secretory
phenotype (SASP). These mediators induce the senescence of nearby cells, a process referred
to as secondary or paracrine senescence [6]. Cellular senescence is characterized by a stable
proliferative arrest mediated by the activation of the tumor suppressors TP53 and CDKN2A,
and their downstream effectors, CDKN1A and RB1 family proteins [7]. Even in a primarily
post-mitotic tissue like the brain, accumulation of senescent cells with aging had been
observed [8].

Recently, it has been discovered that adult NSCs localizing in the mediobasal hypotha-
lamic parenchyma, and the third-ventricle wall of the hypothalamus are almost completely
lost with aging, correlating with age-associated physiological decline. The loss of htNSC is
associated with a stable and chronic background inflammation associated with the early
stages of aging or metabolic syndrome [9]. Cellular senescence and inflammation are
intertwined, as several components of the SASP are pro-inflammatory molecules. At the
organismal level, immunosenescence generates an age-related chronic proinflammatory
process, termed inflammaging [10]. Interestingly, senescent cell clearance reduces age-
associated microglial activation, neuroinflammation, and immune cell infiltration, thereby
mitigating cognitive decline [11,12]. Moreover, reducing senescent microglia reduced brain
inflammation and improved cognition in a mice model of Alzheimer’s disease [13]. These
findings underscore the importance of the accumulation of senescent cells in initiating
neurodegenerative processes by promoting inflammation [14].

htNSCs actively secrete exosomal miRNAs, and exosomes derived from htNSCs can
attenuate age-related declines in cognitive abilities and muscle function when administered
to mid-aged mice [15]. However, the specific transcriptional programs regulated by these
miRNAs remain unstudied. We hypothesize that these miRNAs may modulate anti-
senescence pathways, playing a role in the cell-specific transcriptional changes observed
during brain aging.

In support of this assumption, recent observations have shown that extracellular
vesicle (EV)-packaged miRNAs secreted by embryonic stem cells (ESCs) can rejuvenate the
transcriptome profile of aged fibroblasts in vitro. Furthermore, intraperitoneal injection of
ESC-EVs to mid-aged mice reduces senescent cell number in several organs, including the
spleen, kidney, and liver, and decreases the expression of age-related genes such as p16, p21,
and p53 [16]. Additionally, intravenous injection of purified small EVs from young mice
(2 months) into aged mice (20 months) significantly extends the median lifespan, reduces
the expression of senescent makers in several tissues, and promotes miRNA-mediated
improvement in mitochondrial function [17].

Here, using bioinformatic tools, we identified a putative anti-senescence gene regula-
tory program triggered by exosomal miRNAs derived from htNSCs, which correlates with
the transcriptional changes observed in the aged mice brain. Additionally, we identified
that heterochronic parabiosis can reverse the age-related increased expression of specific
genes targeted by these miRNAs, particularly in brain endothelial cells, further supporting
the theory of an endocrine control of the aging process.

2. Results and Discussion
2.1. Pathways Associated with htNSC-Derived miRNA Target Genes

A total of 19 exosomal miRNAs, preferentially secreted by htNSCs, were found sig-
nificantly reduced in the CSF of middle-aged mice (16 months) by Zhang et al. [15]. Due
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to limited experimental knowledge about miRNA target genes in mice, we utilized infor-
mation about their human orthologs. This approach is supported by the widespread con-
servation of miRNA–mRNA pairs in mammals, particularly in widely conserved miRNA
families [18]. We successfully mapped 11 murine miRNAs to their corresponding human
orthologs in the miRBase [19], revealing high sequence identity and strict conservation
of their 7-mer seeds (Supplementary Table S1). MiR-483-5p was excluded from further
analysis due to poor family conservation.

Therefore, experimentally validated miRNA–target interactions extracted from miR-
TarBase 9.0 [20] were analyzed in Reactome release 78 [21] to identify pathways enriched
in the genes targeted by each miRNA. The ten most enriched pathways in genes targeted
by each miRNA are shown in Supplementary Figure S1. Except for miR-30a-5p, the genes
targeted by all the other miRNAs share several enriched pathways (Figure 1), which can be
grouped into two hierarchical classes.
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Figure 1. Shared pathways enriched in htNSC-derived miRNA gene targets suggest a transcriptional
anti-aging program operating in young animals. Chord diagram showing Reactome pathways shared
by ≥3 htNSCs miRNA-targeted genes. Logarithmic fold change (logFC) in miRNA CSF levels with
aging was reported in [5]. Figure was made with SRPlot (http://www.bioinformatics.com.cn/SRplot
(accessed on 30 November 2023)).

On one hand, we observed enrichment in the Cellular responses to stimuli path-
way (R-HSA-89533897) and its related sub-pathways, including Cellular responses to
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stress (R-HSA-2262752), Attenuation phase (R-HSA-33715568), Cellular senescence (R-
HSA-2559583), and Oxidative stress-induced senescence (HSA-2559580). On the other
hand, there was enrichment in the Gene expression (transcription) pathway (R-HSA-74160)
and its sub-pathways, such as the Generic transcription pathway (R-HSA-212436) and
Post-transcriptional silencing by small RNAs (R-HSA-426496).

Considering that miRNAs act through post-transcriptional suppression of specific gene
targets, our analysis suggests that they can control transcriptional programs, antagonizing
pathways associated with cellular senescence, particularly downstream of oxidative stress.
The loss of this inhibitory control could explain the acceleration of aging occurring when
the htNSC-derived exosomal miRNA levels are diminished [15].

Our results are consistent with numerous previous studies showing that some of
the htNSC-derived miRNAs exert anti-senescence and/or pro-longevity functions. These
include miR-17-5p, a miRNA downregulated during aging in different model systems [22].
Interestingly, miR-17 overexpression in mice decreases cell senescence and extends lifes-
pan [23], constituting the first experimentally validated “longevi-miR” [24]. On the other
hand, miR-146b-5p reduces IL-6 and IL-8 secretion (two components of SASP) by senes-
cent fibroblasts, restraining the inflammatory response [25]. This effect is replicated in
human trabecular meshwork cells, concomitantly with a reduction in ROS production and
senescence markers [26]. Similarly, mir-378a-5p counteracts fibroblast senescence, reducing
the levels of p16INK4a, a tumor suppressor that has a central role in the induction of cell
senescence [27]. Finally, miR-421 also suppresses senescence through the downregulation
of ATM expression in prostate cancer cells [28].

2.2. Brain Cell-Specific Transcriptional Changes Putatively Associated with Age-Dependent
Decline in htNSC-Derived miRNAs

Considering that mRNA destabilization explains most (66 to 90%) of the miRNA-
mediated repression [3], we hypothesize that changes in mRNA levels during brain aging
may in part reflect transcriptional programs controlled by miRNAs. Accordingly, we mined
a comprehensive dataset of single-cell transcriptomics of the aged mouse brain [29], in
search of htNSC-derived miRNA gene targets. We focused on those genes that show a sig-
nificant increase in mRNA levels during aging, consistent with the age-dependent decline
in miRNA levels in CSF. Genes upregulated by aging in two or more brain cell groups with
their respective regulating miRNAs are shown in Figure 2. Age-dependent loss of miRNA-
mediated downregulation of several of these genes can be associated with accelerated aging
phenotypes. For example, age-dependent upregulation of thioredoxin-interacting protein
(TXNIP), a target of miR-15a-5p, miR-17-5p, miR-20-5p, and miR-378a-3p, can result in
reduced thioredoxin-1 activity and decreased resistance to oxidative stress. Interestingly,
siRNA-mediated depletion of TXNIP in Drosophila melanogaster significantly extended me-
dian lifespan [30], highlighting it as an important target of the anti-aging program triggered
by htNSC-derived miRNAs. Additionally, supporting this notion, increased TXNIP expres-
sion in the aged mouse brain triggers inflammasome upregulation, and pharmacological
reduction in TXNIP levels has rejuvenating effects, improving cognitive and sensorimotor
abilities [31].

Another interesting target gene of htNSC-derived miRNAs that shows upregulation
in the aging brain is Rps27, which encodes a zinc finger-containing protein component of
the 40S ribosomal subunit. The knockdown of rps-27 (the ortholog of mammalian Rps27) in
Caenorhabditis elegans resulted in 44–50% increased lifespan [32], highlighting it as another
relevant target of the anti-aging program.

To gain further insight into the potential consequences on the transcriptome of the loss
of these miRNAs during aging, we constructed cell-specific gene networks, linking age-
upregulated genes with their respective regulating miRNAs (Figure 3 and Supplementary
Figure S2). Among the cell classes analyzed, the lineage of oligodendrocytes and the
olfactory ensheathing glia undergo the most significant remodeling of the transcriptome.
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This is evident in both the number of upregulated genes and the magnitude of the age-
dependent changes observed (Figure 3).
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Figure 2. Age-upregulated htNSC-derived miRNA target genes across the main brain cell classes.
Alluvial plot networking htNSC-secreted miRNAs with their target genes upregulated with aging in
≥2 brain cell classes. Statistically significantly upregulated genes determined by single-cell RNA-seq
(TPM-based FC ≥ 1.5 and adjusted p-value < 0.05) were extracted from [16].

Interestingly, the aging process is associated with a decrease in the differentiation
potential of oligodendrocyte progenitor cell (OPC), leading to reduced production of oligo-
dendrocytes and a failure in remyelination [33]. Among the many genes upregulated
with age, the increased expression of Cdkn2a, a target of miR-320a-3p, is observed in both
OPC and mature oligodendrocytes (Figure 3). The Cdkn2a locus encodes the cell cycle
inhibitors p16INK4a and p19ARF, which are highly expressed in senescent cells and play
a crucial role in establishing cellular senescence [34]. In the aged rat brain, OPCs exhibit
classical hallmarks of aging, including an 8-fold higher mRNA of Cdkn2a, which may
be mitigated by interventions such as intermittent fasting or metformin treatment [35].
Notably, direct infusion of young CSF into aged brains primarily impacts on the transcrip-
tome of hippocampal oligodendrocytes, promoting OPC proliferation and differentiation,
and improving memory function [36]. We hypothesize that exosomal miRNAs secreted
by htNSCs present in young CSF could be partially responsible for these rejuvenating
changes. Thus, our analysis suggests that the oligodendrocyte lineage is a crucial target
of the anti-senescence program mediated by htNSC-derived exosomal miRNAs, which is
compromised with aging, leading to impaired oligodendrogenesis.
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Figure 3. Interaction network between htNSC-derived miRNAs and their age-upregulated target
genes in oligodendrocyte lineage. Regulatory gene network between miRNAs and age-upregulated
genes in the oligodendrocyte precursor cells, mature oligodendrocytes, and olfactory ensheathing
glia. Statistically significantly upregulated genes determined by single-cell RNA-seq (TPM-based
FC ≥ 1.5 and adjusted p-value < 0.05) were extracted from [16]. For genes upregulated in more than
one cell type, node size and color represent the greatest change observed.

2.3. Heterochronic Parabiosis Antagonizes Age-Associated Upregulation of Several Target Genes of
htNSC-Derived miRNAs

Due to their location in hypothalamic third-ventricle wall and the mediobasal hy-
pothalamic parenchyma, secretory products of htNSCs can reach both the CSF and the
bloodstream. This occurs through the fenestrated capillaries of the median eminence,
where the blood–brain barrier is interrupted [37]. The presence of htNSC-secreted exoso-
mal miRNAs in the bloodstream could partly explain their endocrine effects. This leads
us to speculate that they could mediate the rejuvenating effects observed in heterochronic
parabiosis, a surgical procedure that connects the circulatory systems of young and old mice.
To evaluate this hypothesis, we analyzed a dataset of transcriptome-wide changes across
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31 major brain cell types after heterochronic parabiosis [38]. We focused on genes targeted
by htNSC-derived miRNAs that show a reversal in their age-associated upregulation.

Our analysis reveals that the most significant changes in miRNA-targeted genes occur
in endothelial cells (Figure 4), remarkably, the cell type directly influenced by exosomes
found in young blood. This finding aligns with previous studies, indicating that brain
capillary endothelial cells are highly sensitive to age-related signals from the circulatory
system, as demonstrated by the rejuvenation on their gene expression profiles following
infusions of young plasma [39].
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to determine statistically significant differential expression.
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Recent findings suggest that approximately 10% of cerebromicrovascular endothelial
cells undergo cellular senescence in the 28-month-old mouse brain [40], a phenomenon
associated with compromised integrity of the blood–brain barrier (BBB) [41].

Consistent with a putative anti-senescence program triggered by htNSC miRNAs, our
bioinformatic analysis identified two senescence-associated genes, Btg2 and Cdkn1a (both
targeted by miR-15a-5p, miR-17-5p, and miR-20a-5p), whose age-dependent upregulation
is reversed by heterochronic parabiosis. BTG2 is an antiproliferative protein that operates
downstream of p53 to induce cell growth arrest [42]. Depletion of BTG2 in human fibrob-
lasts extends cellular lifespan, while ectopic BTG2 induces senescence [43]. BTG2 also plays
a role in promoting senescence in muscle stem cell and cardiomyocytes [44,45], indicating
its involvement in senescence signaling across various cell types. On the other hand, the
Cdkn1a gene encodes p21Cip/Waf1, which is induced during cellular senescence [46] and
controls a telomere dysfunction-mediated checkpoint that can limit longevity in mice [47].

Further experiments are required to evaluate the specific contribution of each of these
miRNAs to the transcriptional rejuvenation observed across different brain cell types, as
well as their potential role in preventing cellular senescence.

2.4. Widespread Transcriptional Changes in Aged Hypothalamus Are Putatively Associated with a
Decline in htNSC-Derived miRNAs

Recently, it has been observed that reduced expression of specific miRNAs during
aging is reflected at the transcriptome level by a loss or decline in the repression of gene
expression of their putative target genes [48]. Inspired by this observation, we delved into
the transcriptional changes in the aged hypothalamus to investigate the local effects of the
decrease in htNSC-derived exosomal miRNAs. To achieve this objective, we analyzed the
differentially expressed genes in the hypothalamus between young (2 months) and aged
(19–24 months) female mice across 11 major cell types [49]. Our focus was on identifying
widespread changes across these principal hypothalamus cell types, to avoid potential
cell-specific alterations inconsistent with a paracrine regulation of gene expression by
exosomal miRNAs.

Seven target genes of htNSC-derived miRNAs consistently show upregulation in
at least five cell types in the aged hypothalamus (Figure 5). These genes include Rps27
(also found upregulated in the whole brain dataset, as previously discussed), B2m, Fth1,
three mitochondrially encoded subunits of the electron transport chain complexes (mt-Co2,
mt-Co3 and mt-Nd4), and one subunit of the ATP synthase complex (mt-Atp6).

B2m encodes β2-microglobulin (B2M), a component of major histocompatibility com-
plex class 1 (MHC I) molecules. Interestingly, B2M is upregulated and accumulates on the
surface of senescent cells [50], constituting a bona fide senescent marker [51]. Moreover,
the absence of endogenous B2M expression abolishes age-related cognitive decline and
enhances neurogenesis in aged mice [52], suggesting a role as a pro-aging factor, potentially
suppressed by htNSC-derived miRNAs in young animals.

On the other hand, Fth1 encodes the ferritin heavy chain (H-ferritin), whose ferroxi-
dase activity converts Fe2+ to Fe3+, allowing iron atoms to be safely stored in the ferritin
complex. Interestingly, an increase in iron levels and upregulation of Fth1 and Ftl (encod-
ing the ferritin light chain) is observed early upon senescence induction by cell damage
agents [53]. Concordantly, senescent cells increase H-ferritin expression by 10-fold, con-
currently with an increase in intracellular iron levels [54]. Therefore, the suppression of
the senescent phenotype through the regulation of iron accumulation by htNSC-derived
miRNAs emerges as a promising mechanism worthy of further exploration.

Furthermore, the identification of mitochondrial-located mRNAs as putative targets
of miRNAs is not surprising, since the mitochondrial localization of many miRNAs has
been described [55] and the gene-silencing machinery by RNA interference is active inside
mitochondria [56], regulating mitochondrial RNA expression [53]. Increased mitochondrial
biogenesis and impaired turnover lead to the accumulation of mitochondria in senescent
cells, accompanied by extensive metabolic rewiring [57,58]. Moreover, a broad number
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of senescence-associated changes are dependent on mitochondria, and a reduction in
mitochondrial content prevents senescence in the aging mouse liver [58]. Whether htNSC-
secreted miRNAs antagonize the increase in mitochondrial mass as part of their anti-
senescence program may be the subject of future studies.
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3. Materials and Methods
3.1. htNSC-Secreted Exosomal miRNA Target Genes

The lists of experimentally validated target genes of miRNAs were obtained from
miRTarBase 9.0 [20]. This includes target genes supported by “strong” experimental
evidence such as reporter assays, Western blot and/or qPCR, or “less strong” evidence
derived from high-throughput techniques like Photoactivatable Ribonucleoside-Enhanced
(PAR)-Crosslinking and Immunoprecipitation (CLIP), high throughput sequencing (HITS)-
CLIP or crosslinking ligation and sequencing of hybrids (CLASH). Human genes were then
mapped to their respective mouse orthologs using the HGNC Comparison of Orthology
Predictions (HCOP) [59].

3.2. miRNA Target Gene Pathway Analysis

Pathway enrichment analysis of miRNA target genes was performed in Reactome
release 78 [21] using human Uniprot identifiers. Over-representation was assessed through
a statistical test based on the hypergeometric distribution, generating a probability score that
was then corrected for false discovery rate (FDR) using the Benjamini–Hochberg method.

3.3. Single-Cell RNA Sequencing of Brain Cells during Aging and Heterochronic Parabiosis

Differentially expressed genes (DEGs) between young male mice (2–3 months of age)
and old male mice (21–22 months) across 25 brain cell types were obtained from Ximerakis
et al. [29]. Upregulated genes were defined as those with a fold change (based on the tran-
scripts per kilobase million (TPM) values) from young to old ≥ 1.5 and an FDR-adjusted
p-value < 0.05. Conversely, DEGs between heterochronic parabionts (3–4-month-old mice
joined with 20–22-month-old counterparts) and their isochronic parabionts across 31 major
brain cell types were extracted from Ximerakis et al. [38]. Downregulated genes were deter-
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mined by a logarithmic-transformed fold change (logFC) < 0 and an FDR-adjusted p-value <
0.05.

DEGs between young (3 months) and aged (19–24 months) female mouse hypotha-
lamus was downloaded from Hajdarovic et al. [49]. Genes were considered significantly
upregulated if the adjusted p-value was <0.05 and the log2FC was >0.1.

3.4. Graphics

Graphics were generated using SRplot web server (http://www.bioinformatics.com.
cn/SRplot (accessed on 30 November 2023)) [60], GraphPad Prism 10, and Cytoscape
3.10.1 [61] with yFiles layout algorithms and Legend creator add-on.

4. Conclusions

Age-associated neuroinflammation leads to almost complete loss of hypothalamus-
residing NSCs in older mice. This event triggers the decline in htNSC secretory products
such as exosomal miRNAs, which contributed to maintaining physiological fitness in young
animals [15,62]. To complete the puzzle, we showed that these miRNAs control transcrip-
tional programs associated with cellular responses to stress, particularly cellular senescence.
Analysis of transcriptional signatures associated with aging and heterochronic parabiosis,
across the main brain cell types and especially in the aged hypothalamus, revealed putative
key genes of the anti-senescence program controlled by these miRNAs. Furthermore, we
identify the oligodendrocyte lineage and endothelial cells as the presumptive main targets
of these hypothalamic-derived exosomal miRNAs.

The current molecular model of aging proposes twelve hallmarks, grouped into
three categories: primary (causes of damage), antagonistic (responses to damage), and
integrative (responsible for age-associated functional decline) [63]. Our work merges three
integrative hallmarks, chronic inflammation, stem cell exhaustion, and altered intercellular
communication with an antagonistic hallmark, cellular senescence (Figure 6).
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Figure 6. Integrative model of the anti-senescence program triggered by htNSC-derived miRNAs
with the hallmarks of aging. Aging-dependent inflammation causes htNSC loss and diminished
exosomal miRNA secretion. Subsequent loss of decline in the repression of key target genes promotes
brain aging through cellular senescence and oxidative stress.

A decade of studies has established that the hypothalamus functions as a central control
center of systemic aging through various intercellular communication pathways [64,65].
Particularly important is the positive feedback loop between white adipose tissue (WAT)
and the hypothalamus, which promote neural activity and lipolysis, respectively, delaying
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aging and extending lifespan in mice [66,67]. Interestingly, depletion and impaired neuronal
differentiation of adult htNSCs can be triggered by dietary obesity and glucose intolerance [68],
supporting the connection between metabolic disorders and accelerated aging [69]. Preserving
htNSC activity including exosomal miRNA secretion can keep the anti-aging program active
in older individuals, supporting healthy aging and promoting longevity.

Our analysis has several limitations. As a purely bioinformatic study, the correla-
tions obtained here require experimental validation, especially to find causal relationships
between the age-dependent fall in CSF miRNA levels and a loss of or decline in gene repres-
sion of its target genes. Intracerebroventricular injection of young htNSC-derived exosomes
coupled to single-cell transcriptomics of brain cells could help to establish such causal
relationships. In addition, the use of antagomiRs, modified oligonucleotides that produce a
potent and specific inhibition of miRNAs in vivo, could elucidate hierarchical or synergistic
effects of the htNSC-secreted miRNAs in the anti-senescence transcriptional program.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25105467/s1.
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