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Abstract

A key element for successful blood transfusion is compatibility of the patient and donor red

blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and

other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which

allows developing computational methods for determining antigens from genomic data. We

describe here a classification method for determining RBC antigens from genotyping array

data. Random forest models for 39 RBC antigens in 14 blood group systems and for human

platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and

HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank.

The algorithm and models were further evaluated using a validation cohort of 111,667 Dan-

ish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) bal-

anced accuracy for 39 models was 99.9 (98.9–100)%. We were able to replicate 34 out of

39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifi-

cations was 97.1 (90.1–99.4)%. When applying models trained with the Danish cohort, the

median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was

99.3 (95.1–99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high

overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at bio-

bank-scale. Furthermore, population-specific training cohort increased the accuracies of the

models. This stand-alone and freely available method is applicable for research and screen-

ing for antigen-negative blood donors.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011977 March 21, 2024 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hyvärinen K, Haimila K, Moslemi C,

Biobank BS, Olsson ML, Ostrowski SR, et al.

(2024) A machine-learning method for biobank-

scale genetic prediction of blood group antigens.

PLoS Comput Biol 20(3): e1011977. https://doi.

org/10.1371/journal.pcbi.1011977

Editor: Yang Lu, University of Waterloo, CANADA

Received: October 9, 2023

Accepted: March 7, 2024

Published: March 21, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011977

Copyright: © 2024 Hyvärinen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data contains

potentially identifying sensitive information and

cannot be publicly shared for ethical reasons.

Genotyping and RBC antigen/phenotype and HPA-

1 typing data for the Finnish cohort are stored in

https://orcid.org/0000-0003-4605-2837
https://orcid.org/0000-0001-7905-9774
https://orcid.org/0000-0001-5288-3851
https://orcid.org/0000-0001-6681-4734
https://doi.org/10.1371/journal.pcbi.1011977
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011977&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1371/journal.pcbi.1011977
https://doi.org/10.1371/journal.pcbi.1011977
https://doi.org/10.1371/journal.pcbi.1011977
http://creativecommons.org/licenses/by/4.0/


Author summary

Blood transfusion is one of the most common clinical procedures in the hospitals and the

key element for safe transfusion is compatibility between the recipient and donor red

blood cell antigens. Precise antigen matching reduces the risk for sensitization and other

adverse transfusion outcomes. Here we describe a stand-alone and freely available random

forest classification method and models for determining red blood cell and human platelet

antigens from array technology-based genotyping data. We investigate the performance

of models trained with Finnish blood donor biobank data and further validate the method

with a large Danish cohort. The results demonstrate high overall accuracy, and the

method is suitable for biobank-scale research and screening of antigen-negative donors.

The implementation is possible in the local computing environment without sensitive

data uploads and requires only a moderate level of bioinformatic skills.

Introduction

Blood transfusion is a life-saving procedure performed widely in treating various medical con-

ditions. Despite routine practices, the safety of transfusions remains a major concern [1].

Exposure to foreign RBC antigens may result in alloantibody formation and hemolytic transfu-

sion reactions. Additionally, sensitization to non-self RBC antigens and human platelet anti-

gens (HPAs) can also occur via pregnancy and cause fetal morbidity and mortality [2,3]. The

current general practice of matching the recipient and blood donor for ABO and RhD antigens

is inadequate to prevent sensitization to other antigens. Extended matching could reduce the

risk of alloimmunization and adverse events, which are especially pronounced among patients

receiving regular transfusions [4,5].

Blood group typing of blood donors has been conventionally performed by serotyping and

is still the main method used in blood centers. To overcome limitations regarding low

throughput and lack of valid reagents for all clinically relevant antigens, numerous DNA-

based genotyping and sequencing methods have emerged within the last decades [6–10]. This

development has been enabled by the accumulating knowledge about the genetic basis of the

blood groups [11,12] and the rapid evolution of molecular methodology. However, the system-

atically extended blood group typing of blood donors and, even more so, the recipients,

remains sparse. Economic feasibility has been a major restraint to the progress. The develop-

ment of genotyping array technologies has promoted high-throughput and cost-effective

genetic studies in many fields and, in 2020, Gleadall et al. [13] introduced a microarray plat-

form for RBC antigen, human leukocyte antigens (HLA), and HPA typing for precision

matching of blood.

While accurate blood group typing is obligatory for safe transfusions, an initial screening

for potential donors could be achieved using less stringent procedures. In the last decade, the

development of machine learning approaches for high-dimensional data has provided new

opportunities for exploitation of expanding genetic data. In 2015, Giollo et al.[14] presented

BOOGIE, an RBC antigen predictor based on Boolean rules and k-nearest neighbor (k-NN)

algorithm. Decision tree -based methods, including bootstrap aggregation [15] and random

forest [16], have been utilized for imputation of HLA alleles [17,18] and killer cell immuno-

globulin-like receptor (KIR) copy number [19] and gene content [20]. To our knowledge,

these methods have not yet been implemented on RBC antigen and HPA screening. The analy-

sis of high-dimensional data with computational performance suitable for large-scale analyses

may be implemented using “RANdom forest GEneRator” software R package [21]. The
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execution is feasible in the local computing environment and sensitive data uploads are not

required.

Here we describe a stand-alone and freely available random forest classification method

and models for determining RBC antigens and HPA-1 from array technology-based genotyp-

ing data. We investigate the performance of models trained with Finnish blood donor biobank

data and further validate the method with a Danish cohort. Our results suggest that the method

is applicable for biobank-scale probabilistic determination of RBC antigens and HPA-1, and

could facilitate research and screening for antigen-negative blood donors.

Results

Evaluation of the Finnish classification models

An overview of the study design is depicted in Fig 1. In the Finnish cohort, the genotype data

was accessible for 1,192 blood donors and the RBC antigen typing data was available for 39

antigens representing 15 blood group systems. The blood group typing frequency varied

greatly depending on RBC antigen/phenotype, being at the lowest 5% for HPA-1b and at the

highest 100% for A, B, AB, O, K, D, C, c, E, and e (Table 1).

After data partitioning, the number of study subjects in the test data set was 596. The

median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9–100)%

in the test data set and accuracy metrics for all models are presented in Table A in S1 Text.

The models for antigen/phenotype positivity of AB, B, A1, A2, Ytb, Coa, Doa, Dob, Fya,

HPA-1b, K, Kpa, Ula, Jka, Lua, S, and s reached balanced accuracy of 100%. For other mod-

els, the balanced accuracy was �98.0%, except 83.3% for Lsa, 94.0% for Leb, 95.0% for

HPA-1a, and 96.0% for hrS. Accuracy metrics for the train and full data sets are presented

in Tables B and C in S1 Text, respectively. Fig 2 illustrates the distributions of accuracy

metrics over all antigens shared by different data sets. The number of false negative plus

false positive (FN + FP) samples out of all samples was low, ranging from 0 to 1% in all

models, except 2% for hrS. Detailed confusion matrices for the Finnish test, train, and full

data sets are presented in Figs A–C in S1 Text, respectively. The median (IQR) prediction

error, determined as misclassification frequency obtained from out-of-bag data, of the

Finnish models was 1.6 x 10−3 (1.9 x 10−4–7.0 x 10−3) (Table 2). Receiver operating charac-

teristic (ROC) and precision-recall curves for combined test data predictions are presented

in Fig D in S1 Text. The area under ROC curve was 99.9% with confidence interval 99.8–

99.9%.

The distributions of posterior probabilities (PP) in the test data set are depicted in Fig E in

S1 Text. The samples having PP>0.5 were classified as antigen positive and�0.5 as antigen

negative. The majority of the PPs were close to 1 for the antigen typing positive samples and

close to 0 for the antigen typing negative samples. The Coa-negative samples (only two samples

in the test data set) were classified correctly but the PPs were closer to 0.5 than to 0. One of the

three Lsa-positive samples were misclassified and the PPs for the other two were closer to 0.5

than to 1 (specificity 66.7%). The spectrum of PP distribution with some misclassifications was

observed for Cob, Leb, M, N, C, Cw, D, and hrS. Figs F and G in S1 Text depict the distribu-

tions of PPs in the train and full data sets.

Evaluation of prediction using gradient boosting method

We investigated the impact of machine learning algorithm selection using gradient boosting

method. Combined accuracy metrics over all antigens shared by different data sets for the

Finnish test data set for random forest and gradient boosting methods are presented in Fig 2A

and 2B, respectively. Table D in S1 Text presents the detailed accuracy metrics, Fig H in
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S1 Text the confusion matrices, and Fig I in S1 Text the distributions of PPs in the Finnish

test data set. The overall performance of gradient boosting was slightly lower than our random

forest classification approach.

Fig 1. Study design. Random forest classification models were generated using Finnish reference data set (n = 1,192).

Allele dosages of genes determining RBC antigens/phenotypes and HPA-1 were combined with the antigen typing

data. The dataset was divided randomly to train and test data sets. Random forest modelling was executed in the

training data set (n = 596) and the important variables were selected using permutation. The models were evaluated in

the test data set (n = 596) for prediction accuracy and errors. The final models were fitted using the full data set and

both models and the method were validated in the Danish cohort (n = 111,677).

https://doi.org/10.1371/journal.pcbi.1011977.g001
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Table 1. Blood group/HPA-1 antigen typing information of the Finnish and Danish cohorts.

Blood group/HPA

system

Antigena Finnish cohort

(n)

Antigen positivity in the Finnish cohort

(%)

Danish cohort

(n)

Antigen positivity in the Danish cohort

(%)

ABO A 1,192 40.9 111,656 41.2

ABO A1 70 62.9 17,541 75.3

ABO A2 70 38.6 433 27.0

ABO AB 1,192 8.0 111,656 4.4

ABO B 1,192 8.2 111,656 10.2

ABO O 1,192 42.9 111,656 44.2

Cartwright Yta NA NA 7,640 99.6

Cartwright Ytb 1,160 6.2 7,362 7.3

Colton Coa 1,162 99.8 7,490 98.5

Colton Cob 1,164 7.3 8,277 9.2

Dombrock Doa 1,162 53.1 7,352 62.9

Dombrock Dob 1,162 90.7 7,352 84.6

Duffy Fya 1,177 67.0 77,920 67.0

Duffy Fyb 1,175 75.1 71,096 80.8

Gerbich Lsa 190 3.2 NA NA

HPA-1 HPA-1a 232 91.4 518 97.1

HPA-1 HPA-1b 62 43.5 518 30.7

Kell K 1,192 4.7 96,497 7.8

Kell k NA NA 14,332 99.0

Kell Kpa 1,177 2.6 22,497 2.4

Kell Kpb NA NA 10,350 99.9

Kell Ula 219 15.5 NA NA

Kidd Jka 1,177 72.6 77,986 76.6

Kidd Jkb 1,177 68.5 71,840 72.7

Knops Kna NA NA 3,462 99.9

Knops Knb NA NA 3,462 6.8

Landsteiner-Wiener LWb 327 5.2 NA NA

Lewis Lea 253 10.2 9,220 17.4

Lewis Leb 253 80.2 8,925 56.5

Lutheran Lua 1,164 3.6 9,615 8.6

MNS M 1,177 87.7 29,642 78.1

MNS N 1,177 59.0 14,837 71.6

MNS S 1,177 54.2 28,949 50.4

MNS s 1,177 87.6 24,291 90.9

P1PK P1 253 75.9 7,465 77.4

Rh C 1,192 54.4 44,451 63.3

Rh c 1,192 79.4 42,968 82.2

Rh CW 1,177 3.2 40,720 3.3

Rh Cx 337 12.2 NA NA

Rh D 1,192 71.6 111,667 79.5

Rh E 1,192 19.9 89,289 28.1

Rh e 1,192 96.2 82,467 97.3

Rh hrB 1,162 96.4 NA NA

Rh hrS 1,162 97.3 NA NA

Vel Vel NA NA 11,755 99.9

NA, data not available.
a O, A1, and A2 and in this column refer to phenotype.

https://doi.org/10.1371/journal.pcbi.1011977.t001
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Validation of the Finnish random forest classification models in the Danish

cohort

The Danish validation cohort had genotype and phenotype data for 34 out of the 39 Finnish

classification models. Antigen/phenotype typing data varied from 433 for A2 to ~111,000 for

A, AB, B, O, and D (Table 1). Due to missing Finnish model variables in the Danish genotype

data, the Danish allele dosage data was harmonized using mean imputation before applying

the Finnish models.

The median (IQR) balanced accuracy for classifications was 97.1 (90.1–99.4)% and all the

evaluation metrics are presented in Table E in S1 Text. The balanced accuracies were>98.0%

for 14 models including antigen/phenotype positivity of A, AB, B, O, Ytb, Doa, Dob, HPA-1a,

Jka, Lea, S, s, E, and e. Models for antigen/phenotype positivity of A1, Cob, Fya, Fyb, HPA-1b,

K, Kpa, Lua, M, N, and Cw had balanced accuracy ranging from 91.6 to 98.0%. Six models, A2,

Coa, Jkb, Leb, D, and C had balanced accuracy ranging from 64.6 to 89.4%. The Finnish models

for LWb, P1, and c failed classification in the Danish cohort. Fig 2C illustrates the distributions

of accuracy metrics over all antigens shared by different data sets for Finnish random forest

models evaluated in the Danish full data set.

Validation of the random forest classification model algorithm in the

Danish cohort

The RBC antigen/phenotype and HPA-1 typing and genotype data available for the Danish

cohort enabled implementation of 40 Danish classification models representing 15 blood

Fig 2. Summary of prediction accuracy metrics. Distributions of accuracy metrics over all antigens shared by different test data

sets. (A) Finnish random forest models evaluated in the Finnish test data set. (B) Finnish gradient boosting models evaluated in

the Finnish test data set. (C) Finnish random forest models evaluated in the Danish full data set. (D) Danish random forest

models evaluated in the Danish test data set. NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pcbi.1011977.g002
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group systems. Due to missing genotypes (approximately 5%), missing allele dosage values

were imputed separately for train and test data sets using mean values.

Median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was

99.3 (95.1–99.8)%. The evaluation metrics for test data set are available in Table F in S1 Text

and for the train and full data sets in Tables G and H in S1 Text, respectively. More than half

(23/40) of the Danish models reached balanced accuracy of�99.0% including models for anti-

gen/phenotype positivity of A, AB, B, O, Yta, Ytb, Doa, Dob, Fya, HPA-1a, HPA-1b, Jka, Jkb, M,

Table 2. Characteristics of the Finnish classification models.

Blood group/HPA system Antigena Genes analyzed n(variants available) n(model variants) Prediction errorb

ABO ABO ABO 496 164 8.68E-04

ABO A1 ABO 496 18 1.29E-03

ABO A2 ABO 496 43 2.20E-02

Cartwright Ytb ACHE 62 12 0.00E+00

Colton Coa AQP1 108 15 4.26E-04

Colton Cob AQP1 108 39 2.03E-03

Dombrock Doa ART4 109 17 6.97E-05

Dombrock Dob ART4 109 17 0.00E+00

Duffy Fya ACKR1 57 25 6.80E-05

Duffy Fyb ACKR1 57 26 4.32E-03

Gerbich Lsa GYPC 342 81 7.71E-03

HPA-1 HPA-1a ITGB3 386 24 1.74E-03

HPA-1 HPA-1b ITGB3 386 73 2.06E-02

Kell K KEL 127 33 2.93E-05

Kell Kpa KEL 127 26 8.56E-05

Kell Ula KEL 127 21 2.01E-04

Kidd Jka SLC14A1 622 18 1.62E-04

Kidd Jkb SLC14A1 622 178 8.14E-04

Landsteiner-Wiener Lwb ICAM4 35 19 4.27E-03

Lewis Lea FUT2, FUT3 199 45 4.13E-03

Lewis Leb FUT2, FUT3 199 88 1.56E-02

Lutheran Lua BCAM 124 14 9.47E-04

MNS M GYPA, GYPB, GYPE 688 132 6.80E-03

MNS N GYPA, GYPB, GYPE 688 214 1.18E-02

MNS S GYPA, GYPB, GYPE 688 44 1.54E-05

MNS s GYPA, GYPB, GYPE 688 49 1.19E-04

P1PK P1 A4GALT, B3GALNT1 368 135 1.73E-02

Rh C RHCE, RHD 266 108 9.23E-03

Rh c RHCE, RHD 266 68 3.23E-03

Rh CW RHCE, RHD 266 53 2.80E-03

Rh Cx RHCE, RHD 266 12 4.70E-03

Rh D RHCE, RHD 266 113 7.47E-03

Rh E RHCE, RHD 266 80 1.07E-03

Rh e RHCE, RHD 266 23 1.33E-03

Rh hrB RHCE, RHD 266 20 1.39E-03

Rh hrS RHCE, RHD 266 22 7.71E-03

a O, A1, and A2 and in this column refer to phenotype.
b Misclassification frequency obtained from out-of-bag data.

https://doi.org/10.1371/journal.pcbi.1011977.t002
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N, S, s, C, c, D, E, Lea, and Knb. Balanced accuracies for A1, Cob, Fyb, K, Kpa, Lua, Cw, e, and P1

models ranged from 94.4 to 98.1%, and for A2, Coa, k, Kpb, Lub, Vel, and Leb from 70.0 to

89.3%. Danish model for Kna failed classification due to too low number of Kna-negative sam-

ples in the test data set. Confusion matrices for the Danish models in the Danish train, test and

full data sets depict the distribution of true negative (TN), FN, true positive (TP), and FP sam-

ples and are illustrated in Figs J–L in S1 Text, respectively. The median (IQR) prediction error

of the Danish models was 2.3 x 10−3 (9.3 x 10−4–7.1 x 10−3)% (Table I in S1 Text). The distri-

butions of accuracy metrics over all antigens shared by different data sets for Danish random

forest models evaluated in the Danish test data set are illustrated in Fig 2D.

Comparison of the Finnish and Danish random forest classification models

Assembly of the balanced accuracies for Finnish and Danish models in the Finnish and Danish

full data sets is presented in Table 3. When analyzing the shared 33 models, the Finnish mod-

els predicted the blood groups of the Finnish cohort more accurately than the blood groups of

the Danish cohort (median [IQR] balanced accuracy 99.9 [98.8–100]% vs. 97.1 [91.6–99.5],

p = 1.15e-06). The Danish models were performing better than the Finnish models in the

blood group classification of the Danish cohort (median [IQR] balanced accuracy 99.5 [96.5–

99.8]% vs. 97.1 [91.6–99.5]%, p = 0.006).

The number of genetic variants available for the Finnish random forest modelling ranged

from 35 to 688 depending on the blood group/HPA system and number of the important vari-

ables selected by the classifier for the final models ranged from 12 to 214 (Table 2). In the Dan-

ish genotyping data set, the number of variants varied from 42 to 766 and the final models

utilized 20–743 variants (Table I in S1 Text).

Discussion

Our study introduces random forest classification models for predicting RBC antigens/pheno-

types and HPA-1 from array-based genotyping data. The method and models were generated

utilizing blood group typing data from Finnish blood donors and further validated using a

large Danish blood donor cohort. The results demonstrate high overall accuracy, and the

method is suitable for biobank-scale screening and analysis of HPA-1 and RBC antigens.

Blood transfusion is one of the most common clinical procedures in the hospitals and the

key element for safe transfusion is compatibility between the recipient and donor RBC anti-

gens [1]. Although transfusion-related severe outcomes are rare, the prominent risk of sensiti-

zation and further alloimmunization affects especially patients dependent on recurrent

transfusions [4,5]. Extended blood group typing has proven to be beneficial by reducing the

incidence of alloantibody formation [22,23]. Additionally, studies have shown that the

extended genotyping of blood donors markedly increases the number of suitable donors for

immunized recipients [13] and enhances the supply of antigen-negative blood [6].

At present, preventive matching strategies are implemented only for specific patient groups

and, despite the obvious advantages of the extended genotyping of donors, the procedure has

not been considered feasible covering all blood donors. Over the last decades, the genotyping

of different populations has expanded widely. Using machine learning approaches to screen

blood donor and research biobank genotyping data may provide a cost-effective solution for

enlarging the pool of antigen-negative blood donors. Our random forest classification method

infers RBC antigens and HPA-1 from genotype-imputed microarray data. The R package

ranger performed fast and handled the dimensionality of input data without problems [21].

The obtained results demonstrated high balanced accuracies both in the Finnish discovery

cohort (median 99.8% for the 39 Finnish models) and in the Danish validation cohort (median
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Table 3. Balanced accuracies for the Finnish and Danish models in full data sets.

Blood group/HPA system Antigena Balanced accuracy

Finnish full data set Finnish models Danish full data set

Finnish models

Danish full data set

Danish models

ABO A 0.999 0.995 0.999

ABO A1 1.000 0.980 0.984

ABO A2 0.981 0.894 0.891

ABO AB 1.000 0.998 0.999

ABO B 1.000 0.987 0.999

ABO O 0.999 0.995 0.998

Cartwright Yta NA NA 1.000

Cartwright Ytb 1.000 0.998 0.998

Colton Coa 1.000 0.833 0.833

Colton Cob 0.988 0.926 0.963

Dombrock Doa 1.000 0.999 0.999

Dombrock Dob 1.000 0.999 0.999

Duffy Fya 1.000 0.979 0.997

Duffy Fyb 0.993 0.971 0.980

Gerbich Lsa 0.917 NA NA

HPA-1 HPA-1a 1.000 1.000 1.000

HPA-1 HPA-1b 0.986 0.939 0.999

Kell K 1.000 0.916 0.956

Kell k NA NA 0.838

Kell Kpa 1.000 0.935 0.961

Kell Kpb NA NA 0.750

Kell Ula 1.000 NA NA

Kidd Jka 1.000 0.995 0.997

Kidd Jkb 0.999 0.662 0.997

Knops Kna NA NA 0.750

Knops Knb NA NA 1.000

Landsteiner_Wiener LWb 0.998 0.500 NA

Lewis Lea 0.998 0.981 0.989

Lewis Leb 0.968 0.729 0.736

Lutheran Lua 0.988 0.956 0.964

Lutheran Lub NA NA 0.828

MNS M 0.984 0.970 0.993

MNS N 0.988 0.947 0.987

MNS S 1.000 0.995 0.997

MNS s 1.000 0.988 0.993

P1PK P1 0.984 0.500 0.965

Rh C 0.989 0.646 0.997

Rh c 0.997 0.500 0.997

Rh CW 0.999 0.918 0.953

Rh Cx 0.997 NA NA

Rh D 0.988 0.784 0.997

Rh E 0.998 0.992 0.995

Rh e 0.988 0.982 0.984

Rh hrB 0.988 NA NA

Rh hrS 0.933 NA NA

(Continued)
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99.3% for the 40 Danish models) (Table 3). The performance was not affected by nearly a

100-fold size difference between the Finnish and the Danish cohorts (~1,200 vs. ~111,000,

respectively).

Rh and MNS blood group system antigens have been challenging to determine by sequenc-

ing due to complex genetic variation and gene rearrangements [12,24]. We observed reduced

balanced accuracy in the Finnish model for hrS (93.3%) and the Danish model for Cw (95.3%).

However, the other Rh and MNS antigen models, including clinically significant E, e, C, c, S,

and s, performed accurately. The balanced accuracies for clinically significant antigens in

other systems, including K, Jka, Jkb, Fya, and Fyb, ranged from 95.6% to 100% (Table 3).

The BOOGIE method for prediction of RBC antigens was published in 2015 [14]. It builds

on 1-NN algorithm and implementation requires genotype sequencing data and curated hap-

lotype tables for the RBC antigen phenotypes. When compared, the Finnish models for ABO

and RhD performed better than the BOOGIE method (median balanced accuracy for the

Finnish ABO models 100% vs. BOOGIE ABO accuracy 94.2%; balanced accuracy for the Finn-

ish RhD model 98.8% vs. BOOGIE RhD accuracy 94.2%). The observed differences in accura-

cies could be explained by the potentially limited haplotype tables utilized by BOOGIE.

Additionally, the reported results of BOOGIE are based on low number of samples.

When applying the Finnish models to the Danish cohort, the observed decrease in balanced

accuracies was expected because of the evident genetic, genotyping, and imputation differ-

ences between the Finnish and the Danish cohorts (Table 3). The Finnish cohort was imputed

using population-specific imputation reference panel having no missingness per individual.

On the contrary, the Danish cohort was imputed using the North European reference

sequence panel resulting in an average missingness of 5%. As random forest is not able to han-

dle missing input data and the important variables of the Finnish models were not fully present

in the Danish data, we were obliged to use mean imputation for missing variant dosage data. It

is obvious that this approach also introduces errors to the data, which may partly explain the

reduced accuracy. The better performance of the Danish models in Danish cohort underlined

the benefit of the population-specific training cohort.

Tree-based ensemble methods such as random forest offer robust performance with low

risk of overfitting and gradient boosting [25] may increase accuracy by modelling residuals.

However, our XGBoost test controlling overfitting via cross-validation did not result in equal

performance when compared to our random forest approach (Fig 2), suggesting that our

model makes efficient use of available genetic data. Neural network models are a lucrative

option for imputing missing data but parameter tuning benefits from large training data [26].

However, if the input data is relatively small, using specialized tools designed for imputing

missing genotypes independently of input data size prior to modelling are a superior option to

neural networks requiring large data sets. The most effective imputation of input genotypes is

achieved using a population-specific reference panel [27]. In our case, we did not have large

Table 3. (Continued)

Blood group/HPA system Antigena Balanced accuracy

Finnish full data set Finnish models Danish full data set

Finnish models

Danish full data set

Danish models

Vel Vel NA NA 0.811

NA, data not available.
a O, A1, and A2 in this column refer to phenotype.

https://doi.org/10.1371/journal.pcbi.1011977.t003
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training set at our disposal and had only limited data from rare antigen types available. There-

fore, we adopted a modelling approach able to efficiently handle this kind of data.

The Finnish genotyping data had only one variant in the RHD region. Nonetheless, the

Finnish model for RhD performed with sufficient balanced accuracy in the Finnish cohort

(98.8%). Our method combines RHD and RHCE region variants for the modelling and the

high linkage disequilibrium may have supported the classification (Table A in S1 Text). How-

ever, the Finnish model for RhD worked poorly in the Danish cohort (78.4%), which may be

attributed to the mean imputation of missing values.

The present modelling method is restricted to the RBC antigen typing data available for the

training and test data sets, which can be considered as a major limitation because the data for

some RBC antigens are scarce. RBC antigens have demonstrated significant diversity among

populations and rare blood group variants may not be discovered without substantially large

typing numbers. The Danish model for Kna failed because of lacking Kna-negative samples in

the test data set and we were not able to create Finnish models for e.g., Vel, k, Kpb, Lua, and

LWa. It would be beneficial to validate the present method and models in non-European popu-

lations to enable systematic blood group studies in biobanks of different ethnic origins and

phenotype data content.

To our surprise, B3GALNT1 on chromosome 3 supported the prediction of P1 antigen sta-

tus in the P1PK system, even if this system is known to be governed by A4GALT on chromo-

some 22. B3GALNT1 normally governs expression of the P and other antigens in the GLOB

system [28]. Thus, our data may suggest an unknown but intriguing role of the glycosyltrans-

ferase encoded by B3GALNT1 in the synthesis of P1 antigen. This deserves further investiga-

tion beyond the scope of this study.

In the future, comprehensive donor and recipient typing and precision matching are likely

to increase. A recent publication by van Sambeeck et al. [29] demonstrated the feasibility of

preventive matching for all genotyped recipients and donors. Our method is suitable for initial

screening for antigen-negative donors at biobank-scale, presenting a cost-effective solution for

the extended blood group and HPA-1 typing. Additionally, successful prediction of polygenic

blood groups may facilitate the research of disease associations in large biobanks.

Scripts for random forest modelling and for applying the tested 39 Finnish models are freely

available in the GitHub. The implementation is possible in the local computing environment

without sensitive data uploads and requires only a moderate level of bioinformatic skills.

Study subjects and methods

Ethics statement

The Finnish study cohort consists of 1,192 blood donors belonging to the Blood Service Bio-

bank, Helsinki, Finland (https://www.veripalvelu.fi/en/biobank/). Genotype and blood group

phenotype data were obtained from the Blood Service Biobank. The study (biobank decision

002–2018) conforms to the principles of the Finnish Biobank Act (688/2012) and the partici-

pants have given written informed consent to the Blood Service Biobank.

The Danish validation cohort consists of 111,667 participants of the Danish Blood Donor

Study (DBDS) Genomic Cohort expanding on the Danish blood bank system [30,31]. The

genetic studies in DBDS have been approved by the Danish Data Protection Agency (P-2019-

99) and the Scientific Ethical Committee system (NVK-1700407).

Genotyping and genotype imputation

The genotyping and genotype imputation of the Finnish cohort have been performed origi-

nally as a part of FinnGen project (https://www.finngen.fi/en). Biobank samples were
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genotyped using FinnGen ThermoFisher Axiom custom array v2 (Thermo Fisher Scientific,

Santa Clara, CA, USA) and imputed using the population-specific Sisu v3 imputation refer-

ence panel with Beagle 4.1. Detailed description of the procedures is available at https://

finngen.gitbook.io/documentation/v/r4/methods/genotype-imputation and the marker con-

tent of the custom array v2 is downloadable at https://www.finngen.fi/en/researchers/

genotyping. The phased genotypes were filtered for the imputation INFO-score >0.6 and were

in vcf format.

In the Danish cohort, the genotyping was performed using Illumina’s Infinium Global

Screening Array and imputed using the deCODE genetics’ (Reykjavik, Iceland) North Euro-

pean reference sequence panel. Unphased genotypes were filtered for the imputation INFO-

score >0.75, minor allele frequency >0.01, Hardy–Weinberg equilibrium P-values <1 × 10−4,

and samples for missingness per individual <3%.

RBC antigen and HPA typing

The RBC antigen and HPA-1 phenotypic information for the Finnish and Danish cohorts is

presented in Table 1. The availability of the phenotype data varied in a wide range depending

on the antigen due to the different testing criteria practices. In the Finnish cohort, RBC antigen

and HPA-1 typing was performed at the FRCBS Blood Group Unit by routine methods and

the results were obtained using validated serological and genotyping techniques.

The sources for RBC antigen and HPA-1 typing results were the Danish electronic blood

bank systems and the typing was performed using serological methods, except for Vel-status,

which was determined using polymerase chain reaction technique.

Classification random forest models

Fig 1 presents an overview of the study design. RBC antigen and HPA-1 coding genes and the

genetic regions used in the models are presented in Table J in S1 Text. The input and output

of the model fitting are presented in Fig 3. The input of the model is imputed genotype data in

chromosomal variant call format (VCF) and antigen data in text format (e.g., Kpa+/Kpa-). The

outputs are the models and associated information in R Data Serialization (RDS) format and

accuracy statistics and important variables in figure and text format. The genomic regions of

the genes encoding the target antigens are extracted from the VCF data, converted to PLINK

format, and further into allele dosages. The models for the antigens were generated separately

using the same hyperparameters. Only antigens having at least four cases in each respective

typing data class were included, resulting altogether in 39 models. For the Finnish reference

data set, SNVs in RBC antigen and HPA-1 coding genetic regions ± 2,000 bp flanking regions

were utilized in dosage format. Table 2 presents the number of SNVs available for each model.

Only samples having full dosage data were used. The genetic and antigen typing information

were combined into a single full data set and divided randomly 1:1 into train and test data sets.

R v4.3.0 environment [32] was used for the implementation of analyses. Classification ran-

dom forest models were created using the R package ranger v0.13.1[21]. The number of trees

was 2,000 and split criteria based on node impurity measured by the Gini index. Class weights

were applied due to unbalanced outcome classes. Number of variables to possibly split at each

node (mtry) was number of SNVs divided by 2 and the variable importance was determined

by permutation. Feature selection was based on variable importance >0 and the model was re-

fitted using these important SNVs only. The number of important variables and prediction

errors for each antigen model are presented in the Table 2. Prediction error was determined as

misclassification frequency obtained from out-of-bag data and prediction on the test set. The
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important variables and their importance values for the Finnish models are listed in S1 Data.

The full data set was used in fitting the final models.

Evaluation of prediction using gradient boosting method

To compare our random forest with feature selection approach to another tree-based classifi-

cation algorithm, we fitted a binary logistic eXtreme Gradient Boosting (XGBoost)[25] model

implemented by the R library xgboost v 1.7.6.1(33) to the Finnish training set data and evalu-

ated its performance in the independent test set. To minimize overfitting of the XGBoost

model, we performed 100 random data partitionings (2/3 train, 1/3 test) within the training set

and selected the optimal number of boosting rounds based on minimum negative log-likeli-

hood from each iteration. Within the iterations, we used an early_stopping_rounds parameter

value of 4, indicating that the training with a validation set stops if the performance doesn’t

improve for four rounds. The final number of boosting rounds applied to the model fitted on

the full training data was an average over the 100 iterations.

Model evaluation metrics

The model accuracy was evaluated using sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and balanced accuracy. The data was wrangled using

tidyverse v1.3.1 package[34] and the evaluation metrics were derived using caret v6.0–92[35].

For each model, the number of true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN) were determined. Sensitivity was defined as TP / (TP + FN), specificity

as TN / (TN + FP), PPV as TP / (TP + FP), NPV as TN / (TN + FN)[36]. Balanced accuracy

accounts for imbalanced classification and was defined as (sensitivity + specificity) / 2. ROC

and precision-recall curves were generated using ROCR v. 1.0–11 package.

Fig 3. Random forest model fitting. Input data for model fitting include target genotype and phenotype data and gene-phenotype data provided in the

GitHub repository https://github.com/FRCBS/Blood_group_prediction. Outputs of the classification are models for the target antigens and related accuracy

information.

https://doi.org/10.1371/journal.pcbi.1011977.g003
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Validation of the Finnish models and the random forest method for

generating the models

The models obtained using the Finnish data set were applied to the Danish cohort. The input

and output of the application of the Finnish models are presented in the Fig 4. The implemen-

tation required imputed genotype data in chromosomal variant call (or PLINK) format and

provided Finnish prediction models and gene information in RDS format. The outputs were

prediction results and associated information (RDS), and combined posterior probability

results in text format. The Danish allele dosage data was harmonized by naming and allele ori-

entation for compatibility with the Finnish models and the dosage data for the missing impor-

tant variables was imputed using mean values.

The model-generating method was further validated by fitting the models on the Danish

data set to create models specific to the Danish cohort. In the Danish data set, the percentage

of missing genotypes was on average 5% depending on the genetic region of the blood group/

HPA system. Missing allele dosage values were imputed separately for train and test data sets

using mean values before classification random forest step. Characteristics of the Danish mod-

els are presented in Table I in S1 Text. The important variables and their importance values

for the Danish models are listed in S2 Data. The evaluation metrics for both prediction and

modelling were defined as depicted in the “Model evaluation metrics” section.

The significance of variation of balanced accuracies was analyzed using Mann-Whitney-

Wilcoxon Test implemented with R v3.6.1.

Supporting information

S1 Text. Document contains supplementary tables and figures. Table A. Accuracy metrics

for the Finnish random forest models in the Finnish test data set. Table B. Accuracy metrics

for the Finnish random forest models in the Finnish train data set. Table C. Accuracy metrics

for the Finnish random forest models in the Finnish full data set. Table D. Accuracy metrics

for the Finnish gradient boosting models in the Finnish test data set. Table E. Accuracy metrics

for the Finnish random forest models in the Danish full data set. Table F. Accuracy metrics for

the Danish random forest models in the Danish test data set. Table G. Accuracy metrics for the

Fig 4. Application of the Finnish models. Input data for application include target genotype data and Finnish model file

provided in the GitHub repository https://github.com/FRCBS/Blood_group_prediction. Outputs of the classification are

prediction results for the antigens.

https://doi.org/10.1371/journal.pcbi.1011977.g004
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Danish random forest models in the Danish train data set. Table H. Accuracy metrics for the

Danish random forest models in the Danish full data set. Table I. Characteristics of the Danish

random forest classification models. Table J. Blood group/HPA-1 genes and genetic regions.

Fig A. Confusion matrices for the Finnish random forest models in the Finnish test data set.

Fig B. Confusion matrices for the Finnish random forest models in the Finnish train data set.

Fig C. Confusion matrices for the Finnish random forest models in the Finnish full data set.

Fig D. Receiver operating characteristic and precision-recall curves for the Finnish random

forest models in the Finnish test data se. Fig E. Posterior probability boxplots for the Finnish

random forest models in the Finnish test data set. Fig F. Posterior probability boxplots for the

Finnish random forest models in the Finnish train data set. Fig G. Posterior probability box-

plots for the Finnish random forest models in the Finnish full data set. Fig H. Confusion matri-

ces for the Finnish gradient boosting models in the Finnish test data set. Fig I. Posterior

probability boxplots for the Finnish gradient boosting models in the Finnish test data set. Fig J.

Confusion matrices for the Danish random forest models in the Danish train data set. Fig K.

Confusion matrices for the Danish random forest models in the Danish test data set. Fig L.

Confusion matrices for the Danish random forest models in the Danish full data set.

(PDF)

S1 Data. Document contains list of important variables for the Finnish random forest

models.

(XLSX)

S2 Data. Document contains list of important variables for the Danish random forest

models.

(XLSX)
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