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Abstract: Satellite-Drone Image Cross-View Geolocalization has wide applications. Due to the
pronounced variations in the visual features of 3D objects under different angles, Satellite-Drone
cross-view image geolocalization remains an unresolved challenge. The key to successful cross-view
geolocalization lies in extracting crucial spatial structure information across different scales in the
image. Recent studies improve image matching accuracy by introducing an attention mechanism
to establish global associations among local features. However, existing methods primarily focus
on using single-scale features and employ a single-channel attention mechanism to correlate local
convolutional features from different locations. This approach inadequately explores and utilizes
multi-scale spatial structure information within the image, particularly lacking in the extraction and
utilization of locally valuable information. In this paper, we propose a cross-view image geolocal-
ization method based on multi-scale information and a dual-channel attention mechanism. The
multi-scale information includes features extracted from different scales using various convolutional
slices, and it extensively utilizes shallow network features. The dual-channel attention mechanism,
through successive local and global feature associations, effectively learns depth discriminative
features across different scales. Experimental results were conducted using existing satellite and
drone image datasets, with additional validation performed on an independent self-made dataset.
The findings indicate that our approach exhibits superior performance compared to existing methods.
The methodology presented in this paper exhibits enhanced capabilities, especially in the exploitation
of multi-scale spatial structure information and the extraction of locally valuable information.

Keywords: geolocalization; cross-view image matching; multi-scale information; attention mechanism

1. Introduction

With the rapid development and widespread application of imaging sensors, there has
been an exponential growth in the availability of earth observation images. Among them,
drone images are abundant and information-rich, yet many lack geographical location
information, posing challenges for practical applications. In contrast, high-resolution
satellite imagery typically includes accurate geographic location information, serving
as a spatial reference for locating objects in consumer-grade images. Due to significant
differences in the observation perspective and distance between these two types of images,
the visual features of the same target undergo substantial changes, posing considerable
challenges for spatial correlation in images from different perspectives. Therefore, exploring
effective cross-view image geolocation techniques to spatially correlate surface images
acquired under different conditions has become a current research focus.

Cross-view image geolocation is a technology that involves spatially matching the
same target region in images captured from different perspectives, such as ground-level,
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unmanned aerial vehicles (UAVs), and satellite viewpoints, to obtain the geographical
location of the target in the matching image. This technology finds applications in various
domains, including autonomous driving [1], precision delivery [2], and mobile robot
navigation [3]. The key to cross-view image geolocation is learning discriminative features
to bridge the spatial gaps between different viewpoints, and these features need to be
computed at multiple scales. Specifically, some locations can be easily distinguished by
overall features such as unique building shapes and texture colors, as shown in Figure 1a.
However, for certain locations, detecting specific details—such as the top of a particular
building or the distribution of roads and trees—corresponding to local image patches is
crucial for distinguishing between visually similar places. Therefore, optimal matching
results can only be achieved by computing and combining features at different scales.
This multi-scale matching process mirrors how humans approach re-identification tasks.
For instance, in Figure 1b, where building colors and semantic information are similar,
humans would carefully observe subtle local differences, such as the top details of the
buildings and the solar panels on the right, to conclude that these are two different locations.
In contrast, for Figure 1c, where the building shapes and top information are nearly
identical, distinguishing between the two locations can only be achieved by examining the
distribution of roads and trees.

Figure 1. The difficulty levels of matching different architectural scenes and the granularity of
attention to specific regions during the matching process. (a) Easy judgment of whether there is a
match. (b) Moderate judgment of whether there is a match. (c) Difficult judgment of whether there is
a match.

Numerous deep learning methods aim to capture the overall semantic information
of images. The latest research approach [4], leveraging the Vision Transformer [5], has
improved the global correlation of local features, thereby enhancing image matching
accuracy. However, existing methods predominantly focus on using single-scale features.
Simultaneously, the use of a single-channel attention mechanism to correlate local features
from different locations falls short in fully exploiting and utilizing multi-scale spatial
structure information within the image, particularly in the extraction and utilization of
locally valuable information. Based on previous research experience analysis, despite
the multi-head self-attention module capturing global-range dependencies, making the
receptive field of the Vision Transformer gradually more global midway through the
network, the receptive field of the Vision Transformer also exhibits a strong dependence
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on the central patch. Therefore, as depicted in Figure 2, it can be observed that the regions
emphasized by the pure Vision Transformer method [4] are more concentrated in the
central part.

Figure 2. The pure Vision Transformer method [4] extracts the heatmap of image features.

To address the shortcomings of existing methods, this paper proposes a novel frame-
work called MIFT, which stands for Multi-scale Information Fusion based on Transformer.
Specifically, MIFT achieves the fusion of multi-scale patch embeddings and multi-scale
hierarchical features through the aggregation of convolutional features at different scales.
This approach aims to extract detailed spatial structure and scene layout information at
multiple scales. Additionally, MIFT utilizes self-attention mechanisms to capture global-to-
local semantic information, enhancing image-level feature matching. The contributions of
this paper can be summarized as follows:

(1) We propose a Transformer-based cross-view geographic localization method, which
integrates patch embeddings and hierarchical features separately to fully explore
multi-scale contextual information.

(2) A global–local range attention mechanism is designed to learn relationships among
image feature nodes by employing different grouping strategies for patch embeddings,
enabling the capture of overall semantic information in the image.

(3) We substantiate the effectiveness of our approach on the University-1652 dataset and
an independent self-made dataset. Our method demonstrates significantly superior
localization accuracy compared to other state-of-the-art models. Code will be released
at https://github.com/Gongnaiqun7/MIFT.

2. Related Works

A. Cross-View Geolocalization

In recent years, cross-view geolocation has garnered increasing attention due to its
vast potential applications. Before the advent of deep learning in the field of computer
vision, some methods focused on utilizing manually designed features [6–10] to accomplish
cross-view geolocation. Inspired by the tremendous success of Convolutional Neural Net-
works (CNNs) on ImageNet [11], researchers found that features extracted by deep neural
networks could express higher-level semantic information compared to manually designed
features. Current cross-view image geolocation mainly falls into two categories: matching
ground images with satellite images and matching drone images with satellite images.

Early geolocation research primarily focused on ground images and satellite images.
Workman [12] and others were the first to use two publicly available pretrained models to
extract image features, demonstrating that deep features could differentiate images from dif-
ferent geographical locations. Lin [13] and others, inspired by face verification tasks, trained
a Siamese AlexNet [14] network to map ground images and aerial images into a feature
space, optimizing network parameters using contrastive loss functions [15,16]. Tian [17]
employed Fast R-CNN to extract building features from images and designed a nearest
neighbor matching algorithm for buildings. Hu [18] and others inserted NetVLAD [19]

https://github.com/Gongnaiqun7/MIFT
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to extract discriminative features. Liu [20] and others found that azimuth information
is crucial for spatial localization tasks. Zhai [21] and others utilized the semantic seg-
mentation map to help semantic alignment. Shi [22] and others believed that existing
methods overlooked the appearance and geometric differences between ground views and
satellite views, approximating the alignment of satellite views with ground views using
polar coordinate transformation. Regmi [23] and others applied Generative Adversarial
Networks [24] (GANs) to cross-view geolocation, synthesizing satellite views from ground
views using GANs for image matching. Zhu [25] and others obtained the rough geographic
location through retrieval and refined the image’s geographic location by predicting offset
through regression. The above research mainly focuses on the cross-view geolocation task
between early ground-based and satellite images, primarily bridging the impact caused by
spatial domain differences from the perspective transformation aspect.

Recent research results indicate that feature representation is crucial for model per-
formance. Additionally, in recent years, studies on cross-view image geolocation suggest
that increasing viewpoints can enhance geolocation accuracy. Therefore, researchers have
introduced drone images and attempted to capture various robust features to address
geolocation challenges. Zheng [26] and others constructed the University-1652 dataset,
comprising satellite images, ground images, and drone images. They treated all view
images from the same location as one category and employed a classification approach
to accomplish geolocation tasks. They optimized the model using instance loss [27] and
validation loss. Ding [28] achieved matching between drone images and satellite images
through location classification, addressing the issue of imbalanced samples between satel-
lite and drone images. Wang [29] proposed a ring partition strategy to segment feature
images, making the network focus on the surroundings of target buildings, thereby ob-
taining more detailed information and achieving significant performance improvements
on the University-1652 dataset. Tian [30] considered the spatial correspondence between
drone-satellite views and surrounding contextual information, obtaining more context
information. Zhuang [31] introduced a multi-scale attention structure to enhance salient
features in different regions. Dai [4] achieved automatic region segmentation based on
the heat distribution of Transformer feature maps, aligning specific regions in different
views to improve the model’s accuracy and robustness to location variations. Zhuang [32]
proposed a Transformer-based network to match drone images with satellite images. This
network classifies each pixel in the image using pixel-wise attention, matching the same
semantic parts in two images.

B. Multi-scale Representation

Multi-scale representation refers to the sampling of signals at different granularities.
Typically, different features can be extracted at different scales, allowing for the completion
of various tasks. FPN [33] achieves the fusion of features at different scales by constructing a
pyramid-shaped feature map. HRNet [34] employs parallel branches at multiple resolutions,
coupled with continuous and bidirectional information exchange between branches, to
simultaneously achieve semantic and precise positional information. PANet [35] introduces
a path aggregation mechanism, which effectively captures the correlated information
between multiscale features. Among them, FPN is the most popular one in practical use
for its simplicity and universality; however, existing FPN directly collects multi-scale
features from the original image, which has limitations. This study attempts feature-level
optimization to enhance the capability of multi-scale feature representation.

C. Attention Mechanism

The attention mechanism, as an effective means of feature selection and enhancement,
has been widely applied across various domains of deep learning. Models structured
around attention mechanisms not only capture positional relationships among information
but also measure the importance of different features based on their respective weights.
The Transformer [36] model achieves global sequence modeling through self-attention
mechanisms. BERT [37], utilizing bidirectional Transformer encoders for pre-training,



Remote Sens. 2024, 16, 941 5 of 19

demonstrates remarkable performance across various natural language processing tasks.
GPT [38] employs autoregressive Transformer decoders to excel in language generation
tasks. Self-Attention [39] models introduce structured self-attention mechanisms, effec-
tively capturing crucial information within input sequences. Recently proposed, the Swin
Transformer [40] model achieves performance comparable to Transformer models in natural
language processing, leveraging hierarchical attention mechanisms and shifted windows in
the domain of image processing. Collectively, these contributions advance the development
of attention mechanisms, endowing diverse tasks with robust modeling capabilities and
yielding breakthroughs in fields such as natural language processing and computer vision.

3. Proposed Method

In this section, we introduce the details of our proposed method including the complete
network structure, as shown in Figure 3. MIFT consists of three components. The first
component, MEFF module, constructs multi-scale features. The second component, GLRA
module, establishes feature correlations from a global to local scope. The third component,
Segmentation Alignment Branch, accomplishes pixel-level feature matching.

Figure 3. The framework of the proposed method.

3.1. Network Architecture Overview

In this section, we introduce our proposed method, MIFT, and the complete network
structure is illustrated in Figure 3. Firstly, the image is input into the multi-scale embedding
fusion module (MEF), which generates multi-scale embeddings by taking the output of the
previous stage (or input image) as input. Subsequently, several global–local range attention
modules (GLRA) are added after MEF to explore the global structural information and
local details of the image. Finally, the features extracted at different stages are input into
the multi-scale feature fusion module (MFF). Additionally, a semantic segmentation branch
is designed to achieve alignment of different semantic parts from two viewpoints. During
the training process, metric learning is employed, and triplet loss is applied to each branch
to minimize the distance between features with the same content. In the testing process,
Euclidean distance is used to calculate the similarity between the query image and the
database images. The retrieved images are then ranked based on their similarity.
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3.2. Multi-Scale Embedding and Feature Fusion (MEFF)

In constructing multi-scale information, we perform fusion separately for patch em-
bedding and hierarchical features. Regarding patch embedding, Figure 4a illustrates
representations at different scales for two embeddings. It can be observed that solely con-
sidering the representation at a small scale makes it challenging to discern the relationship
between the two embeddings, making it difficult to establish dependencies. Conversely,
representation at a larger scale can provide rich semantic information to establish associa-
tions. Traditional Transformer variant networks such as Swin [40] and PVT [41] typically
employ a single size of convolutional kernel for sampling at each stage of embedding
construction. However, they may fail to establish strong dependencies between different
embeddings. So, this paper constructs embeddings by considering multi-scale patches,
achieved through multi-scale convolution followed by aggregation. For each central posi-
tion, different-sized convolutional kernels are used to convolve with patches at different
scales around this central position. The results are then concatenated, with the strides of
different convolutions being the same. Taking the MEF in Stage 1 as an example, it takes
the image as input and uses four convolutional kernels of different sizes for sampling. The
strides and padding of these four kernels are controlled to generate the same number of
embeddings. Different projection dimensions are set for each scale to control the overall
budget of MEF, with the projection dimension inversely proportional to the kernel size.
The specific numerical settings are provided in Figure 4b and its sub-table. Two different
convolutional kernels (2 × 2 and 4 × 4) are used in other stages. Inspired by pyramid-
structured models like Swin and PVT, the strides of MEF in other stages are set to 2 × 2 to
reduce the number of embeddings to one-fourth.

Figure 4. (a) The representations of embeddings at different sizes. (b) Schematic diagram of the
MEF module (using the first stage as an example). The input image is sampled by four different
convolutional kernels (4 × 4, 8 × 8, 16 × 16, 32 × 32), all with the same stride (4 × 4). Consequently,
each embedding is constructed by considering patches at four different scales.

For the feature fusion module, we employ deep features to weight shallow fea-
tures within the module and then concatenate the deep features with the weighted shal-
low features. As illustrated in Figure 5, we follow common practices [42–44] by using
four 1 × 1 convolutional layers to reduce the dimensionality of the output features from the
four stages. The channel numbers are reduced from 768, 384, 192, and 96 to 512, 128, 64, and
64, respectively. Prior to weighting and fusion, shallow features undergo downsampling
and convolution. We define a series of 3 × 3 convolutions with batch normalization [45]
and ReLU [46] activation functions to process shallow features. The specific parameters for
the convolutional layers (Convn) are detailed in Table 1.
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Figure 5. Schematic diagram of the MFF module.

Table 1. Convolutional Layer Parameters in the MFF Module.

Convn

Conv1 (512, 512, 3, 1, 1) Conv2 (512, 128, 3, 1, 1)
Conv3 (128, 64, 3, 1, 1) Conv4 (512, 64, 3, 1, 1)
Conv5 (640, 640, 3, 1, 1) Conv6 (64, 64, 3, 1, 1)
Conv7 (128, 64, 3, 1, 1) Conv8 (512, 64, 3, 1, 1)
Conv9 (704, 704, 3, 1, 1) Conv10 (768, 768, 3, 1, 1)

3.3. Global–Local Range Attention (GLRA)

In order to address the Transformer’s tendency to capture more global dependencies
and considering the challenge of increased computational complexity due to the large
number of embeddings generated when using smaller convolutional kernels for multi-
scale embedding, we devised a global–local range attention mechanism (GLRA). This
mechanism aims to capture rich semantic information and fine-grained features in images.
For local range attention, like Swin, our method also performs attention within a window
range. We group adjacent t × t embeddings, resulting in multiple sets of local information.
Taking Figure 6a as an example, by reshaping the original feature map of size 4 × 4 × C,
we obtain four groups of 2 × 2 × C embeddings, which are then subjected to attention
computation. We believe that performing attention within a moving window range in the
Swin model could lead to increased computational complexity and a potential concentration
of attention on a few positions within the input sequence, thereby neglecting information
from other positions. Therefore, for global-range attention, we employ a fixed stride
(e.g., 2 or 3) to sample rows and columns of the original feature map, producing multiple
sets of global information. Illustrated in Figure 6b, for the original 4 × 4 × C feature
map, using a 1 × 1 convolutional layer with a stride of 2, we similarly obtain four groups
of 2 × 2 × C embeddings for attention processing. Since adjacent pixel positions in an
image convey similar information, the GLRA provides a global receptive field, resulting
in an almost global attention. Finally, the entire Transformer block is formed by stacking
two self-attention blocks. Both self-attention blocks operate based on windows and employ
the same attention computation as in Vision Transformer (ViT), with the constraint that self-
attention computation is restricted to within each group. As shown in Figure 6c, the main
distinction lies in the grouping strategy: one considers local information while the other
considers global information. This structural design effectively leverages comprehensive
global information to aid in matching images from the same geographical location.
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Figure 6. (a) Local range attention. (b) Global range attention. (c) Transformer block.

3.4. Semantic Segmentation and Pixel Alignment

Although extracting robust global features at multiple scales is crucial, previous
research has highlighted the importance of part-based methods for image retrieval [4,29,32].
Aligning specific semantic parts in images is a simple way to implement an end-to-end
trained part-based approach. Without introducing additional supervisors, we perform
pixel-level alignment between different semantic information in two-view images based
on the heat map of the stage 4 feature map. Firstly, we calculate the heat value for each
patch. The feature map of Stage 4 can be represented as F, with a size of 1 × 49 × 768
(where 1 represents batch size, 49 represents the number of patches, and 768 represents the
dimension, i.e., the length of the feature vector for each patch). By averaging the feature
vectors of each patch, we obtain the heat value for each patch, which can be expressed
as follows:

H j =
1

768∑768
i=1 Pi j = {1, 2, . . . , 49} (1)

In the formula, H j represents the heat value of the j-th patch, and Pi represents the i-th
value of the feature vector corresponding to the j-th patch. After these operations, the size
of F is 1 × 49 × 1. The result is shown in Figure 7a.

Figure 7. (a) Heat values of each patch. (b) Region partition rules.

Subsequently, we sorted the heat values of H1−j in ascending order, as illustrated
in Figure 7b. We calculated the gradient changes between adjacent patches, identified
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the n − 1 patches with the maximum gradient changes as breakpoints, and then divided
all patches into different regions (n) based on the positions of these breakpoints. Each
region was labeled as a distinct category. Taking n = 3, which divides all patches into
three parts, as an example, through computation, we identified the two positions with
significant gradient changes indicated by the red arrows in Figure 7b. Consequently, at
these positions, we classified all patches into three categories: purple patches were labeled
as trees, red patches as roads, and green patches as buildings. The entire process can be
represented using the argmax function and first-order central differences:

iposition = argmax(
H j+1 − H j

2
) j = {1, 2, . . . , 49} (2)

After the aforementioned operations, we divided all patches into n regions based on
the values of the heat map. As is well-known, directly using class labels may not be efficient
for classification. Therefore, it is necessary to transform the data into feature vectors and
input them into the classifier layer. Thus, we performed pooling operations on patches of
different categories to obtain the feature vector Vi. The expression for Vi is as follows:

Vi =
1

mi ∑
mi

j=1 f j
i i = {1, 2, . . . , n} (3)

where n represents the number of different regions, f i
j is the feature vector of the j-th patch

in the i-th region, and mi is the total number of patches in the i-th region. In short, Vi is
obtained by averaging pooling operations on all patches of each region. After these steps,
we obtain feature vectors for the corresponding regions, and then classify each feature
vector using the Classifier Layer. Thus, we obtain pixel-level local feature representations
for different semantic parts in the image.

3.5. Loss Function and Learning Strategy

Cross-view image geolocalization can be fundamentally considered as an image re-
trieval task. Image retrieval is a feature matching problem, and instead of treating each
target as a separate category, transforming the image retrieval problem into an image
classification problem, metric learning aims to make the features of the same category
more similar and those of different categories more distinct. This optimization approach is
more direct. Therefore, this paper employs triplet loss to minimize the distance between
feature vectors of the same category under different perspectives. Following previous
studies [4,47], the traditional Euclidean distance is used and defined as follows:

TL = max(
∥∥Fa − Fp

∥∥
2 − ∥Fa − Fn∥2 + M, 0) (4)

In the equation, ||.||2 represents the 2-norm, Fa is the feature vector of the query image
‘a’, Fp is the feature vector of an image with the same category as ‘a’, and Fn is the feature
vector of an image with a different category to ‘a’. In our experiments, we computed
the triplet loss with a threshold M = 0.3. To enable the model to establish more accurate
matching relationships, we applied the triplet loss to all regions to reduce the distance
between regions, as illustrated in Figure 3, where the triplet loss is applied to all positions.
This includes both the multi-scale global features, serving as the image-level output, and
the pixel-level output of various semantic local features.

It is worth noting that the task of cross-view image geolocation involves matching
images from different perspectives rather than distinguishing images from the same per-
spective. Therefore, we only apply the triplet loss between different views. For instance, as
illustrated in Figure 8, we extract an image from the light green set (drone or satellite view)
and calculate triplet loss with all images from the light purple set (satellite or drone view).
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Figure 8. Calculation of triplet loss. The numbers 1–8 represent the categories of images. The light
green set represents 8 drone views or satellite views, and the light purple set represents 8 satellite
views or drone views. dist_ap represents the distance between images of the same category; dist_an
represents the distance between images of different categories. The red ‘×’ indicates that the distance
between images from the same perspective is not calculated.

4. Experiment

In Section 4.1, we first introduce the public large-scale cross-view geolocalization
datasets and evaluation protocols used in our experiments. Then, in Section 4.2, the
implementation details are described. Next, the comparison with state-of-art methods is
given in Section 4.3, followed by ablation studies in Section 4.4.

4.1. Datasets and Evaluation Metrics
4.1.1. University-1652 Dataset

In this work, we utilized the University-1652 dataset, as published by Zheng et al. [26].
Unlike constructing ground panoramic images to match satellite images in CVUSA [48] and
CVACT, this dataset is unique in that it is the only benchmark dataset with both satellite
and drone view images of buildings. The dataset comprises 1652 geographic targets from
72 universities worldwide. Each target includes three views: satellite view, drone view,
and ground view. To mitigate the high cost of aerial control and drone flight, all drone
and ground views were collected using a 3D engine named Google Earth, while satellite
view images were obtained from Google Maps. The drone’s perspective in Google Earth is
controlled through simulated camera angle adjustments, with the viewpoint height ranging
from 256 m to 121.5 m. Each target consists of 1 satellite image, 54 drone images, and a
small number of ground images.

The dataset is divided into a training set and a test set. The training set includes
701 buildings from 33 universities, while the test set includes 951 buildings from
39 universities. There is no overlap between the two sets. The original size of the captured
images is 512 × 512 pixels. It is worth noting that, for testing in the drone-to-satellite
view target localization task, the query image set consists of 37,855 drone view images and
701 true-matching satellite view images. The gallery contains 250 satellite view interference
images, with only one true-matching satellite view image under this configuration. In the
satellite-to-drone view navigation task, the gallery has 701 satellite view query images,
37,855 true-matching drone view images, and 13,500 drone view interference images. The
specific distribution of each data group is shown in Table 2. Sample images from the dataset
are illustrated in Figure 9.
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Table 2. Distribution of image data in University-1652.

Split Views Images Classes Universities

Train
Drone 37,854 701

33Satellite 701 701
Street 11,640 701

Test

Drone Query 37,854 701

39

Satellite Query 701 701
Street Query 2579 701

Drone Gallery 51,355 951
Satellite Gallery 951 951
Street Gallery 2921 793

Figure 9. Sample images from the University-1652 Dataset.

4.1.2. Self-Made Dataset

Due to the fact that all the drone images in the University 1652 dataset were extracted
from 3D models, it may not be sufficient to prove its applicability in real drone scenarios.
To further validate the model’s generalization ability in different scenarios, we captured
aerial images of 42 buildings in the University Town of West Coast New Area, Qingdao,
Shandong Province, China. Additionally, we obtained corresponding satellite images
from Google Earth. Furthermore, we augmented the dataset with 30 additional drone and
satellite images as distractor images for validation purposes. An example of the samples is
depicted in Figure 10.

Figure 10. Sample Images from the self-made Dataset.
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4.1.3. Evaluation Protocols

In our experiments, Recall@K (R@K) and Average Precision (AP) are employed to
evaluate the performance of the model. Higher values of R@K and AP indicate superior
model performance. R@K is determined by calculating the proportion of truly matched
images within the top K results in the ranking list. The computation formula is expressed
as follows:

Recall@K =

n
∑

i=1
Si,k

n
(5)

In this context, n represents the number of images in the query set. For a given query
image with index i, the value of Si,k is 1 if the top K ranked results include the true matching
images and 0 otherwise. Common choices for K include 1, 5, 10, and 1% of the total number
of images in the reference image library. The Recall@1 accuracy is considered the most
crucial metric in this evaluation.

AP (Average Precision) is a commonly used metric to measure the precision of retrieval
systems. The calculation is expressed as follows:

AP =

n
∑

k=1
P(k)gt(k)

Ngt
(6)

In this context, n represents the number of images in the candidate image library. P(k)
denotes the precision of the top k results in the retrieval ranking. If the kth image is a correct
match for the query image, gt(k) takes the value of 1; otherwise, it is 0. Ngt represents the
total number of query images with true matches in the candidate image library.

4.2. Implementation Details

In data preprocessing, the training images are resized from 512 × 512 to 224 × 224,
and random flips and random cropping augmentations are applied. Considering that
each category has only one satellite image, we employ a multiple sampling strategy by
expanding the satellite set through image augmentation to alleviate the imbalance of images
from different domains, as detailed in Section 4.4.4. During training, we use stochastic
gradient descent (SGD) as the optimizer with a momentum of 0.9 and weight decay of
0.0005 to optimize the model. For the initial learning rate, the backbone parameters
are set to 0.003, and the rest of the learnable parameters are set to 0.01. After 100 and
120 iterations, the learning rate for all parameters is reduced to one-tenth of the original,
and the model is trained for a total of 200 iterations. Regarding parameter initialization, we
apply Kaiming initialization [49] to the classifier module. In testing, we utilize Euclidean
distance to measure the similarity between the query image and candidate images in
the image library. Our model is implemented using the PyTorch framework, and all
experiments are conducted on an NVIDIA RTX A6000 GPU with 64 GB of memory (Nvidia
Corporation, Santa Clara, CA, USA).

4.3. Comparison with Other Methods
4.3.1. Quantitative Statistics

On the University-1652 dataset, our proposed MIFT is compared with several existing
competitive methods. As shown in Table 3, all our experiments utilize only drone views
and satellite views from the dataset. In the Drone->Satellite task, R@1 is 87.84% and AP
is 89.62%. In the Satellite->Drone task, R@1 is 92.30% and AP is 87.66%. Its performance
surpasses advanced methods such as LPN [29], FSRA [4], SGM [32], and PAAN [50].
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Table 3. The comparison with other state-of-the-art results on the University-1652 dataset.

Method
Drone->Satellite Satellite->Drone

R@1 AP R@1 AP

University-1652 [26] 58.49 63.13 71.18 58.74
Instance Loss (Baseline) [27] 58.23 62.91 74.47 59.45
Instance + GeM Pooling [51] 65.32 69.61 79.03 65.35

LCM [28] 66.65 70.82 79.89 65.38
LPN [29] 75.93 79.14 86.45 74.79
SGM [32] 82.14 84.72 88.16 81.81
FSRA [4] 84.51 86.71 88.45 83.47

PAAN [50] 84.51 86.78 91.01 82.28

Ours (MIFT) 87.84 89.62 92.30 87.66

On the self-made dataset, the accuracy exhibits a trend similar to that on the University-
1652 dataset: our method outperforms the aforementioned two methods. The results are
shown in Table 4. In the Drone->Satellite task, R@1 is 77.44% and AP is 78.53%. In the
Satellite->Drone task, R@1 is 75.08% and AP is 76.53%. We believe that the reason for
the accuracy being lower than that on the University-1652 dataset is due to the resolution
of satellite images. In comparison to the satellite images in the University-1652 dataset,
the top information of buildings in the self-made dataset’s satellite images is somewhat
blurry, which may affect the extraction of Fine-grained features and result in a decrease in
retrieval accuracy.

Table 4. The retrieval results on the self-made dataset.

Method
Drone->Satellite Satellite->Drone

R@1 AP R@1 AP

LPN 67.48 64.57 66.69 66.24
FSRA 75.51 74.91 73.87 73.57

Ours (MIFT) 77.44 78.53 75.08 76.35

4.3.2. Qualitative Analysis

As a qualitative assessment of the effectiveness of the multi-scale fusion method, we
present the heatmaps of the final output feature maps from the network backbone MFF.
Through these heatmaps, we observe a substantial difference in considering multi-scale
features compared to other methods. As shown in Figure 11, Transformer-based methods
with attention mechanisms allow the network to focus on global information, but more
attention is concentrated on the central small area. This limitation results in the original ViT
model struggling to segment the entire image effectively based on semantic information. In
contrast, our approach pays more attention to the entire scene, showing a more significant
segmentation effect for buildings, roads, and trees.

In addition, we visualize the retrieval results for both the drone view target localization
task and the drone navigation task, as shown in Figure 12. Each row represents the retrieval
results for a target location. The first image is the query image, and the dashed line to the
right shows the top five most closely matched images from the gallery set. The green box
indicates correctly matched images, while the red box indicates incorrectly matched images.
For the drone view target localization task, in Figure 12a, only one out of the top five
matched images is a true satellite match. This demonstrates that our method can accurately
retrieve matching images even in the presence of interference from similar images. For the
drone navigation task, in Figure 12b, all top five matched images are correctly matched
drone images, as each satellite image has 54 matching drone images associated with it.
In addition, we visualize the retrieval results on the self-portrait dataset, as shown in
Figure 12c,d. Unlike the retrieval results on the University-1652 dataset, where multiple
aerial images were available for each building, the self-portrait dataset contains only one
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aerial image per building. Therefore, in both the drone localization and drone navigation
tasks, only one true match image is present among the top five displayed matching results.

Figure 11. On the left is the original image, in the middle is the heatmap from the last layer of ViT,
and on the right is the heatmap from the last layer of multi-scale ViT.

Figure 12. Image retrieval results. (a) Top 5 retrieval results for drone target localization task
on University-1652 dataset. (b) Top 5 retrieval results for drone navigation task on University-
1652 dataset. (c) Top 5 retrieval results for drone target localization task on the self-made dataset.
(d) Top 5 retrieval results for drone navigation task on the self-made dataset. Green boxes indicate
correctly matched images, while red boxes indicate incorrectly matched images.

4.4. Ablation Studies
4.4.1. Effect of Different MEF’s Kernel Size

To validate the effectiveness of the multi-scale fusion embedding layer, we conducted
experiments using a single-scale embedding layer. As shown in Table 5, when using a
single-scale embedding layer (4 × 4 convolutional kernel), the model’s performance is
enhanced with the multi-scale fusion embedding layer. Additionally, we experimented
with various combinations of kernel sizes, which demonstrated similar performance. In
conclusion, the multi-scale fusion embedding layer provides significant performance gains,
and the model exhibits relative robustness to different kernel size choices.
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Table 5. Comparison between single-scale embedding layer and multi-scale fusion embedding layer,
as well as the contrast between different kernel sizes.

Different Kernel Size Drone->Satellite Satellite->Drone
Stage-1 Stage-2 Stage-3 Stage-4 R@1 AP R@1 AP

4 × 4 2 × 2 2 × 2 2 × 2 84.80 87.17 88.87 82.04
4 × 4 8 × 8 2 × 2 4 × 4 2 × 2 4 × 4 2 × 2 4 × 4 85.02 87.54 88.90 83.21

4 × 4 8 × 8 16 × 16 32 × 32 2 × 2 4 × 4 2 × 2 4 × 4 2 × 2 4 × 4 86.13 88.43 90.91 85.15
4 × 4 8 × 8 16 × 16 32 × 32 2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8 2 × 2 4 × 4 8 × 8 86.02 88.25 89.03 84.87

4.4.2. Effect of Global–Local Range Attention

To validate the effectiveness of the global–local range attention, we compared our
approach with two existing Transformer-based self-attention modules, namely, PVT and
Swin. Specifically, PVT sacrifices small-scale features when computing self-attention, while
Swin confines self-attention to a local range, foregoing the advantage of Transformer in
extracting global features. As shown in Table 6, our designed GLRA outperforms self-
attention mechanisms like PVT and Swin. The results indicate that employing global–local
range self-attention is beneficial for enhancing the model’s performance.

Table 6. Comparison of GLRA with other self-attention mechanisms.

Different
Self-Attention

Drone->Satellite Satellite->Drone
R@1 AP R@1 AP

MHA 84.70 84.52 86.97 83.04
PVT 85.42 87.65 88.88 84.62
Swin 86.11 88.33 90.02 85.05

GLRA 86.13 88.43 90.91 85.15

4.4.3. Effect of the Number of Regions in Segmentation Branch

In our pixel-level matching branch, we partition the semantic categories of patches
into n regions. When n = 2, the image is divided into two parts: buildings (foreground)
and the environment (background). As illustrated in Figure 13, experimental results
demonstrate that the model achieves optimal performance when n = 3, corresponding
to the segmentation of the image into buildings, trees, and roads. It is noteworthy that
when n = 1, the model solely relies on the multi-scale global features extracted by MIFT for
cross-view image matching.

Figure 13. The impact of different regions (n) on the task is depicted in the graphs: (a) represents the
effect of n on R@1; (b) represents the impact on AP.

4.4.4. Effect of the Number of Sampling

In the University-1652 dataset, the correspondence ratio between one satellite view
and 54 drone views is highly imbalanced. Inspired by methods such as LCM and FSRA,
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which use upsampling strategies for satellite image expansion, we introduced a hyperpa-
rameter k, representing the number of samples. Initially, we exported satellite views from
the University-1652 dataset and augmented them to generate k enhanced satellite images.
Augmentation techniques included random shifting, random cropping, and random flip-
ping. Simultaneously, we randomly selected k images from other perspectives belonging
to the same category as the corresponding satellite view. As shown in Table 7, the overall
performance of the model is optimized when k is set to 3.

Table 7. When the sampling count is k = 3, both R@1 and AP achieve the best performance in the
two tasks.

Number of the
Sampling k

Drone->Satellite Satellite->Drone
R@1 AP R@1 AP

1 85.13 87.40 90.01 84.35
2 87.24 88.97 91.85 87.02
3 87.84 89.62 92.30 87.66
4 86.98 88.94 91.55 86.93
5 86.57 88.35 90.88 85.44

4.4.5. Complexity Comparison of Different Models

Throughout the entire model, the attention mechanism is the most time-consuming
module and also the most crucial part of the model. Therefore, we compare four types
of attention mechanisms theoretically and empirically. Assuming the input size is s × s,
the MHA complexity would be O(s4). Due to the fact that PVT reduces the length and
width of key (K) and value (V) by a factor of 1/R, the complexity is decreased by R2

times. As mentioned earlier, our method, like Swin, is also based on conducting attention
within windows. Therefore, assuming the convolutional stride is t, with each window size
being n × n (n = s

t ), with the global–local range attention mechanism, the complexity is
reduced to O(n4) = O(n2( s

t )
2) == O(n2s2), n << s. While the computational complexity

of GLRA and Swin is in the same order of magnitude, Swin involves two additional shift
operations and one mask operation. Additionally, we compared the computation time
for inferring 10 images under each of the four types of attention mechanisms within the
same network architecture and running environment (CPU RTX4060, CPUs AMD Ryzen-9-
7945HX, Memory 16 G (AMD, Santa Clara, CA, USA)). The results are shown in Table 8.
The run times of the four types of models follow well with the theoretical analysis.

Table 8. The complexity comparison of the four attention mechanisms.

Network with Different Attentions Seconds

Network + MHA 16
Network + PVT 14
Network + Swin 12

Network + GLRA 12

5. Conclusions

This paper proposes a Transformer-based cross-view geolocation method with multi-
scale features. The method utilizes multi-scale patch embedding fusion, multi-scale hi-
erarchical feature fusion modules, and a global–local range attention module to explore
both overall semantic information and spatial geometric details of images. This allows the
extraction of more robust multi-scale features for feature matching. Additionally, a seman-
tic alignment branch based on weakly supervised segmentation is designed to perform
pixel-level matching by aligning identical semantic information in different view images.
Experimental results demonstrate the effectiveness of our method on the cross-view geolo-
cation dataset University-1652, with significantly higher localization accuracy compared to
other state-of-the-art models.
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In future research, we plan to consider the continuity and complexity of images in
real-world scenarios, further investigating cross-view geolocation methods adapted to
complex scenes and exploring ways to enhance accuracy in cross-view image geolocation.
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