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Abstract

In this paper, we study the homogeneous Liouville fractional differential equations with constant coefficients.
The solutions interms of Mittag-Leffler of homogeneous Liouville fractional differential equations with
constant coefficients are obtained by Sumudu transform method (STM). The results obtained by STM are
illustrated by examples.
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1 Introduction

The integral transforms are widely used in applied science,mathematical physics and engineering. In order to
solve fractional differential equations, the integral transforms were extensively used and there is a lot of literature
available on the theory and applications of integral transforms,such as the Laplace, Fourier, Mellin and Hankel.
G. K. Watugal(1993) introduced a new integral transforms named Sumudu transform and further applied to the
solution of ordinary differential equation in control engineering problems [1].

Many problems in physics, engineering and biology etc. are modeled via fractional differential equations such as
diffusion, signal processing, electrochemistry, viscoelasticity [2, 3]. In literature numerous methods are available
to solve fractional differential equations like power series method, iterative method, adomain decomposition
method, transform method, monotone method etc.[4, 5, 6, 7, 8, 9, 10, 11]. Integral transform methods such
as Fourier, Laplace, Mellin, and Hankel etc.were extensively used to study fractional differential equations
[12, 13, 14, 15, 16]. In 1993, Watagulla [17, 18] introduced Sumudu transform and applied it to solve ordinary
differential equations in control engineering problems. The complex inversion formula for Sumudu transform
was proved by Weerakoon [11, 19] in 1994 and applied it to solve partial differential equations. Asiru studied the
properties of Sumudu transform [4, 20, 21] and solved integral equations of convolution type [22] and discrete
dynamical system [6]. Belgacem et al.[23] also established the properties of Sumudu transform. Kilicman et al
[24, 25] successfully applied Sumudu transform method to solve system of differential equations.

Kataetbeh and Belgacem [26, 2] obtained formulae for Sumudu transform of fractional derivatives such as
Riemann-Liouville , Caputo and Miller-Ross using Laplace- Sumudu duality property and obtained solutions
of fractional differential equations. Bulut, Demiray and Tuluce [27, 28, 29, 30, 31] have studied heat equations
and wave equations by Sumudu transform method. In this paper we apply Sumudu transform method to obtain
explicit solution of homogeneous fractional differential equations with constant coefficients. We also illustrate
the STM by examples.

2 Preliminary Results, Notations and Terminology

In this section we give definitions and some basic results which are used in the next section.

Definition 2.1. [2] A real function f(t), t ≥ 0 is said to be in space Cµ, µ ∈ R if there exists a real number
n(> µ), such that f(t) = tnf1(t), where f1(t) ∈ C[0, ∞), and is said to be in space Ckµ if and only if f (k) ∈ Cµ,
k ∈ N.

Definition 2.2. [9] The Liouville fractional integrals Iα0+f of order α on the half-axis R+ is defined as

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)dt

(x− t)1−α , (x > 0; <(α) > 0). (1)

Definition 2.3. [9] The Liouville fractional derivative Dα
0+y of a function y(t) of order α on the half-axis R+

is given by

(Dα
0+y)(t) =

(
d

dx

)n
((In−α0+ y)(x))

=
1

Γ(n− α)

(
d

dx

)n ∫ x

0

y(t)dt

(x− t)α−n+1
, (2)

with n = [<(α)] + 1;<(α) ≥ 0;x > 0.

Definition 2.4. [8] One parameter Mittag-Leffler function is denoted by Eα(z) and is defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, Re(α) > 0. (3)
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Definition 2.5. [22] A two-parameter Mittag-Leffler function denoted by Eα, β(z) and is defined as,

Eα, β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (4)

Definition 2.6. [17] Consider a set A defined as

A = {f(t)| ∃M, τ1, τ2 > 0, |f(t)| ≤Me
|t|
τj if t ∈ (−1)j × [0, ∞)}. (5)

For all real t ≥ 0, the Sumudu transform of a function f(t) ∈ A, denoted by
S[f(t)] = F (u), is defined as

S[f(t)](u) = F (u) =

∫ ∞
0

e−tf(ut)dt, u ∈ (−τ1, τ2). (6)

The function f(t) in equation (6)is called the inverse Sumudu transform of F (u) and is S−1[F (u)].

Definition 2.7. [26] The Sumudu transform of the Liouville fractional derivative (2) is given by

S[(Dα
0+y)(t)](u) = u−α[Sy](u)−

l∑
j=1

dju
−j , (l − 1 < α ≤ l; l ∈ N) (7)

where

dj = (Dα−j
0+ y)(0+), (j = 1, 2, ..., l). (8)

Theorem 2.1. [23] Let F (u) and G(u) be the Sumudu transforms of f(t) and g(t) respectively. If

h(t) = (f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ

where * denotes convolution of f and g, then the Sumudu transform of h(t) is

S[h(t)] = uF (u)G(u). (9)

Theorem 2.2. [5] Let n ≥ 1 and F (u) be the Sumudu transform of the function f(t). The Sumudu transform
of the nth derivative of f(t), denoted by
S[f (n)(t)](u) = Fn(u) is given by

S[f (n)(t)](u) = Fn(u) =
F (u)

un
− f(0)

un
− f ′(0)

u(n−1)
− . . .− f (n−1)(0)

u

=
F (u)

un
−
n−1∑
k=0

f (k)(0)

u(n−k) . (10)

Lemma 2.1. [14, 26] let α, β, λ ∈ R and α > 0, β > 0, n ∈ N. Then

S

[
tαn+β−1

(
∂

∂λ

)n
Eα, β(λtα)

]
=

n!uαn+β−1

(1− λuα)n+1
. (11)

In particular n = 0 and Re( 1
u

) > λ, then

S[tβ−1Eα,β(λtα)](u) =
uβ−1

1− λuα . (12)
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3 Homogenous Equations with Constant Coefficients

In this section we apply Sumudu transform to obtain explicit solutions to the homogeneous Liouville type
fractional differential equation of the form

m∑
k=0

Ak(D
αk
0+y)(t) +A0y(t) = 0 (t > 0;m ∈ N; 0 < α1 < ... < αm) (13)

The conditions when solutions y1(t), y2(t), ..., yl(t), l ∈ N, of equation (13) with l − 1 < αm < l will be linearly
independent and these solutions form the fundamental system of solutions given by

(Dα−k
o+ yj)(0+) = δk,j (k, j = 1, 2, ..., l), (14)

where δk,j is the Kronecker delta function.

Theorem 3.1. Let (t > 0; l − 1 < α ≤ l; l ∈ N), λ ∈ R. Then the functions

yj(t) = tα−jEα,α−j+1(λtα) (j = 1, 2, ..., l) (15)

yield the fundamental system of solution to the equation

(Dα
0+y)(t)− λy(t) = 0. (16)

Proof : Applying Sumudu transform on both sides of (16), we get

S[(Dα
0+y)(t)](u)− λS[y(t)](u) = 0. (17)

Using (7)

u−α[Sy(t)](u)−
l∑

j=1

dju
−j − λS[y(t)](u) = 0

S[y(t)](u) =

l∑
j

dj
uα−j

(1− λuα)
(18)

Replacing β = α− j + 1, in (12) and taking inverse Sumudu transform on both sides of (18), we get

y(t) =

l∑
j

djt
α−jEα,α−j+1(λtα)

which gives the solution of the equation (16) as

y(t) =

l∑
j=1

djyj(t),

where
yj(t) = tα−jEα,α−j+1(λtα), j = 1, 2, ..., l.

Example 3.1. The equation

(D
l− 1

2
0+ y)(t)− λy(t) = 0, (t > 0; l ∈ N;λ ∈ R) (19)

has its fundamental system of solution given by

yj(t) = tl−j−
1
2El− 1

2
,l−j+ 1

2
(λtl−

1
2 ), (j = 1, 2, ..., l). (20)
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Solution. Applying Sumudu transform on both sides of (19), we get

S[(D
l− 1

2
0+ y)(t)](u)− λS[y(t)](u) = 0. (21)

Using (7),

u−(l− 1
2
)S[y(t)](u)−

l∑
j=1

dju
−j − λS[y(t)](u) = 0

(u−(l− 1
2
) − λ)[Sy](u) =

l∑
j=1

dju
−j .

Using (14),

[Sy](u) =

l∑
j=1

dj
ul−j−

1
2

(1− λul− 1
2 )
. (22)

Replacing α = (l − 1
2
) and β = l − j + 1

2
in (12) and taking inverse Sumudu transform on both sides of (22),

The solution of (19) as

y(t) =

l∑
j=1

djyj(t),

where
yj(t) = tl−j−

1
2El− 1

2
,l−j+ 1

2
(λtl−

1
2 ), j = 1, 2, ..., l.

4 Conclusion

We have obtained the solutions of homogeneous Liouville fractional differential equations with constant coefficients
interms of Mittag-Leffler by Sumudu transform method. The results obtained provided fundamental system of
solutions of the considered problem. Results obtained are validated with some examples.
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