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ABSTRACT 
 

The cloud computing landscape is rapidly expanding and growing in complexity. It has witnessed 
the emergence of Cloud Computing as a widely adopted model for efficiently processing large 
volumes of data by harnessing clusters of commodity computers. This evolution enables the 
handling of massive data through on-demand services, relying on numerous microservices with 
diverse dependencies. The technology of containers ensures secure storage, allowing for large-
scale data processing with high scalability and portability. Container technology, particularly 
exemplified by Docker in the last decade, plays a pivotal role in this scenario. It empowers 
microservices to process data swiftly, enabling developers to dynamically scale these services in 
real-time. This paper initiates by establishing a comprehensive taxonomy for delineating container 
architecture. Focusing specifically on Docker containers, we scrutinize various existing container-
related literature. Through this taxonomy and survey, we not only discern similarities and disparities 
in the architectural approaches of Docker container technology but also pinpoint areas 
necessitating further research. 
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1. INTRODUCTION 
 
Has Container technology merely generated 
buzzwords and hype, or does it hold substantial 
value? Beyond the surface excitement, Container 
technology emerges as a profoundly 
transformative force, gaining traction due to its 
scalability and portability [1]. It inherits 
established technology while introducing 
innovative concepts to construct an efficient 
system, surpassing the conventional mainframe 
model. Container technology embodies the next 
evolutionary phase in distributed computing [3]. 
This model aims to optimize the utilization of 
distributed resources, amalgamating them to 
achieve heightened throughput and tackle 
extensive computational challenges at a micro 
level, exemplified by microservices [11]. Notably, 
container technology isn't an entirely novel notion 
in the realm of developing and operating large-
scale web applications within a service-oriented 
architecture (SOA) [6]. It facilitates the cost-
effective development of scalable web portals on 
robust, fault-tolerant infrastructures. 
 
Containerization, a lightweight virtualization 
technology, has revolutionized the management 
of cloud applications [27]. It provides a means to 
encapsulate applications and their dependencies 
in isolated environments, ensuring seamless 
deployment across various platforms. As this 
technology gained prominence, the challenge of 
efficiently orchestrating the creation and 
deployment of containers, both individually and in 
clusters, emerged as a pivotal concern [18]. The 
adoption of containers, exemplified by Docker, 
has propelled the development and deployment 
of applications, offering benefits such as 
portability, resource efficiency, and rapid scaling 
[22]. However, orchestrating these containers in 
a coordinated manner, especially in complex, 
multi-container environments, demands 
sophisticated solutions. 
 
Container orchestration platforms like 
Kubernetes have risen to prominence to address 
this very challenge [12]. They provide robust 
tools for automating the deployment, scaling, and 
management of containerized applications. 
Kubernetes, in particular, has become the de 
facto standard for container orchestration, 
offering features like service discovery, load 
balancing, and automatic scaling based on 
resource usage [28]. In summary, 

containerization technology has ushered in a 
new era of application deployment, but effective 
orchestration of containers, whether individually 
or in clusters, has become a critical concern in 
modern IT operations [16,23]. This has led to the 
rise of advanced orchestration platforms like 
Kubernetes, which play a central role in 
managing containerized applications at scale. 
 
Our research has culminated in a  
comprehensive repository of contemporary 
research methodologies, techniques, best 
practices, and real-world experiences employed 
in the realm of container technology architecture, 
with a specific emphasis on the development and 
management of containerized applications and 
microservices [36]. Through our investigation, it 
became evident that container technology 
research is currently undergoing a phase of 
foundational development, necessitating further 
experimentation and empirical assessment of its 
advantages [35]. Additionally, our study led to the 
formulation of an all-encompassing classification 
system tailored specifically for container 
technology, particularly within the context of 
clustered cloud architectures [25]. 
 
The findings from our mapping study reveal a 
growing interest and adoption of container-based 
technologies, such as Docker, which serve as 
lightweight virtualization solutions at the 
infrastructure-as-a-Service (IaaS) level, and as 
application management tools at the Platform-as-
a-Service (PaaS) level. It is evident that 
containers have a positive impact on both the 
development and deployment phases [21]. For 
example, cloud architecture is shifting towards 
DevOps-driven methodologies, supporting a 
seamless cycle of continuous development and 
deployment that leverages cloud-native solutions 
based on container technology and their 
orchestration. 
 
The results demonstrate that containers play a 
pivotal role in facilitating continuous development 
in the cloud, utilizing cloud-native platform 
services for development and deployment. 
However, they do require sophisticated 
orchestration support, which can be provided by 
platforms like Docker Swarm or Kubernetes. 
Consequently, container-based orchestration 
techniques emerge as crucial mechanisms for 
coordinating computation in cloud-based, 
clustered environments [24]. Our study highlights 
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Docker as a superior container technology when 
compared to alternatives such as LXC (Linux 
containers), Windows Hyper-V, Podman, runC, 
and containerd. 
 

2. BACKGROUND 
 
Virtualization of resources involves using an 
additional layer of software above the host 
operating system to manage multiple resources. 
These virtual machines (VMs) function as distinct 
execution environments. Various approaches are 
employed for virtualization, with one popular 
method being hypervisor-based virtualization 
[32]. Notable solutions in this category include 
KVM and VMware. To implement this technology, 
a virtual machine monitor is necessary above the 
underlying physical system, and each VM 
provides support for isolated guest operating 
systems [10]. It's conceivable for a single host 
operating system to accommodate numerous 
guest operating systems within this virtualization 
framework. 

 
On the other hand, container-based virtualization 
represents a different approach. Here, hardware 
resources are partitioned to create multiple 
instances with secure isolation properties [8]. 
The key distinction lies in how guest processes 
interact with the technology. With container-
based systems, processes access abstractions 
directly through the virtualization layer at the 
operating system (OS) level. In contrast, 
hypervisor-based approaches typically have one 
VM per guest OS. Container-based solutions 
often share a single OS kernel among virtual 
instances, leading to an assumption of weaker 
security compared to hypervisors [31]. From a 
user's perspective, containers function as self-
contained operating systems, seemingly capable 
of independent operation from both hardware 
and software. 
 
Containerization enables a streamlined form of 
virtualization by crafting specialized containers 
from distinct images (typically sourced from an 
image repository) as self-contained application 
bundles. These containers utilize fewer 
resources and time. Moreover, they facilitate a 
higher level of compatibility in packaging 
applications, crucial for creating portable and 
interoperable software solutions in cloud 
environments. The foundation of containerization 
lies in the ability to efficiently build, assess, and 
launch applications across numerous servers, as 
well as establishing connections between these 
containers [38]. As a result, containers effectively 

tackle concerns at the cloud Platform as a 
Service (PaaS) level. 
 

3. LITERATURE SURVEY 
 
Container technology has emerged as a 
transformative force in modern computing, 
garnering attention for its scalability and 
portability [1]. Unlike traditional approaches, it 
introduces innovative concepts that construct 
efficient systems, surpassing the limitations of 
conventional mainframe models [1]. This review 
explores the evolution and impact of container 
technology, shedding light on its role in 
distributed computing and its applications in 
managing cloud resources. 
 
Container technology represents the next 
evolutionary phase in distributed computing [3], 
aiming to optimize the utilization of distributed 
resources for heightened throughput, particularly 
in the context of microservices [11]. While not 
entirely novel, container technology has proven 
effective in developing and operating large-scale 
web applications within service-oriented 
architectures (SOA) [6]. It facilitates cost-
effective development on robust, fault-tolerant 
infrastructures, positioning itself as a key player 
in modern software architecture. 
 
Containerization, a lightweight virtualization 
technology, has revolutionized the management 
of cloud applications [27]. It provides a means to 
encapsulate applications and their dependencies 
in isolated environments, ensuring seamless 
deployment across various platforms. However, 
the efficient orchestration of container creation 
and deployment, especially in complex, multi-
container environments, has emerged as a 
pivotal concern [18]. This has led to the rise of 
container orchestration platforms, with 
Kubernetes standing out as the de facto 
standard, addressing challenges in automating 
deployment, scaling, and management of 
containerized applications [12]. 
 
Research in container technology has reached a 
phase of foundational development, prompting 
the need for further experimentation and 
empirical assessment of its advantages [35]. 
Comprehensive studies have led to the 
formulation of a classification system tailored for 
container technology within clustered cloud 
architectures [25]. These developments 
underscore the dynamic nature of container 
technology research, requiring ongoing 
exploration and validation of its potential. 
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Mapping studies reveal a growing interest and 
adoption of container-based technologies, such 
as Docker, serving as lightweight virtualization 
solutions at the Infrastructure as a Service (IaaS) 
level and as application management tools at the 
Platform as a Service (PaaS) level [21]. 
Containers positively impact both development 
and deployment phases, aligning with the shift 
towards DevOps-driven methodologies in cloud 
architecture [21]. Continuous development and 
deployment cycles leverage cloud-native 
solutions based on container technology and 
their orchestration, emphasizing their role in 
shaping modern IT operations. 

 
Containers play a pivotal role in facilitating 
continuous development in the cloud, utilizing 
cloud-native platform services for development 
and deployment [24]. While they offer benefits in 
terms of resource efficiency and rapid scaling, 
sophisticated orchestration support is essential. 
Platforms like Docker Swarm or Kubernetes 
emerge as crucial mechanisms for coordinating 
computation in cloud-based, clustered 
environments [24]. Among various container 
technologies, Docker is highlighted as a superior 
choice when compared to alternatives [24]. 

 
Transitioning to the broader context of 
virtualization, the review explores the 
conventional approach of using an additional 
layer of software, such as hypervisors like KVM 
and VMware, above the host operating system to 
manage multiple resources [32]. These 
hypervisor-based virtualization solutions enable 
the creation of distinct execution environments, 
each supporting isolated guest operating 
systems. The ability of a single host operating 
system to accommodate numerous guest 
operating systems within this virtualization 
framework demonstrates its flexibility and 
scalability. 
 
In contrast, container-based virtualization 
represents a different approach, where hardware 
resources are partitioned to create multiple 
instances with secure isolation properties [8]. 
The key distinction lies in how guest processes 
interact with the technology, with containers 
providing direct access through the virtualization 
layer at the operating system level. This differs 
from hypervisor-based approaches, where each 
VM typically corresponds to one guest OS. 
Container-based solutions often share a single 
OS kernel among virtual instances, leading to an 

assumption of weaker security compared to 
hypervisors [31]. 
 
Containerization enables a streamlined form of 
virtualization by crafting specialized containers 
from distinct images, serving as self-contained 
application bundles [38]. These containers offer 
advantages in terms of efficiency, utilizing fewer 
resources and time. Their compatibility in 
packaging applications is crucial for creating 
portable and interoperable software solutions in 
cloud environments. The ability to efficiently 
build, assess, and launch applications across 
numerous servers, while establishing 
connections between containers, positions 
containers as effective solutions at the cloud 
Platform as a Service (PaaS) level [38]. 
 
In conclusion, container technology has 
transcended buzzwords and hype, demonstrating 
substantial value in modern computing. Its 
transformative force, scalability, and portability 
have propelled it to the forefront of distributed 
computing and cloud management. While 
challenges exist, the evolution of 
containerization, coupled with advanced 
orchestration platforms like Kubernetes, signifies 
a new era in application deployment and 
management. Additionally, the comparison with 
hypervisor-based virtualization highlights the 
unique advantages and considerations 
associated with each paradigm, offering insights 
into the diverse landscape of virtualization 
technologies. The ongoing research and 
development in container technology further 
emphasize its dynamic nature, calling for 
continuous exploration and validation of its 
potential in reshaping the IT landscape. 
 

4. TAXONOMY OF DOCKER CONTAINER 
 
Numerous taxonomies exist for cloud computing, 
but few are dedicated to container systems like 
Docker. Our taxonomy serves as a valuable 
resource for academia, developers, and 
researchers, offering insights into container 
architecture and management [15]. We 
developed this taxonomy by considering both 
vendors within the Cloud Container landscape 
and enterprise IT, the end-users of cloud services 
and software. In the following sections, we 
present and elaborate on this taxonomy, 
providing a comprehensive understanding of the 
subject. 
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4.1 Docker Architecture 
 
Fig. 1 depicts the all-encompassing structure of 
Docker container architecture. It encompasses 
the design of software applications that                   
utilize internet-accessible, on-demand               
services. Docker Architectures rely on an 
infrastructure that is activated only when 
required, pulling the essential services 
(microservices) as needed to execute a specific 
task, and subsequently releasing any surplus 
resources, often discarding them upon task 
completion [14]. 
 
The architecture of a container cluster comprises 
one or more master nodes and one or more 
worker nodes. The worker nodes function as 
distinct clusters that deliver microservices 
organized according to grouped business logic 
[20]. API services facilitate communication 
between containers, while configuration services, 
specifically Docker configs, serve as repositories 
for non-sensitive information, like configuration 
files, external to a service's image or active 
containers [34]. This approach enables you to 
maintain your images in a more universal 
manner, eliminating the necessity to bind-mount 
configuration files into the containers or rely on 
environment variables [43].  

 
Numerous internal services facilitate 
communication, alongside a variety of external 
services directing business inquiries to a specific 
service within a container or a group of 

containers grouped in a pod within a particular 
cluster [7]. An external client engages with 
diverse services through a master node, which 
interacts with the internal cluster loop, redirecting 
requests to specific services housed in a pod on 
a worker node. A load balancer aids in 
pinpointing an available cluster prepared to 
deliver the service. The master node 
encompasses distinct configurations, including 
an API server, Scheduler, controller manager, 
and ETCD. 
 

4.2 Docker Client Server Architecture  
 
4.2.1 Docker daemon 

 
Docker Daemon, often referred to simply as 
"Dockerd," is a crucial component at the heart of 
Docker container technology. It serves as the 
background service responsible for managing 
and executing Docker containers on a host 
system. Docker Daemon listens for Docker API 
requests and translates them into actions, 
facilitating container creation, management, and 
networking [30]. This lightweight, long-running 
process plays a pivotal role in container 
orchestration, resource allocation, and security 
enforcement. It ensures containers run efficiently, 
isolating them from the host system while 
offering a unified interface for developers and 
operators. Docker Daemon is an integral part of 
the Docker ecosystem, enabling the agility, 
scalability, and portability that containerization is 
renowned for. 

 

 
 

Fig. 1. Docker Architecture [43] 
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Fig. 2. Docker Client Server Architecture [43] 
 

4.2.2 Docker client 

 
The Docker Client is a command-line interface 
(CLI) that allows users to interact with Docker 
Daemon, facilitating container operations. It 
sends commands to the daemon via the Docker 
API, enabling tasks like building, running, and 
managing containers. The client is pivotal for 
developers and administrators using Docker 
technology. 

 
4.2.3 Docker build 

 
Docker Build is a pivotal command in Docker's 
toolkit, facilitating the creation of custom 
container images. It employs a Dockerfile—a 
declarative script defining the image's 
configuration and dependencies. When 
executed, Docker Build reads this file, then 
compiles and packages the application along 
with its environment. Each step is cached, 
enhancing efficiency during subsequent builds. 
This process ensures reproducibility and 
portability across different environments. Docker 
Build is fundamental for DevOps workflows, 
enabling seamless integration with version 
control systems. It empowers developers to 
encapsulate applications and their 

dependencies, ensuring consistent deployment 
in diverse computing environments. 
 

4.2.4 Docker pull 
 

Docker Pull is a command that allows users to 
fetch container images from a specified 
registry,typically Docker Hub or a private 
repository. When executed, it contacts the 
Docker Daemon, which then downloads the 
requested image and its layers, if they aren't 
already present on the local system [37]. This 
process ensures that the required image is 
readily available for running containers. Docker 
Pull is a vital aspect of containerization, enabling 
rapid deployment by retrieving pre-configured 
images. It streamlines software distribution, 
making it a cornerstone in modern development 
and deployment pipelines, fostering efficiency 
and consistency across diverse computing 
environments. 
 

4.2.5 docker run 
 

Docker Run is a fundamental command in 
Docker, enabling the execution of containerized 
applications. It instructs Docker to create and 
initiate a new container based on a specified 
image. Users can customize container behavior 
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through various options, such as network 
settings, environment variables, and resource 
constraints. Once initiated, the container runs as 
an isolated instance, leveraging the host 
system's resources while maintaining its own file 
system and networking. Docker Run is 
instrumental in achieving consistency across 
development, testing, and production 
environments, providing a seamless deployment 
process. It's a linchpin in modern software 
development, promoting portability, scalability, 
and efficient resource utilization. 
 
4.2.6 Docker push 

 
Docker Push is a pivotal command enabling 
users to upload their custom-built container 
images to a container registry, like Docker Hub or 
a private repository. This process involves 
tagging the image appropriately, specifying the 
destination registry, and authenticating the user's 
credentials [4]. Once executed, Docker Push 
transfers the image and its layers to the specified 
repository, making it accessible to others in the 
development or operations team. This capability 
streamlines collaboration and deployment 
workflows, ensuring that consistent and tested 
images are readily available for deployment 
across diverse environments [33]. Docker Push 
is a linchpin in modern DevOps practices, 
fostering efficiency, scalability, and 
reproducibility. 
 

4.3 Docker Container 
 

Docker containers revolutionize software 
deployment by encapsulating applications and 
their dependencies in isolated units. These 
lightweight, portable environments ensure 
consistency across different computing 
environments, from development to production. 
Unlike virtual machines, Docker shares the host 
OS kernel, consuming fewer system resources 
and enabling rapid startup times. This efficiency 
allows for efficient utilization of server resources, 
enabling more containers to run on a single 
machine. Docker's image-based approach 
facilitates version control and easy replication, 
ensuring reliable and reproducible deployments. 
With a vast ecosystem and support for 
orchestration tools like Kubernetes, Docker has 
become a cornerstone of modern DevOps 
practices, fostering scalability, agility, and                      
seamless deployment pipelines. 
 
Docker containers and images are 
interdependent components of the Docker 

platform. An image serves as a lightweight, 
standalone, and immutable template containing 
an application and its dependencies. It's a 
snapshot of a specific environment, ensuring 
consistency across various stages of 
development and deployment [40]. When a 
container is instantiated from an image, it 
becomes a runnable instance of that 
environment. Containers are dynamic, allowing 
applications to execute, interact, and 
communicate with other services. They also 
introduce a writable layer, enabling changes to 
be saved during runtime. Images serve as 
blueprints, while containers bring them to life, 
collectively enabling the agility, portability, and 
reproducibility that Docker is celebrated for. 
 

 
 

Fig. 3. Docker Container [43] 
 

4.4 Docker Image 
 
A Docker image is a fundamental component of 
containerization, encapsulating an application 
and its dependencies into a portable, immutable 
package. These images serve as lightweight 
templates, offering consistency across various 
environments, from development to production. 
Docker images are based on a layered file 
system, with each layer representing a specific 
instruction in the image's Dockerfile. This layered 
approach allows for efficient storage and sharing 
of common components. Images are versioned, 
making it easy to track changes and ensure 
reproducibility in deployments [26]. They play a 
pivotal role in modern DevOps workflows, 
facilitating seamless application packaging, 
distribution, and scalability while promoting 
efficient resource utilization.
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Fig. 4. Docker Image [43] 
 

4.5 Docker Package 
 

Docker packages revolutionize software 
deployment through containerization. A Docker 
package comprises an application, its 
dependencies, libraries, and runtime 
environment, encapsulated into a self-                
contained unit. This package, known as a                
Docker image, is lightweight and portable, 
ensuring consistent performance across     
different computing environments. Docker's 
layered file system allows for efficient storage 
and sharing of components, optimizing resource 
usage. 
 
Images can be versioned, enabling precise 
control over deployments. With Docker, 
packages become highly reproducible, 
streamlining development to production 
workflows [41]. This transformative technology 
has become a cornerstone of modern DevOps, 
driving efficiency, scalability, and agility in 
software development and deployment 
processes. 
 

4.6 Docker Registry (Docker Hub) 
 
A Docker registry is a vital component of the 
Docker ecosystem, acting as a centralized 
repository for Docker images. It serves as a 
storage and distribution hub for containerized 
applications, allowing users to securely share, 
manage, and retrieve Docker images. Registries 
play a crucial role in facilitating collaboration 
among developers and teams, ensuring 
seamless deployment workflows [42]. Docker 
Hub is one of the most widely used public Docker 

registries. It provides a cloud-based platform for 
sharing and accessing Docker images. Docker 
Hub hosts a vast library of pre-built images for 
various applications, operating systems, and 
development stacks [29]. This extensive 
collection accelerates the development process 
by eliminating the need to build images from 
scratch. Developers can simply pull ready-to-use 
images from Docker Hub, saving time and effort. 
 

 
Fig. 5. Docker Registry [43] 

 
Additionally, Docker Hub supports version 
control, enabling users to manage different 
iterations of their images. It also offers tools for 
automated builds, allowing for continuous 
integration and delivery workflows. Docker Hub's 
user-friendly interface and robust search 
capabilities simplify the process of discovering 
and incorporating images into projects. While 
Docker Hub is immensely popular, organizations 
often deploy private Docker registries for 
enhanced security and control over their image 
repositories [5]. These private registries, like 
Docker Trusted Registry (DTR), enable teams to 
securely store proprietary images and integrate 
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them seamlessly into their development 
pipelines. 

 
4.7 Docker Repository 
 
A Docker repository is a storage location for 
Docker images. It serves as a centralized hub 
where containerized applications, along with their 
dependencies and configurations, are stored. 
Repositories allow for efficient management, 
sharing, and retrieval of Docker images. They 
come in two types: public and private [39]. Public 
repositories, like Docker Hub, are open to the 
community, providing a vast collection of pre-built 
images for various applications. Private 
repositories, on the other hand, are typically used 
by organizations to securely store and manage 
proprietary images. They offer control over 
access and permissions, ensuring sensitive 
applications remain confidential within a team or 
company. 
 

 
 

Fig. 6. Docker Repository [43] 
 

4.8 Port Binding 
 

Port binding is a crucial concept in networking, 
particularly in the context of containerization 
technologies like Docker. It involves connecting 
specific network ports of a container to the host 
system or other containers. This enables external 
services to communicate with applications 
running inside the container. By binding container 
ports to the host, developers can ensure 
seamless interaction between the containerized 
application and external resources. Port binding 
plays a pivotal role in orchestrating microservices 
architectures, allowing different components to 
communicate effectively [9]. It also enhances 
security by controlling which ports are exposed 
externally, safeguarding sensitive services from 
unauthorized access. This practice is integral to 
building robust, interconnected systems in 
modern software development. 
 

 
 

Fig. 7. Port Binding [43] 
 

4.9 Docker File 
 
A Dockerfile is a crucial component in the Docker 
ecosystem, serving as a blueprint for creating 
Docker images. It's a plain-text configuration file 
that contains a series of instructions, specifying 
how to assemble an environment within a Docker 
container. These instructions encompass actions 
like specifying a base image, adding files, 
running commands, and configuring settings. 
The Dockerfile's layered approach is 
fundamental to Docker's efficiency. Each 
instruction creates a new layer in the image, 
optimizing resource usage and enabling                   
faster builds. This also facilitates image 
versioning, allowing developers to track                  
changes and roll back to previous states if 
needed. Developers use Dockerfiles to   
automate the process of setting up 
environments, ensuring consistency across 
development, testing, and production stages [17]. 
This automation minimizes the "it works on my 
machine" problem, fostering reproducibility in 
deployments.  
 

 

Fig. 8. Docker File [43] 
 

Moreover, Dockerfiles promote best practices like 
keeping images lightweight by minimizing 
unnecessary components, enhancing security by 
only including essential dependencies, and 
improving efficiency by leveraging cache for 
repetitive tasks. A well-crafted Dockerfile is a 
cornerstone of efficient containerized workflows 
[13]. It empowers developers to encapsulate 
applications and their dependencies, making 
them easily portable and deployable across 
different computing environments. This enables 
rapid, reliable, and scalable application 
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development and deployment, making 
Dockerfiles an indispensable tool in modern 
DevOps practices. 
 

4.10 Deployment Server 
 

A Docker deployment server is a critical 
component in the lifecycle of containerized 
applications, responsible for managing the 
distribution, scaling, and orchestration of Docker 
containers in a production environment. It plays a 
pivotal role in ensuring that applications run 
smoothly, efficiently, and reliably at scale. One of 
the most popular tools for Docker deployment is 
Kubernetes, an open-source container 
orchestration platform. Kubernetes abstracts the 
underlying infrastructure and provides a 
declarative way to define how containerized 
applications should be deployed, scaled, and 
managed [2]. It automates tasks like load 
balancing, scaling, rolling updates, and self-
healing, making it ideal for large-scale and 
complex container deployments. 
 

 

Fig. 9. Deployment Server [43] 
 

Another commonly used tool is Docker Swarm, 
Docker's built-in orchestration solution. Docker 
Swarm simplifies the deployment and scaling of 
Docker containers and is well-suited for smaller, 
less complex applications. In addition to these 
tools, various cloud providers offer managed 
container orchestration services, such as 
Amazon Elastic Kubernetes Service (EKS), 
Google Kubernetes Engine (GKE), and Azure 
Kubernetes Service (AKS), which make it easier 
to deploy and manage containerized applications 
in the cloud. A Docker deployment server, 
whether based on Kubernetes, Docker Swarm, 
or a cloud service, is essential for achieving high 
availability, fault tolerance, and efficient resource 
utilization in containerized environments [19]. It 
allows organizations to deploy and manage 
applications with confidence, knowing that their 
containerized workloads are being handled 
effectively. 

4.11 Docker Bind Mount 
 
Docker bind mount is a technique that allows a 
file or directory on the host system to be 
mounted into a container. This establishes a 
direct link between the container and the host's 
file system, enabling real-time synchronization of 
files and data. Bind mounts are versatile, 
supporting read and write operations, making 
them invaluable for development workflows, 
debugging, and sharing data between a 
container and its host [16]128]. They offer 
flexibility and simplicity, allowing containers to 
access and modify host files without the need to 
create custom images [22]. Docker bind mounts 
are a powerful tool for seamless integration 
between containerized applications and the host 
environment. 
 

4.12 Docker Stack 
 
A Docker stack is a collection of services, often 
comprising multiple containers, that work 
together to deliver a cohesive application [18]. 
It's defined using a Compose file, which outlines 
the configuration for each service, including 
container images, networking, and 
dependencies. Docker Swarm, Docker's native 
orchestration tool, manages these stacks, 
ensuring high availability, fault tolerance, and 
scalability. Docker stacks facilitate the 
deployment of complex, multi-container 
applications in a simplified manner [38]. They 
offer benefits like service discovery, allowing 
containers within a stack to communicate 
seamlessly, and load balancing, distributing 
traffic evenly across the service instances. 
 

Furthermore, Docker stacks enable automated 
rollouts and rollbacks, making it easy to update 
applications while minimizing downtime. They 
also support health checks, ensuring that only 
healthy containers receive traffic. In addition to 
these features, Docker stacks are compatible 
with overlay networks, enabling communication 
across multiple hosts in a Swarm cluster. This 
enables the creation of resilient, distributed 
applications [23]. Overall, Docker stacks are 
instrumental in orchestrating the deployment of 
multi-container applications, providing an efficient 
and scalable framework for modern software 
architectures. They streamline the management 
of complex applications, making them an 
essential tool for DevOps teams and 
organizations embracing containerization. 
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Fig. 10. Docker Stack [43] 

 

4.13 Docker Deployment and Deployment 
Process 

 
Docker Deployment and Deployment Process: 
 

Docker has transformed the way applications are 

deployed, providing a consistent and portable 

environment throughout the entire software 

development lifecycle [16]. Docker deployment 

involves the process of taking Docker containers, 

typically packaged as Docker images, and 

running them in various environments, from 

development to production. Here's an overview 

of the Docker deployment process: 
 

1. Building Docker Images 
 

Developers create Docker images by writing a 

Dockerfile that defines the application, its 

dependencies, and configuration [10]. These 

images are built using the `docker build` 

command, which generates a snapshot of the 

application and its environment. 

 
2. Registry and Image Storage 
 
Docker images are stored in Docker registries 
like Docker Hub, private registries, or container 

image repositories [11]. Registries serve as 
centralized repositories where images can be 
pushed, pulled, and versioned. 
 
3. Container Orchestration 

 

In production, Docker containers are often 

managed and orchestrated using tools like 

Docker Swarm or Kubernetes [22]. Orchestration 

platforms automate the deployment, scaling, load 

balancing, and monitoring of containers, ensuring 

high availability. 

 

4. Deployment Configuration 

 

Deployment configurations are defined using 

YAML files (Docker Compose for development or 

Kubernetes YAML files for production) [32]. 

These files specify how containers should be run, 

networked, and linked together. 

 

5. Deployment Stacks 
 

Applications may consist of multiple services or 

microservices defined in a Docker stack [24]. 

Docker stacks simplify the management of multi-

container applications, ensuring they work 

cohesively. 
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6. Rollouts and Updates 
 

Docker allows for seamless application updates 
using strategies like rolling updates [32]. 
Containers can be updated with minimal 
downtime, and the process can be automatically 
reversed in case of issues. 
 

7. Service Discovery 
 

Docker provides service discovery mechanisms 
to enable containers to find and communicate 
with each other, essential for microservices 
architectures [12]. 
 

8. Health Checks and Scaling 
 
Docker containers can be configured with health 
checks to ensure they are responsive and 
healthy [7].Orchestration platforms 
automaticallyscale containers up or down based 
on demand. 
 

9. Monitoring and Logging 
 

Docker deployments benefit from robust 
monitoring and logging solutions to track 
container performance, troubleshoot issues, and 
analyze application behavior [6]. 

10. Security and Access Control 
 
Security measures like image scanning, 
container runtime protection, and access controls 
are crucial to secure Docker deployments [15]. 
Docker deployment simplifies application 
management, accelerates development, and 
promotes consistency across various 
environments. It's a core technology in modern 
DevOps practices, enabling efficient, scalable, 
and reliable software delivery. 
 

5. SURVEY 
 
While previous research has explored Docker 
container systems from industrial and 
informational viewpoints, a thorough technical 
investigation is notably absent. Our study delves 
into Docker container systems, comparing them 
with various other container systems. We employ 
diverse classification criteria in this section to 
facilitate a comprehensive technical comparative 
analysis. Table 1 presents the outcomes                   
of this technical comparative study, showcasing 
the distinctions between various infrastructure 
and solution providers across different 
containers. 

 

 
 

Fig. 11. Docker Deployment Process [43] 
 
 

 



 
 
 
 

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049 
 
 

 
54 

 

Table 1. Comparative Table [7, 9. 21, 22, 24, 34, 43] 

 

Criteria Docker LXC 
Windows 
Hyper-V 

Podman runC containerd 

Design focus 
Simplicity 
and user-
friendly 

Container 
Isolation and 
Efficiency 

Isolation and 
virtualization 
of Windows 
environments 

Lightweight 
and 
Daemonless 

Container 
Runtime 
and Spec 
Compliance 

Container 
Runtime 
and Spec 
Compliance 

Microservices 
management 
system 

Layered 
approach for 
deploying 
and scaling 
applications 

N/A (LXC is 
more focused on 
low-level 
containerization) 

N/A (Hyper-V 
is more 
focused on 
traditional 
virtualization) 

N/A (Podman 
is more 
focused on 
lightweight 
container 
management) 

N/A (runC 
is a low-
level 
runtime) 

Container 
Runtime 
Spec 
compliance 

Portability 

Consistent 
runtime 
environment 
on any 
platform 

Limited to Linux-
based systems 

Limited to 
Windows-
based 
systems 

Consistent 
runtime 
environment 
on any 
platform 

Container 
Runtime 
Spec 
compliance 

Container 
Runtime 
Spec 
compliance 

 
Chart 1. TAXONOMY 

 

No. Terms Definitions 

1 Docker container Lightweight, portable, and self-sufficient unit that encapsulates an 
application and its dependencies 

2 Docker command Instructions used in the Docker platform's command-line interface 
(CLI) to interact with Docker and perform tasks 

3 Docker image Images serve as the blueprint for creating Docker containers. Built 
from a base image or another existing image through a series of 
defined instructions in a Dockerfile, and can be stored in registries, 
allowing for easy sharing and distribution 

4 Docker package Synonym for Docker container  

5 Docker registry (Docker hub) Storage platform for Docker images, facilitating their distribution, 
sharing, and deployment across different environments 

6 Docker repository Collection of related Docker images, often versioned and organized 
for efficient storage and retrieval 

7 Docker file Plain-text configuration file that contains instructions for building a 
Docker image, specifying the base image, dependencies, and setup 
steps for a containerized application 

8 Docker bind mount Allows a file or directory on the host system to be mounted directly 
into a container, enabling real-time synchronization and data sharing 
between the host and the container 

9 Docker stack A group of services defined in a Docker Compose file that work 
together to form a multi-container application, allowing for simplified 
deployment and management 

10 Docker compose A tool that allows users to define and manage multi-container Docker 
applications using a simple YAML configuration file, enabling easy 
orchestration of complex deployments 

11 Docker logs A real-time stream of output generated by a running container, offering 
valuable insights into its behavior and troubleshooting capabilities 

12 Docker exec It allows users to run commands inside a running container, providing 
a means for direct interaction and troubleshooting without the need to 
create a new instance 

13 Docker stats It provides real-time resource usage statistics for running containers, 
offering insights into CPU, memory, and network performance at a 
glance 

14 Docker network It is a virtual environment that allows containers to communicate with 
each other, enabling seamless interaction between services in a 
distributed application 

15 Bridge It is a default network mode that allows containers on the same host 
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No. Terms Definitions 

to communicate with each other via a virtual network bridge, providing 
isolation and secure connectivity 

16 Host It refers to the system where Docker is installed and running, 
managing containers and providing the necessary resources for their 
execution 

17 Overlay A network that allows containers across multiple hosts to 
communicate seamlessly, enabling distributed applications to function 
as a unified system 

18 None The "none" network mode in Docker isolates a container, preventing it 
from having any network access 

19 Macvlan It allows a container to have its own MAC address and appear as a 
physical device on the network, enabling direct communication with 
external systems 

20 Docker inspect It is a command-line tool that provides detailed information about 
Docker objects like containers, networks, volumes, or images, aiding 
in troubleshooting and configuration analysis 

21 Docker image history It displays the layers and changes within an image, providing insights 
into its creation and evolution 

22 Docker image prune It is a command used to remove unused or dangling images, 
reclaiming storage space 

23 Docker container prune It is a command used to remove stopped containers, freeing up 
system resources and storage space 

24 Docker compose up It starts and orchestrates the services defined in a Docker Compose 
file, creating a multi-container environment 

25 Docker compose down It stops and removes the services defined in a Docker Compose file, 
terminating the multi-container environment 

26 Docker compose ps It lists the status of services defined in a Docker Compose file, 
indicating whether they are running or stopped 

27 Docker compose logs It displays the combined output of services defined in a Docker 
Compose file, aiding in monitoring and troubleshooting 

28 Docker storage It manages the persistent data associated with containers, providing 
options for storage drivers, volumes, and storage management 
strategies 

29 Data volumes It provides a way to persistently store and share data between 
containers and the host system 

30 Volume container It is a dedicated container created solely for the purpose of managing 
shared data volumes, providing a centralized storage solution for 
other containers 

31 Directory mounts It allows specific host directories to be linked with containers, enabling 
real-time synchronization of data 

32 Storage plugins It extends the platform's capabilities by allowing different storage 
drivers to manage container data, supporting various backend 
technologies 

33 Advanced Multi-Layered 
Unification File system (AuFS) 

It is a union filesystem used by Docker to layer images, providing a 
lightweight and efficient way to manage container file systems 

34 Compile configurations It involves specifying instructions in a Dockerfile to build custom 
images with specific settings, dependencies, and behaviors 

35 Environment configurations It refers to variables and settings that can be passed to containers at 
runtime, influencing their behavior and functionality 

36 Artifact An artifact in software development is a result of a build process, 
which may include compiled code, libraries, or other files, ready for 
deployment 

37 Port binding It involves mapping a container's internal port to a specific port on the 
host system, enabling external access to the containerized service 

38 CI server Continuous Integration server, automates the process of code 
integration, testing, and deployment, ensuring a streamlined and 
reliable software development workflow 

39 Deployment server It is a dedicated platform that manages the distribution and installation 
of software applications to target environments, ensuring consistent 
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No. Terms Definitions 

and reliable deployments 

40 Kernel namespaces It provides process isolation and resource control, allowing multiple 
instances of the same resource to coexist independently in a Linux 
environment 

41 cgroups Short for control groups, is a Linux kernel feature that enables fine-
grained resource management, allowing processes to be grouped and 
allocated specific system resources like CPU, memory, and I/O 

42 Microservices patterns Microservices patterns are architectural guidelines and best practices 
for designing, deploying, and managing independent, small-scale 
services that collectively form a larger application 

43 Deployment package It is a bundled unit containing all necessary files, configurations, and 
dependencies required to install and run a software application in a 
specific environment 

44 Dependencies Dependencies refer to the external libraries, frameworks, or software 
components required by an application to run within a containerized 
environment 

45 Exemption cycles Code foundations have a single API relationship with one another. 
Concept are that every group may work in isolation and be 
protected/disconnected from one another 

46 Advanced Multi-Layered 
Unification File system (AuFS) 

Advanced Multi-Layered Unification File system (AuFS) is a union file 
system used by Docker to layer images and provide a lightweight and 
efficient way to manage container file systems 

47 rocket container runtime (rkt) rkt, or Rocket, is an open-source container runtime developed by 
CoreOS, designed for secure, composable, and standards-focused 
container deployments 

48 Container orchestration plan A container orchestration plan outlines how containerized applications 
will be deployed, managed, scaled, and connected in a cluster, 
typically using tools like Kubernetes or Docker Swarm 

 
5.1 Comparative Studies 
 

Comparative studies on cloud container systems 
have scrutinized Docker, LXC, Windows Hyper-
V, Podman, runC, and containerd to assess their 
strengths and limitations. Docker, renowned for 
its user-friendly interface and extensive 
ecosystem, excels in rapid deployment and 
robust image management. LXC, a lightweight 
alternative, provides low overhead and high 
performance, but lacks some of Docker's 
features. Windows Hyper-V, optimized for 
Windows environments, offers seamless 
integration with existing Microsoft tools. Podman, 
a daemonless container engine, emphasizes 
security and compatibility with Docker. runc and 
containerd are lower-level runtimes, forming the 
foundation for Docker and other container 
platforms, focusing on performance and standard 
compliance. Each system demonstrates unique 
capabilities, catering to specific use cases and 
preferences in cloud-based containerization. 
 

6. FINDINGS 
 
The suggested taxonomy, along with extensive 
technical research and surveys, reveals valuable 
insights from diverse container systems. These 

findings offer potential directions for future 
developments and enhancements in existing 
systems. Additionally, we address complexities, 
challenges, and prospects for forthcoming 
container systems in this context. 
 

6.1 LXC 
 
Linux Containers (LXC) are a lightweight 
virtualization technology, allowing multiple 
isolated Linux systems to run on a single host. 
Unlike traditional virtual machines, LXC shares 
the host's kernel, resulting in reduced overhead 
and enhanced performance. LXC leverages 
cgroups and namespaces, enabling fine-grained 
resource control and isolation. It excels in 
scenarios where efficiency and rapid deployment 
are paramount, making it popular in 
development, testing, and production 
environments. LXC containers boast quick 
startup times and minimal resource consumption, 
ideal for microservices architectures and cloud 
computing. They provide a flexible, efficient 
solution for orchestrating applications and 
services, contributing to the versatility and 
scalability of modern computing                    
environments. 
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Docker holds several advantages over LXC 
(Linux Containers) due to its design focus on 
application-centric containerization. Firstly, 
Docker's strength lies in its simplicity and user-
friendly interface. It abstracts away much of the 
complexity of containerization, making it 
accessible to a broader audience. This ease of 
use has contributed to Docker's widespread 
adoption and robust community support. Another 
key advantage is Docker's image management 
system. It utilizes a layered approach, where 
containers share common layers, drastically 
reducing storage requirements and speeding up 
image pulls. This efficiency in image handling is 
particularly beneficial for deploying and scaling 
applications across environments. Docker's 
ecosystem is a standout feature. It boasts a vast 
and active community, extensive documentation, 
and a rich collection of tools and platforms built 
around it. This ecosystem enhances its versatility 
and makes it a popular choice for developers and 
organizations alike. 
 
Portability is also a major strength. Docker 
containers can run on any system that supports 
Docker, ensuring a consistent runtime 
environment regardless of the underlying 
infrastructure. This portability greatly simplifies 
application deployment across various 
environments, from development to production. 
Moreover, Docker's focus on application 
packaging is a game-changer. It enables the 
encapsulation of applications and their 
dependencies in a standardized format, ensuring 
that they run consistently across different 
environments. While LXC has its merits, 
Docker's emphasis on user-friendliness, efficient 
image management, a thriving ecosystem, 
portability, and application-centric 
containerization makes it a superior choice for 
many use cases, especially in rapidly evolving 
and diverse development environments. 
 

6.2 Windows Hyper-V 
 
Windows Hyper-V is a hypervisor-based 
virtualization platform by Microsoft. It allows 
users to create and manage virtual machines on 
Windows servers. Hyper-V provides robust 
isolation between virtualized environments, 
ensuring secure operation of multiple operating 
systems simultaneously. It supports various 
guest operating systems, including Windows, 
Linux, and others. Hyper-V offers features like 
live migration, enabling seamless movement of 
virtual machines between hosts without 
downtime. Its scalability and integration with 

Windows ecosystems make it a popular choice 
for enterprises seeking efficient server 
virtualization solutions. Hyper-V plays a crucial 
role in consolidating workloads, optimizing 
resource utilization, and facilitating dynamic IT 
environments. 
 
Docker and Windows Hyper-V are both powerful 
virtualization technologies, but they serve 
different purposes and have distinct strengths. 
Docker is advantageous for the following 
reasons. Docker containers share the host OS 
kernel, resulting in significantly lower overhead 
compared to full virtualization solutions like 
Hyper-V. This means Docker containers start 
faster and consume fewer system resources. 
Docker containers are highly portable and can 
run consistently across different environments, 
crucial for modern DevOps practices and 
microservices architectures. Docker's 
containerization model allows for quick 
deployment and scaling of applications, 
simplifying the process of packaging an 
application and its dependencies, ensuring 
consistent behavior in any environment. 
Additionally, Docker has a vast and active 
community, extensive documentation, and a rich 
ecosystem of tools and platforms built around it, 
making it easy to find support and resources for 
Docker-related tasks.  
 
Hyper-V is preferred for certain use cases due to 
the following reasons. Hyper-V provides 
complete virtual machines with separate 
operating systems, essential for running legacy 
applications or certain specialized workloads. It 
seamlessly integrates with the Windows 
environment, making it the natural choice for 
organizations heavily invested in the Microsoft 
ecosystem. Hyper-V excels in running Windows-
based workloads and is optimized for this 
purpose. Ultimately, the choice between Docker 
and Hyper-V depends on specific use cases and 
the nature of the workloads being managed. 
Docker excels in containerizing applications for 
modern, agile development workflows, while 
Hyper-V provides a full virtualization solution 
advantageous for Windows-centric environments 
and legacy applications. 

 
6.3 Podman 
 
Podman is a containerization tool in the Linux 
ecosystem, offering a seamless alternative to 
Docker. What sets Podman apart is its 
daemonless architecture, eliminating the need for 
a centralized daemon process. This leads to 
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enhanced security and resource utilization. 
Podman is compatible with Docker images and 
containers, simplifying the transition for users 
familiar with Docker. It provides features like 
rootless containers, enabling non-privileged 
users to run containers securely. With support for 
Kubernetes and Open Container Initiative (OCI) 
standards, Podman offers a versatile solution for 
managing containers, making it a valuable tool 
for developers and system administrators in 
modern IT environments. Docker has long stood 
as a cornerstone in containerization technology, 
boasting several advantages over Podman. 
Firstly, Docker's widespread adoption and 
extensive community support have fostered a 
rich ecosystem of tools and resources, providing 
users with a wealth of options and expertise. This 
robust community backing contributes to 
Docker's stability and reliability. 
 
Additionally, Docker's simplicity and ease of use 
have made it the go-to-choice for many 
developers and organizations. Its intuitive 
command-line interface and straightforward 
setup process facilitate quick adoption and 
integration into existing workflows. Docker's 
layered image system is another significant 
advantage. By allowing containers to share 
common layers, it optimizes storage and 
accelerates image pulls, leading to more efficient 
resource utilization. Portability is a major strength 
for Docker. Its containers can run consistently 
across various environments, providing a uniform 
runtime environment regardless of the underlying 
infrastructure. This is crucial for modern DevOps 
practices and microservices architectures. 
 
 

Furthermore, Docker's emphasis on application-
centric containerization streamlines the process 
of packaging applications and their 
dependencies. This ensures consistent behavior 
in different environments, making it an invaluable 
tool for development and deployment pipelines. 
While Podman offers distinct advantages like 
daemonless architecture and rootless containers, 
Docker's maturity, extensive ecosystem, user-
friendliness, and portability make it a preferred 
choice for many developers and organizations 
seeking reliable and efficient containerization 
solutions. 
 

6.4 runC 
 

runC, a core component of containerization, is an 
open-source command-line utility. It adheres to 
the Open Container Initiative (OCI) specification, 
enabling the execution of containers on various 

platforms. RunC is a lightweight, portable tool 
that spawns and runs containerized applications, 
acting as a container runtime. Its simplicity and 
adherence to industry standards make it a crucial 
building block for container orchestrators like 
Kubernetes and container management systems 
like Docker. By providing a standard interface for 
launching containers, runC enhances 
compatibility and interoperability in the container 
ecosystem, allowing developers to create and 
manage containers without being tied to a 
specific containerization platform. 
 

Docker and runC serve different but 
complementary roles in the containerization 
ecosystem. Docker is a comprehensive container 
platform that incorporates several components, 
including runC, to provide a complete 
containerization solution. However, there are 
several reasons why Docker, as a complete 
platform, is often preferred over using runC in 
isolation. One significant advantage of Docker is 
its user-friendly interface and high-level 
abstraction. Docker simplifies the process of 
creating, managing, and orchestrating 
containers, making it accessible to a broader 
audience. It offers a wide range of tools and 
features that streamline development and 
deployment workflows, including image 
management, container networking, and a 
powerful CLI. 
 

Docker's layered image system is a substantial 
benefit. It allows containers to share common 
layers, reducing storage requirements and 
speeding up image pulls. This efficiency is crucial 
for deploying and scaling applications in 
resource-constrained environments. Docker's 
ecosystem is another major strength. It has a 
thriving community, extensive documentation, 
and a rich set of plugins and integrations that 
enhance its functionality. This ecosystem 
provides developers and organizations with a 
wealth of resources and options to enhance their 
containerized workflows. 
 

Additionally, Docker provides robust support for 
container orchestration through tools like Docker 
Swarm and Kubernetes, making it well-suited for 
managing complex container deployments at 
scale. While runC is a fundamental component in 
the containerization landscape, Docker's 
comprehensive platform, with its user-friendly 
interface, efficient image management, vibrant 
ecosystem, and robust orchestration capabilities, 
often makes it the preferred choice for 
developers and organizations looking for a 
complete containerization solution. 
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6.5 Containerd 
 
Containerd is a core container runtime used in 
various container platforms. It's designed for 
stability, performance, and portability, focusing on 
the essential aspects of container execution. 
Developed under the guidance of the CNCF, 
Containerd provides a foundational layer for 
managing container lifecycle events. It's 
compatible with industry standards like the Open 
Container Initiative (OCI) specifications, ensuring 
seamless integration with other containerization 
tools. Containerd's modular architecture allows it 
to be easily extended and customized, making it 
a versatile choice for orchestrating containerized 
applications. Its lightweight nature and 
adherence to best practices make it a popular 
choice in cloud-native environments. 
 
Docker and Containerd are interconnected 
components in the containerization ecosystem, 
with Docker utilizing Containerd as its core 
container runtime. However, Docker, as a 
comprehensive platform, offers several 
advantages over using Containerd in isolation. 
One key distinction lies in Docker's high-level 
abstraction and user-friendly interface. Docker 
simplifies the process of creating, managing, and 
orchestrating containers, making it accessible to 
a wider audience. It provides a rich set of tools 
and features, including image management, 
container networking, and a powerful CLI, 
streamlining development and deployment 
workflows. 
 
Docker's layered image system is a significant 
asset. By allowing containers to share common 
layers, it optimizes storage requirements and 
accelerates image pulls. This efficiency is vital for 
deploying and scaling applications in resource-
constrained environments. The Docker 
ecosystem is another crucial strength. With a 
thriving community, extensive documentation, 
and a wealth of plugins and integrations, Docker 
offers a wide array of resources and options to 
enhance containerized workflows. 
 
Moreover, Docker provides robust support for 
container orchestration through tools like Docker 
Swarm and Kubernetes. This makes it well-
suited for managing complex container 
deployments at scale. While Containerd serves 
as a fundamental container runtime, Docker's 
comprehensive platform, encompassing its user-
friendly interface, efficient image management, 
vibrant ecosystem, and powerful orchestration 
capabilities, often positions it as the preferred 

choice for developers and organizations seeking 
a complete containerization solution. 
 

7. CONCLUSION 
 

Container computing is the promising paradigm 
for delivering IT services as computing utilities. 
Docker containers are designed to provide 
services to external users; providers need to be 
compensated for sharing their resources and 
capabilities. There are many open issues 
regarding the Container computing. This 
proposed taxonomy will provide researcher and 
developer the ideas on the current container 
systems, hype and challenges. This paper 
provides the information to evaluate and improve 
the existing and new container systems and 
prefers Docker over others. 
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