
*Corresponding author: E-mail: prathameshmuzumdar85@gmail.com;

Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024

Asian Journal of Research in Computer Science

Volume 17, Issue 1, Page 42-61, 2024; Article no.AJRCOS.110049
ISSN: 2581-8260

Navigating the Docker Ecosystem: A
Comprehensive Taxonomy and Survey

Prathamesh Muzumdar a*, Amol Bhosale b,

Ganga Prasad Basyal c and George Kurian d

a The University of Texas at Arlington, USA.
 b Capgemini, Malaysia.

c Black Hills State University, USA.
d Eastern New Mexico University, USA.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2024/v17i1411

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/110049

Received: 23/10/2023
Accepted: 28/12/2023
Published: 03/01/2024

ABSTRACT

The cloud computing landscape is rapidly expanding and growing in complexity. It has witnessed
the emergence of Cloud Computing as a widely adopted model for efficiently processing large
volumes of data by harnessing clusters of commodity computers. This evolution enables the
handling of massive data through on-demand services, relying on numerous microservices with
diverse dependencies. The technology of containers ensures secure storage, allowing for large-
scale data processing with high scalability and portability. Container technology, particularly
exemplified by Docker in the last decade, plays a pivotal role in this scenario. It empowers
microservices to process data swiftly, enabling developers to dynamically scale these services in
real-time. This paper initiates by establishing a comprehensive taxonomy for delineating container
architecture. Focusing specifically on Docker containers, we scrutinize various existing container-
related literature. Through this taxonomy and survey, we not only discern similarities and disparities
in the architectural approaches of Docker container technology but also pinpoint areas
necessitating further research.

Review Article

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

43

Keywords: Docker container; cloud computing; container-based virtualization technologies;
orchestration.

1. INTRODUCTION

Has Container technology merely generated
buzzwords and hype, or does it hold substantial
value? Beyond the surface excitement, Container
technology emerges as a profoundly
transformative force, gaining traction due to its
scalability and portability [1]. It inherits
established technology while introducing
innovative concepts to construct an efficient
system, surpassing the conventional mainframe
model. Container technology embodies the next
evolutionary phase in distributed computing [3].
This model aims to optimize the utilization of
distributed resources, amalgamating them to
achieve heightened throughput and tackle
extensive computational challenges at a micro
level, exemplified by microservices [11]. Notably,
container technology isn't an entirely novel notion
in the realm of developing and operating large-
scale web applications within a service-oriented
architecture (SOA) [6]. It facilitates the cost-
effective development of scalable web portals on
robust, fault-tolerant infrastructures.

Containerization, a lightweight virtualization
technology, has revolutionized the management
of cloud applications [27]. It provides a means to
encapsulate applications and their dependencies
in isolated environments, ensuring seamless
deployment across various platforms. As this
technology gained prominence, the challenge of
efficiently orchestrating the creation and
deployment of containers, both individually and in
clusters, emerged as a pivotal concern [18]. The
adoption of containers, exemplified by Docker,
has propelled the development and deployment
of applications, offering benefits such as
portability, resource efficiency, and rapid scaling
[22]. However, orchestrating these containers in
a coordinated manner, especially in complex,
multi-container environments, demands
sophisticated solutions.

Container orchestration platforms like
Kubernetes have risen to prominence to address
this very challenge [12]. They provide robust
tools for automating the deployment, scaling, and
management of containerized applications.
Kubernetes, in particular, has become the de
facto standard for container orchestration,
offering features like service discovery, load
balancing, and automatic scaling based on
resource usage [28]. In summary,

containerization technology has ushered in a
new era of application deployment, but effective
orchestration of containers, whether individually
or in clusters, has become a critical concern in
modern IT operations [16,23]. This has led to the
rise of advanced orchestration platforms like
Kubernetes, which play a central role in
managing containerized applications at scale.

Our research has culminated in a
comprehensive repository of contemporary
research methodologies, techniques, best
practices, and real-world experiences employed
in the realm of container technology architecture,
with a specific emphasis on the development and
management of containerized applications and
microservices [36]. Through our investigation, it
became evident that container technology
research is currently undergoing a phase of
foundational development, necessitating further
experimentation and empirical assessment of its
advantages [35]. Additionally, our study led to the
formulation of an all-encompassing classification
system tailored specifically for container
technology, particularly within the context of
clustered cloud architectures [25].

The findings from our mapping study reveal a
growing interest and adoption of container-based
technologies, such as Docker, which serve as
lightweight virtualization solutions at the
infrastructure-as-a-Service (IaaS) level, and as
application management tools at the Platform-as-
a-Service (PaaS) level. It is evident that
containers have a positive impact on both the
development and deployment phases [21]. For
example, cloud architecture is shifting towards
DevOps-driven methodologies, supporting a
seamless cycle of continuous development and
deployment that leverages cloud-native solutions
based on container technology and their
orchestration.

The results demonstrate that containers play a
pivotal role in facilitating continuous development
in the cloud, utilizing cloud-native platform
services for development and deployment.
However, they do require sophisticated
orchestration support, which can be provided by
platforms like Docker Swarm or Kubernetes.
Consequently, container-based orchestration
techniques emerge as crucial mechanisms for
coordinating computation in cloud-based,
clustered environments [24]. Our study highlights

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

44

Docker as a superior container technology when
compared to alternatives such as LXC (Linux
containers), Windows Hyper-V, Podman, runC,
and containerd.

2. BACKGROUND

Virtualization of resources involves using an
additional layer of software above the host
operating system to manage multiple resources.
These virtual machines (VMs) function as distinct
execution environments. Various approaches are
employed for virtualization, with one popular
method being hypervisor-based virtualization
[32]. Notable solutions in this category include
KVM and VMware. To implement this technology,
a virtual machine monitor is necessary above the
underlying physical system, and each VM
provides support for isolated guest operating
systems [10]. It's conceivable for a single host
operating system to accommodate numerous
guest operating systems within this virtualization
framework.

On the other hand, container-based virtualization
represents a different approach. Here, hardware
resources are partitioned to create multiple
instances with secure isolation properties [8].
The key distinction lies in how guest processes
interact with the technology. With container-
based systems, processes access abstractions
directly through the virtualization layer at the
operating system (OS) level. In contrast,
hypervisor-based approaches typically have one
VM per guest OS. Container-based solutions
often share a single OS kernel among virtual
instances, leading to an assumption of weaker
security compared to hypervisors [31]. From a
user's perspective, containers function as self-
contained operating systems, seemingly capable
of independent operation from both hardware
and software.

Containerization enables a streamlined form of
virtualization by crafting specialized containers
from distinct images (typically sourced from an
image repository) as self-contained application
bundles. These containers utilize fewer
resources and time. Moreover, they facilitate a
higher level of compatibility in packaging
applications, crucial for creating portable and
interoperable software solutions in cloud
environments. The foundation of containerization
lies in the ability to efficiently build, assess, and
launch applications across numerous servers, as
well as establishing connections between these
containers [38]. As a result, containers effectively

tackle concerns at the cloud Platform as a
Service (PaaS) level.

3. LITERATURE SURVEY

Container technology has emerged as a
transformative force in modern computing,
garnering attention for its scalability and
portability [1]. Unlike traditional approaches, it
introduces innovative concepts that construct
efficient systems, surpassing the limitations of
conventional mainframe models [1]. This review
explores the evolution and impact of container
technology, shedding light on its role in
distributed computing and its applications in
managing cloud resources.

Container technology represents the next
evolutionary phase in distributed computing [3],
aiming to optimize the utilization of distributed
resources for heightened throughput, particularly
in the context of microservices [11]. While not
entirely novel, container technology has proven
effective in developing and operating large-scale
web applications within service-oriented
architectures (SOA) [6]. It facilitates cost-
effective development on robust, fault-tolerant
infrastructures, positioning itself as a key player
in modern software architecture.

Containerization, a lightweight virtualization
technology, has revolutionized the management
of cloud applications [27]. It provides a means to
encapsulate applications and their dependencies
in isolated environments, ensuring seamless
deployment across various platforms. However,
the efficient orchestration of container creation
and deployment, especially in complex, multi-
container environments, has emerged as a
pivotal concern [18]. This has led to the rise of
container orchestration platforms, with
Kubernetes standing out as the de facto
standard, addressing challenges in automating
deployment, scaling, and management of
containerized applications [12].

Research in container technology has reached a
phase of foundational development, prompting
the need for further experimentation and
empirical assessment of its advantages [35].
Comprehensive studies have led to the
formulation of a classification system tailored for
container technology within clustered cloud
architectures [25]. These developments
underscore the dynamic nature of container
technology research, requiring ongoing
exploration and validation of its potential.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

45

Mapping studies reveal a growing interest and
adoption of container-based technologies, such
as Docker, serving as lightweight virtualization
solutions at the Infrastructure as a Service (IaaS)
level and as application management tools at the
Platform as a Service (PaaS) level [21].
Containers positively impact both development
and deployment phases, aligning with the shift
towards DevOps-driven methodologies in cloud
architecture [21]. Continuous development and
deployment cycles leverage cloud-native
solutions based on container technology and
their orchestration, emphasizing their role in
shaping modern IT operations.

Containers play a pivotal role in facilitating
continuous development in the cloud, utilizing
cloud-native platform services for development
and deployment [24]. While they offer benefits in
terms of resource efficiency and rapid scaling,
sophisticated orchestration support is essential.
Platforms like Docker Swarm or Kubernetes
emerge as crucial mechanisms for coordinating
computation in cloud-based, clustered
environments [24]. Among various container
technologies, Docker is highlighted as a superior
choice when compared to alternatives [24].

Transitioning to the broader context of
virtualization, the review explores the
conventional approach of using an additional
layer of software, such as hypervisors like KVM
and VMware, above the host operating system to
manage multiple resources [32]. These
hypervisor-based virtualization solutions enable
the creation of distinct execution environments,
each supporting isolated guest operating
systems. The ability of a single host operating
system to accommodate numerous guest
operating systems within this virtualization
framework demonstrates its flexibility and
scalability.

In contrast, container-based virtualization
represents a different approach, where hardware
resources are partitioned to create multiple
instances with secure isolation properties [8].
The key distinction lies in how guest processes
interact with the technology, with containers
providing direct access through the virtualization
layer at the operating system level. This differs
from hypervisor-based approaches, where each
VM typically corresponds to one guest OS.
Container-based solutions often share a single
OS kernel among virtual instances, leading to an

assumption of weaker security compared to
hypervisors [31].

Containerization enables a streamlined form of
virtualization by crafting specialized containers
from distinct images, serving as self-contained
application bundles [38]. These containers offer
advantages in terms of efficiency, utilizing fewer
resources and time. Their compatibility in
packaging applications is crucial for creating
portable and interoperable software solutions in
cloud environments. The ability to efficiently
build, assess, and launch applications across
numerous servers, while establishing
connections between containers, positions
containers as effective solutions at the cloud
Platform as a Service (PaaS) level [38].

In conclusion, container technology has
transcended buzzwords and hype, demonstrating
substantial value in modern computing. Its
transformative force, scalability, and portability
have propelled it to the forefront of distributed
computing and cloud management. While
challenges exist, the evolution of
containerization, coupled with advanced
orchestration platforms like Kubernetes, signifies
a new era in application deployment and
management. Additionally, the comparison with
hypervisor-based virtualization highlights the
unique advantages and considerations
associated with each paradigm, offering insights
into the diverse landscape of virtualization
technologies. The ongoing research and
development in container technology further
emphasize its dynamic nature, calling for
continuous exploration and validation of its
potential in reshaping the IT landscape.

4. TAXONOMY OF DOCKER CONTAINER

Numerous taxonomies exist for cloud computing,
but few are dedicated to container systems like
Docker. Our taxonomy serves as a valuable
resource for academia, developers, and
researchers, offering insights into container
architecture and management [15]. We
developed this taxonomy by considering both
vendors within the Cloud Container landscape
and enterprise IT, the end-users of cloud services
and software. In the following sections, we
present and elaborate on this taxonomy,
providing a comprehensive understanding of the
subject.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

46

4.1 Docker Architecture

Fig. 1 depicts the all-encompassing structure of
Docker container architecture. It encompasses
the design of software applications that
utilize internet-accessible, on-demand
services. Docker Architectures rely on an
infrastructure that is activated only when
required, pulling the essential services
(microservices) as needed to execute a specific
task, and subsequently releasing any surplus
resources, often discarding them upon task
completion [14].

The architecture of a container cluster comprises
one or more master nodes and one or more
worker nodes. The worker nodes function as
distinct clusters that deliver microservices
organized according to grouped business logic
[20]. API services facilitate communication
between containers, while configuration services,
specifically Docker configs, serve as repositories
for non-sensitive information, like configuration
files, external to a service's image or active
containers [34]. This approach enables you to
maintain your images in a more universal
manner, eliminating the necessity to bind-mount
configuration files into the containers or rely on
environment variables [43].

Numerous internal services facilitate
communication, alongside a variety of external
services directing business inquiries to a specific
service within a container or a group of

containers grouped in a pod within a particular
cluster [7]. An external client engages with
diverse services through a master node, which
interacts with the internal cluster loop, redirecting
requests to specific services housed in a pod on
a worker node. A load balancer aids in
pinpointing an available cluster prepared to
deliver the service. The master node
encompasses distinct configurations, including
an API server, Scheduler, controller manager,
and ETCD.

4.2 Docker Client Server Architecture

4.2.1 Docker daemon

Docker Daemon, often referred to simply as
"Dockerd," is a crucial component at the heart of
Docker container technology. It serves as the
background service responsible for managing
and executing Docker containers on a host
system. Docker Daemon listens for Docker API
requests and translates them into actions,
facilitating container creation, management, and
networking [30]. This lightweight, long-running
process plays a pivotal role in container
orchestration, resource allocation, and security
enforcement. It ensures containers run efficiently,
isolating them from the host system while
offering a unified interface for developers and
operators. Docker Daemon is an integral part of
the Docker ecosystem, enabling the agility,
scalability, and portability that containerization is
renowned for.

Fig. 1. Docker Architecture [43]

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

47

Fig. 2. Docker Client Server Architecture [43]

4.2.2 Docker client

The Docker Client is a command-line interface
(CLI) that allows users to interact with Docker
Daemon, facilitating container operations. It
sends commands to the daemon via the Docker
API, enabling tasks like building, running, and
managing containers. The client is pivotal for
developers and administrators using Docker
technology.

4.2.3 Docker build

Docker Build is a pivotal command in Docker's
toolkit, facilitating the creation of custom
container images. It employs a Dockerfile—a
declarative script defining the image's
configuration and dependencies. When
executed, Docker Build reads this file, then
compiles and packages the application along
with its environment. Each step is cached,
enhancing efficiency during subsequent builds.
This process ensures reproducibility and
portability across different environments. Docker
Build is fundamental for DevOps workflows,
enabling seamless integration with version
control systems. It empowers developers to
encapsulate applications and their

dependencies, ensuring consistent deployment
in diverse computing environments.

4.2.4 Docker pull

Docker Pull is a command that allows users to
fetch container images from a specified
registry,typically Docker Hub or a private
repository. When executed, it contacts the
Docker Daemon, which then downloads the
requested image and its layers, if they aren't
already present on the local system [37]. This
process ensures that the required image is
readily available for running containers. Docker
Pull is a vital aspect of containerization, enabling
rapid deployment by retrieving pre-configured
images. It streamlines software distribution,
making it a cornerstone in modern development
and deployment pipelines, fostering efficiency
and consistency across diverse computing
environments.

4.2.5 docker run

Docker Run is a fundamental command in
Docker, enabling the execution of containerized
applications. It instructs Docker to create and
initiate a new container based on a specified
image. Users can customize container behavior

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

48

through various options, such as network
settings, environment variables, and resource
constraints. Once initiated, the container runs as
an isolated instance, leveraging the host
system's resources while maintaining its own file
system and networking. Docker Run is
instrumental in achieving consistency across
development, testing, and production
environments, providing a seamless deployment
process. It's a linchpin in modern software
development, promoting portability, scalability,
and efficient resource utilization.

4.2.6 Docker push

Docker Push is a pivotal command enabling
users to upload their custom-built container
images to a container registry, like Docker Hub or
a private repository. This process involves
tagging the image appropriately, specifying the
destination registry, and authenticating the user's
credentials [4]. Once executed, Docker Push
transfers the image and its layers to the specified
repository, making it accessible to others in the
development or operations team. This capability
streamlines collaboration and deployment
workflows, ensuring that consistent and tested
images are readily available for deployment
across diverse environments [33]. Docker Push
is a linchpin in modern DevOps practices,
fostering efficiency, scalability, and
reproducibility.

4.3 Docker Container

Docker containers revolutionize software
deployment by encapsulating applications and
their dependencies in isolated units. These
lightweight, portable environments ensure
consistency across different computing
environments, from development to production.
Unlike virtual machines, Docker shares the host
OS kernel, consuming fewer system resources
and enabling rapid startup times. This efficiency
allows for efficient utilization of server resources,
enabling more containers to run on a single
machine. Docker's image-based approach
facilitates version control and easy replication,
ensuring reliable and reproducible deployments.
With a vast ecosystem and support for
orchestration tools like Kubernetes, Docker has
become a cornerstone of modern DevOps
practices, fostering scalability, agility, and
seamless deployment pipelines.

Docker containers and images are
interdependent components of the Docker

platform. An image serves as a lightweight,
standalone, and immutable template containing
an application and its dependencies. It's a
snapshot of a specific environment, ensuring
consistency across various stages of
development and deployment [40]. When a
container is instantiated from an image, it
becomes a runnable instance of that
environment. Containers are dynamic, allowing
applications to execute, interact, and
communicate with other services. They also
introduce a writable layer, enabling changes to
be saved during runtime. Images serve as
blueprints, while containers bring them to life,
collectively enabling the agility, portability, and
reproducibility that Docker is celebrated for.

Fig. 3. Docker Container [43]

4.4 Docker Image

A Docker image is a fundamental component of
containerization, encapsulating an application
and its dependencies into a portable, immutable
package. These images serve as lightweight
templates, offering consistency across various
environments, from development to production.
Docker images are based on a layered file
system, with each layer representing a specific
instruction in the image's Dockerfile. This layered
approach allows for efficient storage and sharing
of common components. Images are versioned,
making it easy to track changes and ensure
reproducibility in deployments [26]. They play a
pivotal role in modern DevOps workflows,
facilitating seamless application packaging,
distribution, and scalability while promoting
efficient resource utilization.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

49

Fig. 4. Docker Image [43]

4.5 Docker Package

Docker packages revolutionize software
deployment through containerization. A Docker
package comprises an application, its
dependencies, libraries, and runtime
environment, encapsulated into a self-
contained unit. This package, known as a
Docker image, is lightweight and portable,
ensuring consistent performance across
different computing environments. Docker's
layered file system allows for efficient storage
and sharing of components, optimizing resource
usage.

Images can be versioned, enabling precise
control over deployments. With Docker,
packages become highly reproducible,
streamlining development to production
workflows [41]. This transformative technology
has become a cornerstone of modern DevOps,
driving efficiency, scalability, and agility in
software development and deployment
processes.

4.6 Docker Registry (Docker Hub)

A Docker registry is a vital component of the
Docker ecosystem, acting as a centralized
repository for Docker images. It serves as a
storage and distribution hub for containerized
applications, allowing users to securely share,
manage, and retrieve Docker images. Registries
play a crucial role in facilitating collaboration
among developers and teams, ensuring
seamless deployment workflows [42]. Docker
Hub is one of the most widely used public Docker

registries. It provides a cloud-based platform for
sharing and accessing Docker images. Docker
Hub hosts a vast library of pre-built images for
various applications, operating systems, and
development stacks [29]. This extensive
collection accelerates the development process
by eliminating the need to build images from
scratch. Developers can simply pull ready-to-use
images from Docker Hub, saving time and effort.

Fig. 5. Docker Registry [43]

Additionally, Docker Hub supports version
control, enabling users to manage different
iterations of their images. It also offers tools for
automated builds, allowing for continuous
integration and delivery workflows. Docker Hub's
user-friendly interface and robust search
capabilities simplify the process of discovering
and incorporating images into projects. While
Docker Hub is immensely popular, organizations
often deploy private Docker registries for
enhanced security and control over their image
repositories [5]. These private registries, like
Docker Trusted Registry (DTR), enable teams to
securely store proprietary images and integrate

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

50

them seamlessly into their development
pipelines.

4.7 Docker Repository

A Docker repository is a storage location for
Docker images. It serves as a centralized hub
where containerized applications, along with their
dependencies and configurations, are stored.
Repositories allow for efficient management,
sharing, and retrieval of Docker images. They
come in two types: public and private [39]. Public
repositories, like Docker Hub, are open to the
community, providing a vast collection of pre-built
images for various applications. Private
repositories, on the other hand, are typically used
by organizations to securely store and manage
proprietary images. They offer control over
access and permissions, ensuring sensitive
applications remain confidential within a team or
company.

Fig. 6. Docker Repository [43]

4.8 Port Binding

Port binding is a crucial concept in networking,
particularly in the context of containerization
technologies like Docker. It involves connecting
specific network ports of a container to the host
system or other containers. This enables external
services to communicate with applications
running inside the container. By binding container
ports to the host, developers can ensure
seamless interaction between the containerized
application and external resources. Port binding
plays a pivotal role in orchestrating microservices
architectures, allowing different components to
communicate effectively [9]. It also enhances
security by controlling which ports are exposed
externally, safeguarding sensitive services from
unauthorized access. This practice is integral to
building robust, interconnected systems in
modern software development.

Fig. 7. Port Binding [43]

4.9 Docker File

A Dockerfile is a crucial component in the Docker
ecosystem, serving as a blueprint for creating
Docker images. It's a plain-text configuration file
that contains a series of instructions, specifying
how to assemble an environment within a Docker
container. These instructions encompass actions
like specifying a base image, adding files,
running commands, and configuring settings.
The Dockerfile's layered approach is
fundamental to Docker's efficiency. Each
instruction creates a new layer in the image,
optimizing resource usage and enabling
faster builds. This also facilitates image
versioning, allowing developers to track
changes and roll back to previous states if
needed. Developers use Dockerfiles to
automate the process of setting up
environments, ensuring consistency across
development, testing, and production stages [17].
This automation minimizes the "it works on my
machine" problem, fostering reproducibility in
deployments.

Fig. 8. Docker File [43]

Moreover, Dockerfiles promote best practices like
keeping images lightweight by minimizing
unnecessary components, enhancing security by
only including essential dependencies, and
improving efficiency by leveraging cache for
repetitive tasks. A well-crafted Dockerfile is a
cornerstone of efficient containerized workflows
[13]. It empowers developers to encapsulate
applications and their dependencies, making
them easily portable and deployable across
different computing environments. This enables
rapid, reliable, and scalable application

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

51

development and deployment, making
Dockerfiles an indispensable tool in modern
DevOps practices.

4.10 Deployment Server

A Docker deployment server is a critical
component in the lifecycle of containerized
applications, responsible for managing the
distribution, scaling, and orchestration of Docker
containers in a production environment. It plays a
pivotal role in ensuring that applications run
smoothly, efficiently, and reliably at scale. One of
the most popular tools for Docker deployment is
Kubernetes, an open-source container
orchestration platform. Kubernetes abstracts the
underlying infrastructure and provides a
declarative way to define how containerized
applications should be deployed, scaled, and
managed [2]. It automates tasks like load
balancing, scaling, rolling updates, and self-
healing, making it ideal for large-scale and
complex container deployments.

Fig. 9. Deployment Server [43]

Another commonly used tool is Docker Swarm,
Docker's built-in orchestration solution. Docker
Swarm simplifies the deployment and scaling of
Docker containers and is well-suited for smaller,
less complex applications. In addition to these
tools, various cloud providers offer managed
container orchestration services, such as
Amazon Elastic Kubernetes Service (EKS),
Google Kubernetes Engine (GKE), and Azure
Kubernetes Service (AKS), which make it easier
to deploy and manage containerized applications
in the cloud. A Docker deployment server,
whether based on Kubernetes, Docker Swarm,
or a cloud service, is essential for achieving high
availability, fault tolerance, and efficient resource
utilization in containerized environments [19]. It
allows organizations to deploy and manage
applications with confidence, knowing that their
containerized workloads are being handled
effectively.

4.11 Docker Bind Mount

Docker bind mount is a technique that allows a
file or directory on the host system to be
mounted into a container. This establishes a
direct link between the container and the host's
file system, enabling real-time synchronization of
files and data. Bind mounts are versatile,
supporting read and write operations, making
them invaluable for development workflows,
debugging, and sharing data between a
container and its host [16]128]. They offer
flexibility and simplicity, allowing containers to
access and modify host files without the need to
create custom images [22]. Docker bind mounts
are a powerful tool for seamless integration
between containerized applications and the host
environment.

4.12 Docker Stack

A Docker stack is a collection of services, often
comprising multiple containers, that work
together to deliver a cohesive application [18].
It's defined using a Compose file, which outlines
the configuration for each service, including
container images, networking, and
dependencies. Docker Swarm, Docker's native
orchestration tool, manages these stacks,
ensuring high availability, fault tolerance, and
scalability. Docker stacks facilitate the
deployment of complex, multi-container
applications in a simplified manner [38]. They
offer benefits like service discovery, allowing
containers within a stack to communicate
seamlessly, and load balancing, distributing
traffic evenly across the service instances.

Furthermore, Docker stacks enable automated
rollouts and rollbacks, making it easy to update
applications while minimizing downtime. They
also support health checks, ensuring that only
healthy containers receive traffic. In addition to
these features, Docker stacks are compatible
with overlay networks, enabling communication
across multiple hosts in a Swarm cluster. This
enables the creation of resilient, distributed
applications [23]. Overall, Docker stacks are
instrumental in orchestrating the deployment of
multi-container applications, providing an efficient
and scalable framework for modern software
architectures. They streamline the management
of complex applications, making them an
essential tool for DevOps teams and
organizations embracing containerization.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

52

Fig. 10. Docker Stack [43]

4.13 Docker Deployment and Deployment
Process

Docker Deployment and Deployment Process:

Docker has transformed the way applications are

deployed, providing a consistent and portable

environment throughout the entire software

development lifecycle [16]. Docker deployment

involves the process of taking Docker containers,

typically packaged as Docker images, and

running them in various environments, from

development to production. Here's an overview

of the Docker deployment process:

1. Building Docker Images

Developers create Docker images by writing a

Dockerfile that defines the application, its

dependencies, and configuration [10]. These

images are built using the `docker build`

command, which generates a snapshot of the

application and its environment.

2. Registry and Image Storage

Docker images are stored in Docker registries
like Docker Hub, private registries, or container

image repositories [11]. Registries serve as
centralized repositories where images can be
pushed, pulled, and versioned.

3. Container Orchestration

In production, Docker containers are often

managed and orchestrated using tools like

Docker Swarm or Kubernetes [22]. Orchestration

platforms automate the deployment, scaling, load

balancing, and monitoring of containers, ensuring

high availability.

4. Deployment Configuration

Deployment configurations are defined using

YAML files (Docker Compose for development or

Kubernetes YAML files for production) [32].

These files specify how containers should be run,

networked, and linked together.

5. Deployment Stacks

Applications may consist of multiple services or

microservices defined in a Docker stack [24].

Docker stacks simplify the management of multi-

container applications, ensuring they work

cohesively.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

53

6. Rollouts and Updates

Docker allows for seamless application updates
using strategies like rolling updates [32].
Containers can be updated with minimal
downtime, and the process can be automatically
reversed in case of issues.

7. Service Discovery

Docker provides service discovery mechanisms
to enable containers to find and communicate
with each other, essential for microservices
architectures [12].

8. Health Checks and Scaling

Docker containers can be configured with health
checks to ensure they are responsive and
healthy [7].Orchestration platforms
automaticallyscale containers up or down based
on demand.

9. Monitoring and Logging

Docker deployments benefit from robust
monitoring and logging solutions to track
container performance, troubleshoot issues, and
analyze application behavior [6].

10. Security and Access Control

Security measures like image scanning,
container runtime protection, and access controls
are crucial to secure Docker deployments [15].
Docker deployment simplifies application
management, accelerates development, and
promotes consistency across various
environments. It's a core technology in modern
DevOps practices, enabling efficient, scalable,
and reliable software delivery.

5. SURVEY

While previous research has explored Docker
container systems from industrial and
informational viewpoints, a thorough technical
investigation is notably absent. Our study delves
into Docker container systems, comparing them
with various other container systems. We employ
diverse classification criteria in this section to
facilitate a comprehensive technical comparative
analysis. Table 1 presents the outcomes
of this technical comparative study, showcasing
the distinctions between various infrastructure
and solution providers across different
containers.

Fig. 11. Docker Deployment Process [43]

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

54

Table 1. Comparative Table [7, 9. 21, 22, 24, 34, 43]

Criteria Docker LXC
Windows
Hyper-V

Podman runC containerd

Design focus
Simplicity
and user-
friendly

Container
Isolation and
Efficiency

Isolation and
virtualization
of Windows
environments

Lightweight
and
Daemonless

Container
Runtime
and Spec
Compliance

Container
Runtime
and Spec
Compliance

Microservices
management
system

Layered
approach for
deploying
and scaling
applications

N/A (LXC is
more focused on
low-level
containerization)

N/A (Hyper-V
is more
focused on
traditional
virtualization)

N/A (Podman
is more
focused on
lightweight
container
management)

N/A (runC
is a low-
level
runtime)

Container
Runtime
Spec
compliance

Portability

Consistent
runtime
environment
on any
platform

Limited to Linux-
based systems

Limited to
Windows-
based
systems

Consistent
runtime
environment
on any
platform

Container
Runtime
Spec
compliance

Container
Runtime
Spec
compliance

Chart 1. TAXONOMY

No. Terms Definitions

1 Docker container Lightweight, portable, and self-sufficient unit that encapsulates an
application and its dependencies

2 Docker command Instructions used in the Docker platform's command-line interface
(CLI) to interact with Docker and perform tasks

3 Docker image Images serve as the blueprint for creating Docker containers. Built
from a base image or another existing image through a series of
defined instructions in a Dockerfile, and can be stored in registries,
allowing for easy sharing and distribution

4 Docker package Synonym for Docker container

5 Docker registry (Docker hub) Storage platform for Docker images, facilitating their distribution,
sharing, and deployment across different environments

6 Docker repository Collection of related Docker images, often versioned and organized
for efficient storage and retrieval

7 Docker file Plain-text configuration file that contains instructions for building a
Docker image, specifying the base image, dependencies, and setup
steps for a containerized application

8 Docker bind mount Allows a file or directory on the host system to be mounted directly
into a container, enabling real-time synchronization and data sharing
between the host and the container

9 Docker stack A group of services defined in a Docker Compose file that work
together to form a multi-container application, allowing for simplified
deployment and management

10 Docker compose A tool that allows users to define and manage multi-container Docker
applications using a simple YAML configuration file, enabling easy
orchestration of complex deployments

11 Docker logs A real-time stream of output generated by a running container, offering
valuable insights into its behavior and troubleshooting capabilities

12 Docker exec It allows users to run commands inside a running container, providing
a means for direct interaction and troubleshooting without the need to
create a new instance

13 Docker stats It provides real-time resource usage statistics for running containers,
offering insights into CPU, memory, and network performance at a
glance

14 Docker network It is a virtual environment that allows containers to communicate with
each other, enabling seamless interaction between services in a
distributed application

15 Bridge It is a default network mode that allows containers on the same host

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

55

No. Terms Definitions

to communicate with each other via a virtual network bridge, providing
isolation and secure connectivity

16 Host It refers to the system where Docker is installed and running,
managing containers and providing the necessary resources for their
execution

17 Overlay A network that allows containers across multiple hosts to
communicate seamlessly, enabling distributed applications to function
as a unified system

18 None The "none" network mode in Docker isolates a container, preventing it
from having any network access

19 Macvlan It allows a container to have its own MAC address and appear as a
physical device on the network, enabling direct communication with
external systems

20 Docker inspect It is a command-line tool that provides detailed information about
Docker objects like containers, networks, volumes, or images, aiding
in troubleshooting and configuration analysis

21 Docker image history It displays the layers and changes within an image, providing insights
into its creation and evolution

22 Docker image prune It is a command used to remove unused or dangling images,
reclaiming storage space

23 Docker container prune It is a command used to remove stopped containers, freeing up
system resources and storage space

24 Docker compose up It starts and orchestrates the services defined in a Docker Compose
file, creating a multi-container environment

25 Docker compose down It stops and removes the services defined in a Docker Compose file,
terminating the multi-container environment

26 Docker compose ps It lists the status of services defined in a Docker Compose file,
indicating whether they are running or stopped

27 Docker compose logs It displays the combined output of services defined in a Docker
Compose file, aiding in monitoring and troubleshooting

28 Docker storage It manages the persistent data associated with containers, providing
options for storage drivers, volumes, and storage management
strategies

29 Data volumes It provides a way to persistently store and share data between
containers and the host system

30 Volume container It is a dedicated container created solely for the purpose of managing
shared data volumes, providing a centralized storage solution for
other containers

31 Directory mounts It allows specific host directories to be linked with containers, enabling
real-time synchronization of data

32 Storage plugins It extends the platform's capabilities by allowing different storage
drivers to manage container data, supporting various backend
technologies

33 Advanced Multi-Layered
Unification File system (AuFS)

It is a union filesystem used by Docker to layer images, providing a
lightweight and efficient way to manage container file systems

34 Compile configurations It involves specifying instructions in a Dockerfile to build custom
images with specific settings, dependencies, and behaviors

35 Environment configurations It refers to variables and settings that can be passed to containers at
runtime, influencing their behavior and functionality

36 Artifact An artifact in software development is a result of a build process,
which may include compiled code, libraries, or other files, ready for
deployment

37 Port binding It involves mapping a container's internal port to a specific port on the
host system, enabling external access to the containerized service

38 CI server Continuous Integration server, automates the process of code
integration, testing, and deployment, ensuring a streamlined and
reliable software development workflow

39 Deployment server It is a dedicated platform that manages the distribution and installation
of software applications to target environments, ensuring consistent

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

56

No. Terms Definitions

and reliable deployments

40 Kernel namespaces It provides process isolation and resource control, allowing multiple
instances of the same resource to coexist independently in a Linux
environment

41 cgroups Short for control groups, is a Linux kernel feature that enables fine-
grained resource management, allowing processes to be grouped and
allocated specific system resources like CPU, memory, and I/O

42 Microservices patterns Microservices patterns are architectural guidelines and best practices
for designing, deploying, and managing independent, small-scale
services that collectively form a larger application

43 Deployment package It is a bundled unit containing all necessary files, configurations, and
dependencies required to install and run a software application in a
specific environment

44 Dependencies Dependencies refer to the external libraries, frameworks, or software
components required by an application to run within a containerized
environment

45 Exemption cycles Code foundations have a single API relationship with one another.
Concept are that every group may work in isolation and be
protected/disconnected from one another

46 Advanced Multi-Layered
Unification File system (AuFS)

Advanced Multi-Layered Unification File system (AuFS) is a union file
system used by Docker to layer images and provide a lightweight and
efficient way to manage container file systems

47 rocket container runtime (rkt) rkt, or Rocket, is an open-source container runtime developed by
CoreOS, designed for secure, composable, and standards-focused
container deployments

48 Container orchestration plan A container orchestration plan outlines how containerized applications
will be deployed, managed, scaled, and connected in a cluster,
typically using tools like Kubernetes or Docker Swarm

5.1 Comparative Studies

Comparative studies on cloud container systems
have scrutinized Docker, LXC, Windows Hyper-
V, Podman, runC, and containerd to assess their
strengths and limitations. Docker, renowned for
its user-friendly interface and extensive
ecosystem, excels in rapid deployment and
robust image management. LXC, a lightweight
alternative, provides low overhead and high
performance, but lacks some of Docker's
features. Windows Hyper-V, optimized for
Windows environments, offers seamless
integration with existing Microsoft tools. Podman,
a daemonless container engine, emphasizes
security and compatibility with Docker. runc and
containerd are lower-level runtimes, forming the
foundation for Docker and other container
platforms, focusing on performance and standard
compliance. Each system demonstrates unique
capabilities, catering to specific use cases and
preferences in cloud-based containerization.

6. FINDINGS

The suggested taxonomy, along with extensive
technical research and surveys, reveals valuable
insights from diverse container systems. These

findings offer potential directions for future
developments and enhancements in existing
systems. Additionally, we address complexities,
challenges, and prospects for forthcoming
container systems in this context.

6.1 LXC

Linux Containers (LXC) are a lightweight
virtualization technology, allowing multiple
isolated Linux systems to run on a single host.
Unlike traditional virtual machines, LXC shares
the host's kernel, resulting in reduced overhead
and enhanced performance. LXC leverages
cgroups and namespaces, enabling fine-grained
resource control and isolation. It excels in
scenarios where efficiency and rapid deployment
are paramount, making it popular in
development, testing, and production
environments. LXC containers boast quick
startup times and minimal resource consumption,
ideal for microservices architectures and cloud
computing. They provide a flexible, efficient
solution for orchestrating applications and
services, contributing to the versatility and
scalability of modern computing
environments.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

57

Docker holds several advantages over LXC
(Linux Containers) due to its design focus on
application-centric containerization. Firstly,
Docker's strength lies in its simplicity and user-
friendly interface. It abstracts away much of the
complexity of containerization, making it
accessible to a broader audience. This ease of
use has contributed to Docker's widespread
adoption and robust community support. Another
key advantage is Docker's image management
system. It utilizes a layered approach, where
containers share common layers, drastically
reducing storage requirements and speeding up
image pulls. This efficiency in image handling is
particularly beneficial for deploying and scaling
applications across environments. Docker's
ecosystem is a standout feature. It boasts a vast
and active community, extensive documentation,
and a rich collection of tools and platforms built
around it. This ecosystem enhances its versatility
and makes it a popular choice for developers and
organizations alike.

Portability is also a major strength. Docker
containers can run on any system that supports
Docker, ensuring a consistent runtime
environment regardless of the underlying
infrastructure. This portability greatly simplifies
application deployment across various
environments, from development to production.
Moreover, Docker's focus on application
packaging is a game-changer. It enables the
encapsulation of applications and their
dependencies in a standardized format, ensuring
that they run consistently across different
environments. While LXC has its merits,
Docker's emphasis on user-friendliness, efficient
image management, a thriving ecosystem,
portability, and application-centric
containerization makes it a superior choice for
many use cases, especially in rapidly evolving
and diverse development environments.

6.2 Windows Hyper-V

Windows Hyper-V is a hypervisor-based
virtualization platform by Microsoft. It allows
users to create and manage virtual machines on
Windows servers. Hyper-V provides robust
isolation between virtualized environments,
ensuring secure operation of multiple operating
systems simultaneously. It supports various
guest operating systems, including Windows,
Linux, and others. Hyper-V offers features like
live migration, enabling seamless movement of
virtual machines between hosts without
downtime. Its scalability and integration with

Windows ecosystems make it a popular choice
for enterprises seeking efficient server
virtualization solutions. Hyper-V plays a crucial
role in consolidating workloads, optimizing
resource utilization, and facilitating dynamic IT
environments.

Docker and Windows Hyper-V are both powerful
virtualization technologies, but they serve
different purposes and have distinct strengths.
Docker is advantageous for the following
reasons. Docker containers share the host OS
kernel, resulting in significantly lower overhead
compared to full virtualization solutions like
Hyper-V. This means Docker containers start
faster and consume fewer system resources.
Docker containers are highly portable and can
run consistently across different environments,
crucial for modern DevOps practices and
microservices architectures. Docker's
containerization model allows for quick
deployment and scaling of applications,
simplifying the process of packaging an
application and its dependencies, ensuring
consistent behavior in any environment.
Additionally, Docker has a vast and active
community, extensive documentation, and a rich
ecosystem of tools and platforms built around it,
making it easy to find support and resources for
Docker-related tasks.

Hyper-V is preferred for certain use cases due to
the following reasons. Hyper-V provides
complete virtual machines with separate
operating systems, essential for running legacy
applications or certain specialized workloads. It
seamlessly integrates with the Windows
environment, making it the natural choice for
organizations heavily invested in the Microsoft
ecosystem. Hyper-V excels in running Windows-
based workloads and is optimized for this
purpose. Ultimately, the choice between Docker
and Hyper-V depends on specific use cases and
the nature of the workloads being managed.
Docker excels in containerizing applications for
modern, agile development workflows, while
Hyper-V provides a full virtualization solution
advantageous for Windows-centric environments
and legacy applications.

6.3 Podman

Podman is a containerization tool in the Linux
ecosystem, offering a seamless alternative to
Docker. What sets Podman apart is its
daemonless architecture, eliminating the need for
a centralized daemon process. This leads to

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

58

enhanced security and resource utilization.
Podman is compatible with Docker images and
containers, simplifying the transition for users
familiar with Docker. It provides features like
rootless containers, enabling non-privileged
users to run containers securely. With support for
Kubernetes and Open Container Initiative (OCI)
standards, Podman offers a versatile solution for
managing containers, making it a valuable tool
for developers and system administrators in
modern IT environments. Docker has long stood
as a cornerstone in containerization technology,
boasting several advantages over Podman.
Firstly, Docker's widespread adoption and
extensive community support have fostered a
rich ecosystem of tools and resources, providing
users with a wealth of options and expertise. This
robust community backing contributes to
Docker's stability and reliability.

Additionally, Docker's simplicity and ease of use
have made it the go-to-choice for many
developers and organizations. Its intuitive
command-line interface and straightforward
setup process facilitate quick adoption and
integration into existing workflows. Docker's
layered image system is another significant
advantage. By allowing containers to share
common layers, it optimizes storage and
accelerates image pulls, leading to more efficient
resource utilization. Portability is a major strength
for Docker. Its containers can run consistently
across various environments, providing a uniform
runtime environment regardless of the underlying
infrastructure. This is crucial for modern DevOps
practices and microservices architectures.

Furthermore, Docker's emphasis on application-
centric containerization streamlines the process
of packaging applications and their
dependencies. This ensures consistent behavior
in different environments, making it an invaluable
tool for development and deployment pipelines.
While Podman offers distinct advantages like
daemonless architecture and rootless containers,
Docker's maturity, extensive ecosystem, user-
friendliness, and portability make it a preferred
choice for many developers and organizations
seeking reliable and efficient containerization
solutions.

6.4 runC

runC, a core component of containerization, is an
open-source command-line utility. It adheres to
the Open Container Initiative (OCI) specification,
enabling the execution of containers on various

platforms. RunC is a lightweight, portable tool
that spawns and runs containerized applications,
acting as a container runtime. Its simplicity and
adherence to industry standards make it a crucial
building block for container orchestrators like
Kubernetes and container management systems
like Docker. By providing a standard interface for
launching containers, runC enhances
compatibility and interoperability in the container
ecosystem, allowing developers to create and
manage containers without being tied to a
specific containerization platform.

Docker and runC serve different but
complementary roles in the containerization
ecosystem. Docker is a comprehensive container
platform that incorporates several components,
including runC, to provide a complete
containerization solution. However, there are
several reasons why Docker, as a complete
platform, is often preferred over using runC in
isolation. One significant advantage of Docker is
its user-friendly interface and high-level
abstraction. Docker simplifies the process of
creating, managing, and orchestrating
containers, making it accessible to a broader
audience. It offers a wide range of tools and
features that streamline development and
deployment workflows, including image
management, container networking, and a
powerful CLI.

Docker's layered image system is a substantial
benefit. It allows containers to share common
layers, reducing storage requirements and
speeding up image pulls. This efficiency is crucial
for deploying and scaling applications in
resource-constrained environments. Docker's
ecosystem is another major strength. It has a
thriving community, extensive documentation,
and a rich set of plugins and integrations that
enhance its functionality. This ecosystem
provides developers and organizations with a
wealth of resources and options to enhance their
containerized workflows.

Additionally, Docker provides robust support for
container orchestration through tools like Docker
Swarm and Kubernetes, making it well-suited for
managing complex container deployments at
scale. While runC is a fundamental component in
the containerization landscape, Docker's
comprehensive platform, with its user-friendly
interface, efficient image management, vibrant
ecosystem, and robust orchestration capabilities,
often makes it the preferred choice for
developers and organizations looking for a
complete containerization solution.

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

59

6.5 Containerd

Containerd is a core container runtime used in
various container platforms. It's designed for
stability, performance, and portability, focusing on
the essential aspects of container execution.
Developed under the guidance of the CNCF,
Containerd provides a foundational layer for
managing container lifecycle events. It's
compatible with industry standards like the Open
Container Initiative (OCI) specifications, ensuring
seamless integration with other containerization
tools. Containerd's modular architecture allows it
to be easily extended and customized, making it
a versatile choice for orchestrating containerized
applications. Its lightweight nature and
adherence to best practices make it a popular
choice in cloud-native environments.

Docker and Containerd are interconnected
components in the containerization ecosystem,
with Docker utilizing Containerd as its core
container runtime. However, Docker, as a
comprehensive platform, offers several
advantages over using Containerd in isolation.
One key distinction lies in Docker's high-level
abstraction and user-friendly interface. Docker
simplifies the process of creating, managing, and
orchestrating containers, making it accessible to
a wider audience. It provides a rich set of tools
and features, including image management,
container networking, and a powerful CLI,
streamlining development and deployment
workflows.

Docker's layered image system is a significant
asset. By allowing containers to share common
layers, it optimizes storage requirements and
accelerates image pulls. This efficiency is vital for
deploying and scaling applications in resource-
constrained environments. The Docker
ecosystem is another crucial strength. With a
thriving community, extensive documentation,
and a wealth of plugins and integrations, Docker
offers a wide array of resources and options to
enhance containerized workflows.

Moreover, Docker provides robust support for
container orchestration through tools like Docker
Swarm and Kubernetes. This makes it well-
suited for managing complex container
deployments at scale. While Containerd serves
as a fundamental container runtime, Docker's
comprehensive platform, encompassing its user-
friendly interface, efficient image management,
vibrant ecosystem, and powerful orchestration
capabilities, often positions it as the preferred

choice for developers and organizations seeking
a complete containerization solution.

7. CONCLUSION

Container computing is the promising paradigm
for delivering IT services as computing utilities.
Docker containers are designed to provide
services to external users; providers need to be
compensated for sharing their resources and
capabilities. There are many open issues
regarding the Container computing. This
proposed taxonomy will provide researcher and
developer the ideas on the current container
systems, hype and challenges. This paper
provides the information to evaluate and improve
the existing and new container systems and
prefers Docker over others.

COMPETING INTERESTS

Authors have declared that they have no known
competing financial interests OR non-financial
interests OR personal relationships that could
have appeared to influence the work reported in
this paper.

REFERENCES

1. Brogi A, Carrasco J, Cubo J, D’Andria, F,
Di Nitto E, Guerriero M, Perez D, Pimentel
E, Soldani J. SeaClouds: An open
reference architecture for multi-cloud
governance, LNCS.2016;9839:34–338.

2. Dupont C, Sheikhalishahi M, Facca FM,
Cretti S. Energy efficient data centres
within smart cities: Iaas and paas
optimizations. In Smart City. 2016;360:
408–415.

3. Felter W, Ferreira A, Rajamony R, Rubio J.
An updated performance comparison of
virtual machines and linux containers. In
IEEE Intl Symposium on Performance
Analysis of Systems and Software
(ISPASS). 2015;71–172.

4. Jamshidi P, Ahmad A, Pahl C. Cloud
migration research: A systematic review.
IEEE Transactions on Cloud Computing.
2013;1(2):142–157.

5. Jamshidi P, Ghafari M, Ahmad A, Pahl C. A
framework for classifying and comparing
architecture-centric software evolution
research. In 7th European Conference on
Software Maintenance and Reengineering.
2013;305–314.

6. Kecskemeti G, Marosi AC, Kertesz A. The
entice approach to decompose monolithic

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

60

services into microservices. In Intl Conf on
High Performance Computing Simulation
(HPCS). 2016;591-596.

7. Kitchenham B, Brereton OP, Budgen D,
Turner M, Bailey J, Linkman S. Systematic
literature reviews in software engineering–
a systematic literature review. Information
and Software Technology. 2009;1(1):7–15.

8. Kratzke N. About microservices, containers
and their underestimated impact on
network performance. Conf on Cloud
Computing; 2015.

9. Lewis J, Fowler M. Microservices; 2014.

Available:http://martinfowler.com/articles/m
icroservices.html.

10. Liu C, Loo BT, Mao Y. Declarative
automated cloud resource orchestration. In
Proceedings of the 2nd ACM Symposium
on Cloud Computing, page 26. ACM;
2011.

11. Manu A, Patel J, Akhtar S, Agrawal V,
Murthy K. Docker container security via
heuristics-based multilateral security-
conceptual and pragmatic study. In Intl
Conf on Circuit, Power and Computing
Techn.2016;1–14.

12. Mell P, Grance T. The NIST definition of
cloud computing. 2011.

13. Pahl C. Containerization and the paas
cloud. IEEE Cloud Computing. 2015;2(3):
24–31.

14. Pahl C, Helmer S, Miori L, Sanin J, Lee B.
A container-based edge cloud paas
architecture based on raspberry pi
clusters. In 4th IEEE Intl Conf on Future
Internet of Things and Cloud Workshops.
2016.

15. Petersen K, Feldt R, Mujtaba S, Mattsson
M. Systematic mapping studies in software
engineering. In Intl Conf on Evaluation and
Assessment in Software Engineering;2008.

16. Kurian G, Muzumdar P. Restaurant
formality and customer service dimensions
in the restaurant industry: An Empirical
Study. Atlantic Marketing Journal.
2017;6(1):75-92.

17. Kurian G, Muzumdar P. Antecedents to job
satisfaction in the airline industry. NMIMS
Management Review. 2017;34(2):29-40.

18. Muzumdar P. Influence of interactional
justice on the turnover behavioral decision
in an organization. Journal of Behavioral
Studies in Business. 2012;4:1-11.

19. Muzumdar P. Online bookstore-A new
trend in textbook sales management for
services marketing. Journal of

Management and Marketing Research.
2012;9:122-135.

20. Muzumdar P. Dilemma of journal ranking:
perplexity regarding research quality.
Academy of Educational Leadership
Journal. 2012;16(4):87-100.

21. Muzumdar P. Business model
development through corporate strategy
design: IBM SWOT Analysis. American
Based Research Journal. 2015;4(7):12-19.

22. Muzumdar P, Basyal GP, Vyas P.
Antecedents of student retention: A
predictive modelling approach.
International Journal of Contemporary
Research and Review. 2020;11(11):
21906−21913.

23. Muzumdar P, Kurian G. Empirical study to
explore the influence of salesperson’s
customer orientation on customer loyalty.
International Journal of Empirical Finance
and Management Sciences. 2019;1(3):43-
51.

24. Muzumdar P. A Linear regression approach
for evaluating the decline in chartered
designations with the effect of economic
determinants. Journal of Contemporary
Research in Management. 2014;9(3):13-
20.

25. Muzumdar P, Basyal GP, Vyas P. An
Empirical comparison of machine learning
models for student’s mental health illness
assessment. Asian Journal of Computer
and Information Systems. 2022;10(1):1-10.

26. Muzumdar P, Basyal GP, Vyas P.
Moderating effects of retail operations and
hard-sell sales techniques on
salesperson’s interpersonal skills and
customer repurchase intention. Journal of
Management Research. 2021;13(1):21-42.

27. Muzumdar P. Game of the Names:
Branding in smartphone industry.
Journal of Contemporary Research In
Management. 2015;10(2):13-31.

28. Muzumdar P. The Effect of review valence
on purchase of time-constrained and
discounted goods. Journal of Information
Systems Applied Research. 2022;15(1):1-
16.

29. Muzumdar P. Impact of review valence and
perceived uncertainty on purchase of time-
constrained and discounted search goods.
Proceedings of the Conference on
Information Systems Applied Research
(CONISAR) Washington DC. 2021;14:1-
12.

30. Muzumdar P. Quantitative analysis of
compensatory model: Effects of influence

Muzumdar et al.; Asian J. Res. Com. Sci., vol. 17, no. 1, pp. 42-61, 2024; Article no.AJRCOS.110049

61

of shopping mall on the city structure. The
IUP Journal of Knowledge Management.
2014;12(2):51-61.

31. Muzumdar P. A study of business process:
Case study approach to pepsico. Available
at SSRN 2392611. 2014;1-16.

32. Muzumdar P. Brand regeneration through
previously tested narrative units: A movie
remake perspective. 2014;25(9):1-9.

33. Muzumdar P. From streaming vendor to
production house: Netflix SWOT analysis.
Available at SSRN 2377151. 2014;1-6.

34. Muzumdar P. Brand regeneration
through previously tested narrative units: A
movie remake perspective. Journal of
Research for Consumers. 2013;25:53-
84.

35. Muzumdar P. Effects of zoning on housing
option value. Journal of Business and
Economics Research. 2011;9.

36. Muzumdar P, Basyal GP, Vyas P, Vyas G,
Soni V. An Exploratory literature analysis of
technostress research in information
systems science. Journal of Research in
Business and Management. 2023;11(1):
32-40.

37. Muzumdar P, Kurian G, Basyal GP, Muley
A. Econometrics Modelling Approach to
Examine the Effect of STEM Policy
changes on Asian student’s enrollment
decision in USA. Asian Journal of
Education and Social Studies. 2023;48
(2):148-160.

38. Muley A, Muzumdar P, Kurian G, Basyal
GP. Risk of AI in Healthcare: A
comprehensive literature review and study
framework. Asian Journal of Medicine and
Health. 2023;21(10):276-291.

39. Singh K, Kurian G, Napier R. The dynamic
capabilities view: Supply chain and
operations management perspectives.
Journal of Supply Chain and
Operations Management. 2018;16(2):155-
175.

40. Vyas P, Reisslein M, Rimal BP, Vyas G,
Basyal GP, Muzumdar P. Automated
classification of societal sentiments on
twitter with machine learning. IEEE
Transactions on Technology and Society.
2021;3(2):100-110.

41. Vyas P, Ofori M, Park I, Muzumdar P,
Basyal G. Studying the relationship
between timely and effective care,
preventive care, and patient hospital
recommendation. AMCIS 2023
Proceedings. 2023;3.

42. Vyas G, Muzumdar P. Healthcare patient
portal usage: Benefits, issues, and
challenges. World Journal of Advanced
Research and Reviews. 2022;16(03):807-
811.

43. Kozhirbayev Z, Sinnott R. A performance
comparison of container-based
technologies for the Cloud. Future
Generation Computer Systems. 2017;68:
175-182.

© 2024 Muzumdar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/110049

http://creativecommons.org/licenses/by/4.0

