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Abstract 
The influence function of parametric t-distribution expected shortfall (ES) es-
timators has an approximately symmetric shape, for which large positive re-
turns indicate large losses. We avoid this risk estimator’s unacceptable feature 
by introducing an ES semi-scale M-estimator for t-distributions, for which 
the usual t-distribution scale parameter is replaced by a semi-scale parameter. 
We derive the influence function of the ES semi-scale M-estimator, and show 
that its influence function has large values only for large negative returns as 
one expects, and only very small typically negative values for positive re-
turns. The computation of an ES semi-scale M-estimator is shown to be a 
simple modification of a parametric t-distribution ES maximum-likelihood 
estimator (MLE), in which the scale MLE is replaced by a semi-scale estima-
tor. We also derive the asymptotic variance expression for the ES semi-scale 
M-estimator, and show that its standard error is not very much larger than 
that of the t-distribution ES maximum-likelihood estimator. 
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1. Introduction 

The early development of portfolio risk management focused on the Value-at-Risk 
(VaR) measure of risk, whose popularity owes a lot to JP Morgan Risk Metrics 
document (1996) [1]. Subsequently, a set of risk measure coherence axioms was 
introduced by Artzner et al. (1999) [2], who showed that VaR did not satisfy 
these axioms, and that the expected shortfall (ES) measure of the average losses 
beyond the VaR is a coherent risk measure. See also, Sections 2.3 and 8.1 of 
McNeil et al. (2015) [3]. Over the years, ES has become an increasingly popular 
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risk measure of choice, in part due to its properties for portfolio optimization 
established by Rockafellar and Uryasev (2000) [4], who used the term CVaR in 
place of ES, and due to its support by Basel regulatory guidelines for use by 
banks. 

There exist two basic variants of ES estimators, nonparametric ES estimators 
which do not depend on returns distribution assumptions, and parametric ES 
estimators which depend on an assumed returns distribution. Nonparametric ES 
estimators are the average of a small fraction of the smallest ordered portfolio 
returns, and the ES risk measure that gives rise to such an estimator is known to 
satisfy the risk coherence axioms. The parametric normal distribution ES risk 
measure is a linear combination of the distribution mean and the distribution 
standard deviation, and this linear combination fails to be a coherent risk meas-
ure because it fails to satisfy the coherence monotonicity axiom, which states 
that if random return R1 is greater or equal to random return R2, then the risk 
for R1 is less or equal to the risk for R2. In terms of the ES risk estimator obtained 
by replacing the distribution mean and standard deviation with sample estimates, 
this failure manifests itself in the fact that one large return can give rise to an in-
crease in ES risk, which is quite non-intuitive. For a reasonable risk measure, in-
creasing returns should intuitively result in decreasing risk. Fischer (2003) [5] 
showed that a simple fix to the lack of coherence of parametric normal distribu-
tion ES is to replace the standard deviation by the lower standard semi-deviation, 
“semi-deviation” for short. 

The fact that returns are often non-normal led to a literature focus on para-
metric ES for fat-tailed non-normal distributions, the simplest of which are 
t-distributions. Furthermore, parametric ES estimators based on maximum-like- 
lihood parameter estimators (MLE’s) have the attractive feature that they achieve 
the minimum large-sample variance when returns in fact have the assumed 
non-normal distribution. With this in mind, Martin and Zhang (2019) [6], hen-
ceforth MZ2019 [6], studied the comparative behavior of both parametric nor-
mal and parametric t-distribution ES risk measures and estimators, in terms of 
the behavior of their influence functions which are extensively treated in the ro-
bust statistics literature. It turns out that the influence functions of both para-
metric normal and parametric t-distribution based on parameter MLE’s are ap-
proximately symmetric functions of a return, which reflects the failure of these 
risk measures to satisfy the coherence monotonicity axiom. 

In MZ2019 [6] it is shown that the monotonicity of a risk measure influence 
function is a sufficient condition to ensure that the risk measure satisfies the co-
herence monotonicity axiom. Thus, our goal was to modify the parametric t-dis- 
tribution ES in such a way that its influence function is monotonic. Motivated by 
the Fischer (2003) [5] result that replacement of the standard deviation by semi- 
deviation results in a coherent mean semi-deviation risk measure, we will show 
that replacement of the t-distribution MLE scale estimator by a semi-scale esti-
mator results in ES influence functions that are quite close to being monotonic, 
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the more so for t-distribution tail probabilities that are larger than commonly 
recommended values. 

The remainder of the paper is organized as follows. Section 2 briefly reviews 
nonparametric and normal distribution expected shortfall, and their influence 
functions. Section 3 introduces general parametric risk measures and influence 
functions, and discusses the t-distribution special case. Section 4 introduces a 
new t-distribution ES Semi-Scale M-estimator, derives its influence function 
formula, and displays its typical influence function shape. Section 5 describes a 
practical implementation of the ES Semi-Scale M-estimator. Section 6 derives 
the asymptotic variance formula for the ES Semi-Scale M-estimator and shows 
that, as a function of the ES tail probability, its asymptotic standard errors are 
not very much greater than those of a t-distribution ES maximum likelihood esti-
mator. Section 7 contains concluding comments. The detailed derivation of some 
mathematical results may be found in the Appendix of an early draft version of 
this paper, which is available at SSRN (https://ssrn.com/abstract=4605604). An 
early version of MZ2019 [6], which includes its Appendices, may be found at 
SSRN (https://ssrn.com/abstract=2747179). 

2. Nonparametric and Normal Distribution Parametric  
Expected Shortfall and Influence Functions 

This section reviews some basic material about nonparametric and normal dis-
tribution parametric shortfall, and their influence functions, which is discussed 
in more detail in MZ2019 [6]. 

2.1. Nonparametric and Normal Distribution Parametric  
Expected Shortfall Formulas 

The integral form of expected shortfall with risk as a positive quantity is 

( ) ( )( )
1 d

r q F
ES F r F r

γ
γ γ ≤

= − ⋅∫                  (2.1) 

where F is an unrestricted returns distribution function and ( )q Fγ  is the tail 
probability γ  quantile functional. A nonparametric estimator of ES is obtained 
by replacing the unknown distribution function F in the ( )ES Fγ  formula by 
the empirical distribution function ( )nF r  which has a jump of size 1n−  at 
each of the return values 1 2, , , nr r r . For purposes of providing a formula for 
the ES estimator, we let ( ) ( ) ( )1 2 nr r r≤ ≤ ≤  be the ordered values of the ob-
served returns, and let x    be the smallest integer greater or equal to x. Then 
the nonparametric estimator ESγ  formula is: 



( )1

1 n
iiES r

n
γ

γ γ
 
=

=


−
 
∑                     (2.2) 

In typical risk management applications, the choice of γ  will be 0.01, 0.025 
or 0.05, i.e., 1%, 2.5% or 5%. 0. For such applications, the ordered returns in the 
above summation are that small fraction of all returns which have the most neg-
ative single period returns, thereby resulting in a positive ES estimator. The 
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greater such losses are, the greater will be the associated positive ES estimator. 
A parametric ES risk measure is obtained by replacing F with a parametric 

distribution function Fθ  where θ  is a vector of the distribution parameters. 
In the case of a normal distribution, the parameters are µ and σ, and straight- 
forward evaluation of the integral (2.1) results in the normal distribution para-
metric ES formula 

( ) ( )
,

z
ES γ

γ

φ
µ σ µ σ

γ
= − + ⋅                   (2.3) 

where φ  is the standard normal density function, and zγ  is the standard 
normal distribution γ  quantile1. In this case the parametric ES estimator is: 

( ) ( )
ˆ ˆ ˆ ˆ,

z
ES γ

γ

φ
µ σ µ σ

γ
= − + ⋅                   (2.4) 

where µ̂  and σ̂  are the normal distribution sample mean and sample stan-
dard deviation maximum likelihood estimators. 

Likewise, for a t-distribution with parameters ( ), ,sµ ν=θ , evaluation of the 
integral (2.1) results in the parametric t-distribution ES formula: 

( ) ,, ,
g

ES s sγ ν
γ µ ν µ

γ
= − + ⋅                    (2.5) 

where 

, 2 ,
2

2
g f qγ ν ν γ ν

ν ν
ν ν−

 −
⋅ ⋅  −  

                 (2.6) 

with 2fν −  the standard t-density with 2ν −  degrees of freedom, and ,qγ ν  the 
tail probability γ  quantile for the standard t-distribution with ν  degrees of 
freedom2. The parametric t-distribution ES estimator is obtained by replacing 
the parameters , ,sµ ν  with their t-distribution maximum-likelihood estimates. 

The above nonparametric ES estimator is fundamentally different in character 
than the above parametric ES estimators, in that the former depends only on a 
small fraction of the most negative ordered returns, whereas the latter depends 
on all the returns for their parameter estimates. Furthermore, nonparametric ES 
is known to be a coherent risk measure, whereas parametric ES is not a coherent 
risk measure. In particular, parametric ES fails to satisfy the coherence monoto-
nicity axiom. In data-oriented estimator terms, monotonicity means that if any 
return data value is decreased the risk should always increase or remain constant, 
and conversely. For the nonparametric risk estimator (2.2), this condition clearly 
holds since the decrease of any return among the lowest γ  percent of the re-
turns results in an increase in risk, and conversely, the decrease or increase of 
any return in the largest 1 γ−  percent of the returns results in no change in the 
risk. On the other hand, monotonicity does not hold for the parametric normal 
distribution ES because while the decrease of a return value below the mean will 

 

 

1See for example MZ2019 [6] or Jorion (2007) [7]. 
2Zhang (2016) [9] shows that the expression (2.5) is equivalent to the one in McNeil et al. (2015) [3]. 
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decrease both terms in Equation (2.3), a decrease of a large return above the 
mean can decrease the second term while increasing the first term, in such a way 
that the risk decreases.  

2.2. Nonparametric and Parametric Normal Distribution ES  
Influence Functions 

The influence function was introduced by Hampel (1974) [8] as a basic tool for 
the study of robust parameter estimators3. As we shall see, the shape of a risk 
measure influence function provides an immediate intuitive understanding of 
the impact that gains and losses, positive and negative returns respectively, have 
on a parametric risk estimator. The influence function is defined using a mixture 
distribution of the form 

( ) ( ) ( ) ( )1 , 0 1p rF x p F x p x pδ= − + ⋅ ≤ <  

where ( )r xδ  is a point mass probability distribution located at r. The influence 
function of nonparametric ( )ES Fγ  is defined as the following directional 
(Gateaux) derivative of the ES functional at ( )F x  in the direction of the point 
mass distribution ( )r xδ : 

( ) ( ) ( ) ( )
0

0

d; lim
d

p
ES pp

p

ES F ES F
IF r F ES F

p pγ

γ γ
γ→

=

−
= = . 

As such, it has the intuitive interpretation as the asymptotic form of the dif-
ference quotient for an ES estimator evaluated at a fixed set of n returns  

1 2, , , nr r r  and at an augmented set of 1n +  returns 1 2, , , ,nr r r r  with r vari-
able, divided by 1n− . 

Using the integral representation of ( )ES Fγ  in equation (2.1) it is shown in 
MZ2019 [6] that the nonparametric influence function of ES is 

( ) ( ) ( ) ( )( ( )
( )( ),

;
q F

ES

I r
IF r F q F ES F r q Fγ

γ γ γ γγ
−∞ = − − − −       (2.7) 

where ( )( ( ),q F
I r

γ −∞ 
 is the indicator function of the interval ( )( ,q Fγ −∞  . The 

above influence function expression can be evaluated for any distribution F, and 
the left-hand plot in Figure 1 displays the nonparametric ES influence function 
for the case where 5%γ = , with ( )F x  a normal distribution with mean 0.12 
and standard deviation 0.24. The resulting influence function has a striking 
piece-wise linear monotonic decreasing shape. 

As for the influence function of the parametric normal distribution ES given 
by Equation (2.3), we first note that this ES functional representation  

( ) ( )( ),ES F Fγ µ σ  is the following linear combination of the mean functional 
( )Fµ  and the standard deviation functional ( )Fσ : 

( ) ( )( ) ( ) ( ) ( ),
z

ES F F F Fγ
γ

φ
µ σ µ σ

γ
= − + ⋅ . 

 

 

3See Hampel et al. (1986) [10] for detailed discussions of influence functions, and their applications. 
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Figure 1. Nonparametric and parametric tail probability 5%γ =  ES influence function 
for a normal distribution with mean 0.12 and standard deviation 0.24. 

 
It follows that the influence function of parametric normal distribution ES is 

the corresponding linear combination of the influence functions of ( )Fµ  and 
( )Fσ . It is well-known in the robust statistics literature that influence function 

of the mean is 

( ) ( )FIF r rµ µ= −  

and the influence function of the standard deviation is4: 

( ) ( ) ( )2 2

2F

r
IF rσ

µ σ
σ

− −
= . 

Thus, the influence function of parametric normal distribution ES is 

( ) ( ) ( ) ( )2 2

, ; ,
2ES

z r
IF r r γ

γ

φ µ σ
µ σ µ

γ σ
− −

= − − + ⋅           (2.8) 

and it is displayed in the right-hand plot of Figure 1, with the same mean and 
standard deviation values as for the nonparametric ES influence function in the 
left-hand plot. 

The shape of the parametric ES influence function is symmetric about the 
value ( ) 0.24zγµ γσ φ+ = , and in this regard is strikingly different from the 
desirable monotonic character of the nonparametric ES influence function, 
which is either constant, or strictly increasing, for decreasing return 𝑟𝑟, beyond 
the tail probability 0.05γ =  quantile. On the other hand, the parametric nor-
mal distribution influence function is quite non-monotonic, with increasing re-
turn values much larger than 0.24 indicating increased risk, which is quite un-
natural.  

3. Parametric Risk Measures and Influence Functions 

This section first discusses general parametric risk measures and their general in-
fluence function formula, as well as a specific influence function formula for the 

 

 

4See for example Section 3 of Zhang, Martin and Christidis (2021) [11]. 
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case where maximum-likelihood parameter estimators are used. Then it presents 
the MZ2019 [6] influence function formula for parametric t-distribution expected 
shortfall. 

3.1. General Parametric Risk Measures and Influence Functions 

Let ( ) ( )Fρ ρ= θθ  be a parametric risk measure defined by a fixed parametric 
family of univariate distribution functions Fθ  where ( )1 2, , , Kθ θ θ= θ . It will 
suffice for our applications in this paper to assume that ( )F rθ  is continuous 
and strictly increasing with quantile function ( ) ( )1q F Fγ γ−=θ θ . One obtains a 
parametric risk measure estimator by first choosing a parameter estimator 

n̂=θ θ  of θ  and then using it to obtain a risk estimator ( )ˆˆnρ ρ= θ , where we 
have suppressed the subscript n on n̂θ  for notational convenience. We assume 
that n̂=θ θ  is based on independent and identically (i.i.d.) returns 1 2, , , nr r r , 
with a general distribution function 𝐹𝐹 that will ultimately be equal to a para-
metric family Fθ  of t-distributions for our parametric ES maximum-likelihood 
estimator. 

An estimator n̂=θ θ  is assumed to be obtained from a functional ( )Fθ  by 
the plug-in-rule 

( )n̂ nF=θ θ                          (3.1) 

where nF  is the empirical distribution function of a set of returns 1 2, , , nr r r . 
Correspondingly, we represent the risk measure functional as  

( ) ( )( )Fρ ρ=θ θ                       (3.2) 

and the risk measure estimator is 

( )( )ˆn nFρ ρ= θ .                      (3.3) 

We tacitly assume that the returns are independent and identically distributed 
(i.i.d.) with a parametric distribution Fθ . Then when the usual Fisher consis-
tency condition ( )F =θθ θ  holds, the estimator n̂θ  will under reasonable 
conditions converge in probability to the true parametric distribution parameter 
θ . Correspondingly, the risk measure estimator ( )( )ˆn nFρ ρ= θ  will converge 
in probability to ( )ρ θ . Note however that, when the returns come from 
F F≠ θ  then ( )nFθ  will converge in probability to ( )Fθ , but typically 
( )F ≠θ θ . 
For deriving parametric risk measure influence functions, the distribution 

function F is replaced by the parametric distribution function Fθ , which results 
in the parametric mixture distribution 

( ), 1 , 0 1p rF p F p pδ= − + ⋅ ≤ <θ θ .               (3.4) 

Then, referring to the risk measure loosely by its estimator ρ̂ , the influence 
function of ρ̂  is defined as 

( )
( )( ) ( )( ) ( )( ), ,

ˆ 0

0

d
; lim .

d
p p

p

p

F F F
IF r F

p pρ

ρ ρ ρ
↓

=

−
= =

θ θ θ
θ

θ θ θ
     (3.5) 
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The parameter estimator vector influence function ( ) ( )ˆ ˆ ;IF r IF r F=θ θ
 has 

the components 

( ) ( )ˆ , 0
;

k k p p
IF r F F pθ θ

=
 = ∂ ∂ θ θ                 (3.6) 

With ( ) ( ) ( )( )1 , , Kρ ρ ρ ′∇ = θ θ θ  the gradient of ( )ρ θ , where  
( ) ( )k kρ ρ θ= ∂ ∂θ θ , the chain rule gives: 

( ) ( )( ) ( )

( )( ) ( )

( ) ( )

ˆ

0

ˆ

ˆ1

;

k

p
p

p

p

K
kk

F
IF r F F

p

F IF r

IF r

ρ

θ

ρ

ρ

ρ

=

=

 ∂′ = ∇ ⋅
∂  

′= ∇ ⋅

= ⋅∑
θ

θ
θ

θ

θ

              (3.7) 

The above is a general expression valid for any consistent parameter estimator 
θ̂  having an influence function ( )ˆIF rθ

. For a given parametric risk measure 
the above expression can be used for a variety of choices of parameter estimators, 
and for a given parameter estimator the expression can be used for a variety of 
parametric risk measures. 

In the frequently occurring case where the parameter estimator is an MLE, it 
was shown in Hampel et al. (1986) [10] that ( )ˆIF rθ

 has the special form 

( ) ( )1
ˆ ; ;IF r r−= ⋅Iθθ

θ ψ θ                     (3.8) 

where Iθ  is the information matrix, and ( );rψ θ  is the score function vector5. 
In this case the IF formula (3.7) has the general form: 

( ) ( )( ) ( )1
ˆ ; ; .pIF r F F rρ ρ −= ∇ Iθθ ψ θ                 (3.9) 

3.2. Parametric t-Distribution Expected Shortfall Influence  
Function 

For a parametric t-distribution ES based on maximum-likelihood parameter es-
timates, the formula (3.9) becomes 

( ) ( ) ( )1
, ,; , , , , ; , ,ES ES s ESIF r s s r sµ νµ ν ρ µ ν µ ν−= ∇ ⋅ ⋅I ψ         (3.10) 

where ( ), ,ES sρ µ ν∇  is the gradient vector of ( ) ( ), , , ,ES s ES sγρ µ ν µ ν=  given 
by Equations (2.5) and (2.6), , ,sµ νI  is the Fisher information matrix, and 

( ); , ,ES r sµ νψ  is the t-distribution score function. The risk measure gradient 
vector is given by 

( ) , ,, , 1, ,ES

g gss γ ν γ νρ µ ν
γ γ ν

′∂ 
∇ = − ⋅ ∂ 

 

with the partial derivative approximated by a finite difference quotient. The 
( );ES rψ θ  score vector is 

 

 

5With ( ) ( )ln ;rl f=θ θ  the log-likelihood for a single observation, the vector score function 

( );rψ θ  has components ( ) ( ) , 1,2, ,
k kr l k Kθψ θ= ∂ ∂ = θ , and the K × K information matrix 

( ) ( ); ;FE r r′ =  Iθ ψ θ ψ θ  has elements ( ) ( ), k jk j FI E r rθ θψ ψ = ⋅  . 
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( )
( )
( )

( )( )
( )
( )

( ) ( )

22

2

2

1

1 1 1 log 1
2 2 2 2 2

s s

s

v r

vs rr
r r
r rv v s r

vs

µ

ν

µ

µψ
ψ ψ
ψ µ

ψ
ν

 + − 
 + − 
   =   
      − +      Ω −Ω − + +             

 (3.11) 

where the formula of the scale score function ( )s rψ  is 

( ) ( )
( )

2 2

22s

r s
r

s vs r

µνψ
µ

− −
= ⋅

+ −
 

And ( ) ( )d log
d

v
v

v
Γ

Ω =  is the digamma function. The formula for the infor-

mation matrix , ,sµ νI  was derived by Lucas (1997) [12] and may be found in 
MZ2019 [6]. 

Note that ( ); , ,ESIF r sµ ν  depends on r solely through its appearance in the 
three components ( )rµψ , ( )s rψ , ( )rνψ  of the score function vector, and for 
large r this dependence is symmetric about μ. In this regard, the behavior of 

( ); , ,ESIF r sµ ν  has a quite undesirable non-monotonic approximately symme-
tric behavior similar to that of the parametric normal distribution influence 
function in Equation (2.8) and the right-hand plot of Figure 1. This behavior 
is displayed in the left-hand plot of Figure 2, which is discussed further in the 
next section in comparison with an alternative parametric t-distribution ES 
M-estimator with semi-scale, and its influence function. 

4. Parametric T-Distribution Semi-Scale Expected Shortfall  
M-Estimator and Influence Function 

In this Section we derive a semi-scale modified version of the parametric t-distri- 
bution expected shortfall estimator, whose influence function does not suffer 
from the approximately symmetric behavior of the parametric t-distribution ex-
pected shortfall exhibited in the previous Section. Since the semi-scale parameter 
estimator is not an MLE, the MLE results of the previous Section no longer apply. 
However, the following closely related M-estimator, as discussed in Hampel et al. 
(1986) [10] can be used in place of an MLE. 

A general M-estimator functional ( )Fθ  is defined as the solution for θ  of 
the vector equation 

( ) ( ) ( ); ; d 0FE r r F r  = =  ∫ψ θ ψ θ               (4.1) 

where ( );rψ θ  is a vector-valued general “score function”, which depends on a 
vector parameter θ  and a scalar return variable r6. An M-estimator ˆ

n̂=θ θ  is 
obtained from a set of returns 1 2, , , nr r r  by replacing F in (2.11) with the em-
pirical distribution nF : 

 

 

6The above equation becomes an MLE estimating equation for the special choice  
( ) ( ); d ln ; dMLE r f r= −ψ θ θ θ , but here we move beyond the MLE. 
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Figure 2. t-Distribution parametric symmetric and semi-scale ES influence function with 
tail probability 5%γ =  for t-distribution with 10γ =  degrees of freedom, mean 0.12 
and standard deviation 0.24. 

 

( )1
ˆ; 0ii

n r
=

=∑ ψ θ .                      (4.2) 

For our application where the distribution of 𝑟𝑟 is in a parametric family 
,F ∈θ θ Θ , we assume the Fisher consistency condition 

( ) ( ) ( ); ; d 0,FE r r F r  = = ∈  ∫θ θψ θ ψ θ θ Θ             (4.3) 

In other words, the expected value of the score function at the true parameter 
value is zero. Correspondingly, an M-estimator defined by (4.2) converges in 
probability to a solution of the asymptotic estimating Equation (4.3). 

For many estimation problems ( );rψ θ  may be defined as the derivative 
( ) ( ); d ; dr rρ=ψ θ θ θ . Of a loss function ( );rρ θ . In particular the log-likelihood 

function is a choice. 
It is shown in Hampel et al. (1986) [10] that the influence function of an M- 

estimator is given by 

( )( ) ( ) ( )( )1; , ;IF r F F r F−= Mθ ψ ψ θ              (4.4) 

where the M-matrix ( ), FM ψ  is the p×p matrix  

( ) ( )
( )

( ), ; d
F

F r F rψ
=

∂ = −  ∂ ∫M
θ θ

ψ θ
θ

.            (4.5) 

Combining (3.7) and (4.4) we have the following general expression for the 
influence function of a parametric risk measure based on a general M-estimator 
of the unknown parameters: 

( ) ( )( ) ( )

( )( ) ( ) ( )( )
ˆ ˆ

1

;

, ;

IF r F F IF r

F F r F

ρ ρ

ρ −

′= ∇ ⋅

′= ∇ ⋅M

θ
θ

θ ψ ψ θ         

 (4.6) 

Note that the gradient vector in the above expression depends only on the risk 
measure chosen and the M-estimator functional that represents the asymptotic 
value of the M-estimator. For parametric distributions and consistent estimators, 
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this gradient only depends on the parametric risk measure and the distribution 
parameters. However, for any given distribution the influence function part of 
the above expression depends only on the choice of M-score function ψ .  

We seek to modify the t-distribution MLE score function of the previous Sec-
tion so that the scale score function is a semi-scale score function, and the ex-
pected value of the resulting M-score function is still zero. One way to do this is 
as follows. Define the semi-scale score function by  

( )
( )
( )
( )

( )
( )
( ) ( ) ( )

( )
2

,
2

1 1 1 log 1
2 2 2 2 2

s

s

s

r
r r

r

r
r

r I rv v sc r
vs

µ

ν

µ

µ

ψ
ψ
ψ

ψ
ψ

µ
ψ

ν
−∞

 
 =  
  
 
 
 

=   − ⋅ +      Ω −Ω − + − +             











ψ

 (4.7) 

where the location score function ( )rµψ  is the same as for a t-distribution 
MLE as given by (3.11), and ( ) ( ); , ,s sr r sψ ψ µ ν=   is the semi-scale score func-
tion  

( )
( )( ) ( ) ( )

( )

2
,
23

1 1
2s

r I r
r

svs s r
µν µ

ψ
µ
−∞+ − ⋅

= −
+ ⋅ −

               (4.8)  

where the constant c remains to be determined. 
In order to ensure consistency of the M-estimator defined by the above M- 

score function, the latter must satisfy the zero-expectation condition (4.2) under 
a t-distribution for returns. This is already the case for ( )rµψ , and we now 
show this is also the case for ( )s rψ . 

In order to see that the expected value of ( )s rψ  is zero, note that from the 
t-distribution MLE score function (3.11) we have 

( ) ( )( )
( )

( )( )
( ) ( ] ( ) ( )( )

( ) ( ) ( )

2

22

2 2

, ,2 22 2

1
1

1 1
1.

s
v r

s r
vs r

v r v r
I r I r

vs r vs rµ µ

µ
ψ

µ

µ µ

µ µ−∞ ∞

+ −
⋅ = −

+ −

+ − + −
= ⋅ + ⋅ −

+ − + −

   (4.9) 

Since the expected value of ( )s rψ  is zero the sum of the first two terms on 
the right is one, and from the symmetry of the t-distribution about μ the ex-
pected value of each of these first two terms must be equal, and hence equal to 
one-half. Thus 

( )
( )( ) ( ] ( )

( )

2
,

22

11 1
2

1 1 1
2 2

0.

s

r I r
E r E

s vs r

E
s

µν µ
ψ

µ
−∞

 + − ⋅
   = −   + − 
 = −  

=


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Now we just need to choose c so that the M-score ( )rνψ  for degrees of 
freedom has zero expected value. First note that we require that 

( )

( ) ( ] ( )
( )

( ) ( ] ( )

2
,

2

2
,

2

1 1 1 log 1
2 2 2 2

1 1 1 log 1
2 2 2 2

0

s

E r

r I rv v sE c E r
vs

r I rv v E c
vs

µ

µ

νψ

µ
ψ

ν

µ

−∞

−∞

  
  − ⋅ +         = Ω −Ω − + − +               
  − ⋅ +       = Ω −Ω − + −              

=

 

which means that  

( ) ( ) ( )2
,

2
1 1 1 log 1
2 2 2 2

r I rv vc E
vs

µµ −∞
  − ⋅ +       = Ω −Ω − +              

.    (4.10) 

Noting that 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 22
, ,

2 2 2log 1 log 1 log 1
r I r r I rr

vs vs vs
µ µµ µµ −∞ +∞

     − ⋅ − ⋅−     + = + + +
          

 (4.11) 

along with the symmetry of the t-distribution about μ shows that the expected 
value of the last two terms must be equal, and thus 

( ) ( ) ( ) ( )
2 2

,
2 2

1log 1 log 1
2

r I r r
E E

vs vs
µµ µ−∞

     − ⋅ −     + = ⋅ +
         

    (4.12) 

Plugging (4.12) into (4.10) gives 

1 1 1 1
2 2 2 4 2 2

1 1 .
4 2 2

v v v vc

v v

 +   +        = Ω −Ω − Ω −Ω          
          

 +    = Ω −Ω    
    

 

Thus, we have7  

( )
( )
( )

( )
( )
( ) ( ) ( )

( )
2

,
2

1 1 1 log 1
4 2 2 2 2

s

s

s

r
r r
r r I rv v sr r
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µ

µ

µ
ν

ψ
ψ ψ
ψ µ
ψ ψ

ν
−∞

 
  
   =     − ⋅ +        Ω −Ω − + +               










. (4.13) 

Now to get the expression for the parameter estimator score function in (4.4), 
we just need to evaluate the M-matrix 

 

 

7We note that this choice of M-score function is not unique. Another valid choice would be 

( ) ( )
( ) ( ] ( )

2 2

2 2 ,2s

r s
r I r

s vs r µ

µνψ
µ −∞

 − −
 = ⋅ + − 

 . 

However, it is easily verified that this choice of scale score function is discontinuous at r µ=  and 
it is a basic principle in robust statistics is that discontinuous influence functions are to be avoided. 
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( ) ( ), , , s s s

E E E
s

F s E E E
s

E E E
s

µ µ µ

ν ν ν

ψ ψ ψ
µ ν

ψ ψ ψ
µ ν

µ ν

ψ ψ ψ
µ ν

 ∂ ∂ ∂      
      ∂ ∂ ∂      
 ∂ ∂ ∂      = =       ∂ ∂ ∂    
 

∂ ∂ ∂      
      ∂ ∂ ∂     

M M
  

  

ψ     (4.14) 

where the expectations are taken with F F= θ . Straightforward but tedious cal-
culations (see Appendix A in an early draft version of this paper available at 
SSRN, https://ssrn.com/abstract=4605604) show that  

( )( )
( )

( )
( )

( )( )
( ) ( ) ( ) ( )( )

2

2 2

1 21 0 0
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1 2 2 1 1 1 1 1
3 2 3 132
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v v
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v v v
v s s v v v v v

ν
νν ν

ν ν
ν νν ν

   −  + 
 

Γ + − +  = ⋅ ⋅ −  + + ++ ⋅Γ ⋅ π   
 Γ + −  +  +      ′ ′⋅ − Ω −Ω −       + ⋅ + ⋅ ⋅ + + + +Γ ⋅ π        

M  

which has the form 

0 0A
B C D
E D F

 
 =  
 
 

M                     (4.15) 

with inverse 

( )

2

1
2

0 0
1 .

CF D
ED BF AF AD

A CF D BD CE AD AC

−

 −
 

= − − −  − − 

M          (4.16) 

The left-hand plot in Figure 2 displays 5%γ =  tail probability parametric 
t-Distribution ES estimator influence function for with Degrees of Freedom = 10, 
mean = 0.12 and standard deviation = 0.24. Except for the curious negative 
bump for small positive values of the Return r, this influence function is essen-
tially symmetric about the μ = 0.12, as we pointed out in the last paragraph of 
Section 3. Thus, the parametric t-distribution ES influence function suffers from 
the lack of monotonicity in a manner similar to that of the parametric normal 
distribution ES estimator influence function in the right-hand plot of Figure 1. 

On the other hand, the right-hand plot in Figure 2 displays the parametric 
t-distribution semi-scale M-estimator influence function, with the same , ,sµ ν  
parameters as for the influence function in the left-hand plot. But now, except 
for the curious negative bump for small negative values of the Return r, this in-
fluence function has the desirable monotonic decreasing character similar to that 
of the nonparametric ES influence function in the left-hand plot of Figure 1. 

Figure 3 gives a good feeling for how the shape of the parametric t-distribution 
ES M-estimator influence function changes with changes in the t-distribution 
degrees of freedom and ES tail probability, for the four degrees of freedom 
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Figure 3. Influence functions of ES semi-scale m-estimators with monthly 1%, 7%sµ = = , and annual 
SR = 0.5 

 
parameter ν  values 20, 10, 6, 3, and the three tail probability parameter γ  
values 1%, 2.5%, 5%. These influence functions all have the desirable shape that 
there is essentially zero influence for positive values of return r, and positive in-
fluence that increases rapidly for decreasing negative return values. As one ex-
pects, the positive values of the influence function increase for each fixed nega-
tive r as the tail probability γ  decreases. The behavior of the shape of the in-
fluence functions for negative returns close to 0 as the degrees of freedom de-
crease from 20 to 3 is more subtle, with the shape being slightly convex for 

20ν =  and slightly concave for 3ν = . The latter is related to the fact, demon-
strated in MZ2019 [6], that the t-distribution maximum-likelihood ES influence 
function is logarithmically unbounded.  

5. Implementation of the Parametric Semi-Scale ES  
Estimator 

Now we propose to construct an ES semi-scale M-estimator for risk monitoring, 
with the following straightforward steps.  

(1) First compute the t-distribution MLE estimates ( )0 ˆ, ,ˆˆ sv µ , for example 
using the Azzalini SN package [13] available on CRAN  
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(https://cran.r-project.org/web/packages/sn/index.html). 
(2) Compute the semi-scale parameter estimate as follows. Plug the µ̂  and 

v̂  MLE’s from step one into the semi-scale score function ( ); , ,s r sψ µ ν . Then 
the semi-scale parameter estimate ˆsemis  can be computed by solving the equa-
tion:  

( )
1

ˆ ˆ; , , 0.s i
i

n
r s vψ µ

=

=∑   
Note that above summation has the form 
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=
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 + − 
 − ⋅+  ⋅ −
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∑ ∑

∑

∑



 

and to compute ˆsemis , one just needs to solve the following equation whose 
left-hand side is strictly monotonic in s: 

( ) ( ] ( )
( ) ( )

2
ˆ,

22
1 ˆˆ

ˆ
0

2 1ˆ

n i i

i i

r I r n
s vv r

µµ

µ
−∞

=

− ⋅
− =

++ −
∑ . 

Any simple search algorithm will suffice, for example using the Newton- 
Raphson method package rootSolve available on CRAN  
(https://CRAN.R-project.org/package=rootSolve).  

(3) Finally, plug ( )ˆ ˆ, ˆ ,semisv µ  into the parametric t-distribution ES expression 
(2.5) to obtain the ES semi-scale M-estimator:  

( ) ˆ,ˆ ˆ ˆ .ˆ ˆ, , v
semi semiv s

g
sES γ

γ µ µ
γ

= − + ⋅  

It remains to carry out some empirical studies of the performance of this risk 
estimator.  

6. ES Semi-Scale M-Estimator Asymptotic Variance 

The asymptotic variance of a consistent M-estimator ( )n̂ nF=θ θ  of θ  has the 
form 

( )( ) ( ) ( ) ( )1 1, , , ,F F F F F− − ′= ⋅ ⋅V M Q Mθ ψ ψ ψ         (6.1) 

where 

( ) ( )( ) ( )( ) ( )

[ ] [ ]
[ ] [ ]

, ; ; d

s v

s s s s v

s

F r F r F F r

E E E

E E E

E E E

µ µ µ µ

µ

ν µ ν ν ν

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

′=

            
  =   
    

∫Q

     

     

     

ψ ψ θ ψ θ

        (6.2) 

See for example Hample et al. (1986) [10]. In the special case of MLE estima-
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tors both M  and Q  reduce to the information matrix ( )I θ  and the expres-
sion (6.1) reduces to ( ) 1−I θ  as expected. 

Straightforward but tedious derivations (see Appendix B in an early draft ver-
sion of this paper available at SSRN, https://ssrn.com/abstract=4605604) give the 
following expressions: 

[ ]

( )

2
1 1 1 1 1

16 2 2 8 2 2

1 1 1
2 1 2 3

v v v vE
v

v v v
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    (6.3) 

[ ] 2
1 1

3 4s sE
s

νψ ψ
ν
 = + + 

                  (6.4) 
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ν
ψ ψ

ν ν

Γ + −
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32sE

sµ

ν ν
ψ ψ

νν ν

Γ + −
  

+
= ⋅

+Γ ⋅ π ⋅
             (6.8) 

Since our t-distribution ES Semi-scale M-estimator is a small modification of 
the t-distribution ES MLE, one expects that the increase in the asymptotic va-
riance of this estimator, relative to a t-distribution MLE, will not be very great. 
Figure 4 and Figure 5, which are based on standard errors (SE’s) obtained as the 
square root of the asymptotic variances of the ES semi-scale estimator using 6 
degrees of freedom, indicate that indeed the increase in variance is not very great. 

 

 

Figure 4. Asymptotic standard error of t-distribution ES semi-scale m-estimator and the 
asymptotic standard error of the ES MLE for a t-distribution with 0, 1, 5sµ ν= = = . 
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Figure 5. Ratio of standard error of t-distribution ES estimators: semi-scale m-estimator 
versus maximum likelihood ES estimator for 5 degrees of freedom. 

7. Concluding Comments 

We have introduced a new ES Semi-Scale M-Estimator by replacing the scale es-
timator of an ES t-distribution joint MLE of the location, scale, and degrees of 
freedom, with a semi-scale estimator, and we derived the new estimator’s influ-
ence function and asymptotic variance formula. The mathematical form of the 
new estimator’s estimating equation and influence function show that the esti-
mator avoids the unsatisfactory behavior of the t-distribution ES MLE that (large) 
positive returns indicate (large) risk.  

Since an ES semi-scale M-estimator influence function is not exactly mono-
tonic decreasing as returns increase, we cannot assert that this ES is a coherent 
risk measure, as is a mean semi-deviation estimator. However, the fact that such 
influence functions are nearly monotonic decreasing suggests that ES semi-scale 
M-estimators will have good properties for risk reporting. What is needed now 
is an in-depth empirical study of the relative performance of the ES semi-scale 
M-estimators and the mean semi-deviation coherent risk measures, using both 
simulated and real returns whose distributions range from approximately nor-
mal to moderately fat-tailed (e.g., t-distributions with 8 to 12 degrees of free-
dom), and to very fat-tailed distributions (e.g., t-distributions with 3 to 6 degrees 
of freedom). 
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