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Abstract

In addition to orthogonal polynomials, orthogonal functions also play an important role. Their applications
are, among others, in the fields of signal and data analysis, dynamic modeling. They are related to the
solution of differential equations. In this paper we derive the explicit form of one parameter family of
orthonormal bases on space L2(R+). The bases are formed by eigenvectors of the self-adjoint extension Hξ,

parametrized by ξ ∈ 〈0, π), of differential expression H = − d2

dx2
+ x2

4
together with the spectrum σ(Hξ)

on the space L2(R+). For each ξ the set of eigenvectors form an orthonormal basis of L2(R+). From the
physical point of view, it is a solution of the Schrödinger equation of a harmonic oscillator on a semi-straight
line. To correlate platelet count, splenic index (SI), platelet count/spleen diameter ratio and portal-systemic
venous collaterals with the presence of esophageal varices in advanced liver disease to validate other screening
parameters.
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1 Introduction

Base of orthogonal functions play essential role in functional data analysis [1]. It is observed that the choice of
basis for a given data has an influence on the efficiency of initial data processing.

Another application may be in solving a rational approximation problem using nonlinear parameters see [2].

Orthogonal functions as a eigenfunctions of a generalized second–order differential equation is given in [3].
Well–known orthogonal polynomial systems and orthogonal functional systems are eigenfunctions of differential
equation of form

f(x)y” + g(x)y′ + λy = 0.

A family of orthogonal systems gives some possibilities of using. Moreover, the connection of parabolic cylinder
functions with gamma functions gives a decomposition of gamma functions, and it can be applied to Fourier
transforms as in [4]. This family of orthogonal functions can be used in a similar way as in [5], but in the space
L2(R+). An overview of the use of orthogonal functions can be found in [6].

The Schrödinger operator of perturbed harmonic oscillator acting in the space L2(R3) can be transformed into
a direct sum of the Schrödinger operators acting on L2(R+) [7]. To calculate the eigenvalues and eigenfunctions
of the operator corresponding to the harmonic oscillator on the half–line, we do not use the Friedrichs extension
as in [8]. Therefore we get the full spectrum of the operator.

The basic examples of quantum mechanics is a quantization the harmonic oscillator. A selfadjoint Hamiltonian
HD of the one–dimensional linear harmonic oscillator is generated by the differential expression

H = − d2

dx2
+
x2

4
(1)

with appropriate definition domain D. It is known that the operator HD has a pure point spectrum and its
eigenfunctions form the orthonormal basis in L2(R), and HD is a unique selfadjoint operator generated by H on
L2(R).

The situation is quite different on L2(R+), there is one–parametric set of selfadjoint operators Hξ, ξ ∈ 〈0, π)
with corresponding definition domains Dξ and with the same differential expression (1) [9]. All these selfadjoint
operators are selfadjoint extensions of the closed symmetric operator Ĥ with the domain D̂ =

⋂
ξ∈〈0,π)

Dξ.

Following the theorem [10] all these extension have the same essential spectrum. As in the case of the operator
Hξ=0, where it applies σess(Hξ=0) = ∅, it applies for all operators Hξ, ξ ∈ 〈0, π). In other words, for any
ξ ∈ 〈0, π) there exist an orthonormal basis formed by eigenvectors of Hξ. The objective of this paper is to derive
explicit form of the orthonormal basis and express σ(Hξ).

2 Parabolic Cylinder Functions

Since the core of this paper is parabolic cylinder functions, we first review their properties and the relationships
we will used [11, 12, 13].

The parabolic cylinder functions

Dν(x) = e−
x2

4 [

√
π 2

ν
2

Γ( 1−ν
2

)
1Φ1(−ν

2
,

1

2
,
x2

2
)−
√
π 2

ν+1
2

Γ(−ν
2

)
x 1Φ1(

1− ν
2

,
3

2
,
x2

2
)] (2)

are the solutions of the Weber differential equation [11, 12]

(
d2

dx2
− x2

4
+ ν +

1

2
)Dν(x) = 0.
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that converge to 0 at +∞. These functions are expressed using gamma functions Γ and hypergeometric series
Φ. Values ν ∈ {0, 1, 2, . . . } ≡ N0 need special attention, because of

1

Γ(−ν
2

)
= 0, Γ(

1− ν
2

) =∞ for ν = 1, 3, 5, . . .

and
1

Γ(−ν
2

)
=∞, Γ(

1− ν
2

) = 0 for ν = 0, 2, 4, . . . .

Definition (2) then gives Dν(x) = hν(x) known Hermitian functions [11]. For these cases, the parabolic functions
are Hermitian functions, and the orthogonal bases on L2(R+) are odd or even Hermitian functions.

The following relations holds for parabolic cylinder functions [11, 13]:∫ ∞
0

|Dν(x)|2dx =
1

c(ν)2
, c(ν) =

√√
2

π

Γ(−ν)

β(−ν)
, β(−ν) =

∞∑
k=0

(−1)k

−ν + k
(3)

(note that c(ν) Dν is normalized), and

∫ ∞
0

Dν(x)Dµ(x)dx =
π 2

1
2

(ν+µ+1)

µ− ν [
1

Γ( 1−µ
2

)Γ(− ν
2
)
− 1

Γ( 1−ν
2

)Γ(−µ
2

)
]. (4)

3 Family of Orthogonal Functions

The derivation of the family will be formulated in the form of two Theorems. The derivation of this will be
formulated in the form of two sentences. First, we will say two preparatory lemmas. It is known [9] that the
differential expression (1)

H = − d2

dx2
+
x2

4
with definition domain

Dξ (H) := {f ∈ D̃, f(0) cos ξ − f ′(0) sin ξ = 0}, (5)

is a selfadjoint operator on L2(R+) for all ξ ∈ 〈0, π), and D̃ = {f f ′ ∈ a.c.(0,∞) : f,H f,∈ L2(R+)}

So, if Dν will belong to Dξ(H) for some ν then Dν will be an eigenvector of the considered selfadjoint operator
with eigenvalues ν + 1/2. Eq. (3) guarantees that Dν lies in L2(R+)).

The last condition generates the relationship

Dν(0) cos ξ −D′ν(0) sin ξ = 0. (6)

Although, values Dν(0) and D′ν(0) can be calculated using definition (2), we have to distinguish two cases:

1. when ν /∈ N0 we obtain

ηΓ(−ν
2

)− Γ(
1− ν

2
) = 0, η =

1√
2

cot ξ. (7)

2. when ν ∈ N0 we obtain
hν(0) cos ξ − h′ν(0) sin ξ = 0. (8)

If ν is odd, then hν(0) = 0, h′ν(0) = 1, and Eq. (8) is fulfilled only if ξ = 0. If ν is even, then
hν(0) = 1, h′ν(0) = 0, and Eq. (8) is fulfilled only if ξ = π

2
. In both cases, condition (8) is fulfilled by the

set of Hermitian functions {h0, h2, h4, . . .} and {h1, h3, h5, . . .}, respectively. It is known that both sets
form orthonormal bases in L2(R+).
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Eq.(7) has to be solved for ν.

First we prove two lemmas.

Lemma 1:

1. If ν ∈ (2M − 1, 2M),M = 1, 2, . . . or ν < 0, then β(−ν) ≥ 0,

2. If ν ∈ (2M − 2, 2M − 1),M = 1, 2, . . . , then β(−ν) < 0.

Proof:

1. Using the relationship

β(−ν) =

∞∑
k=0

1

(−ν + 2k)(−ν + 2k + 1)
,

[11], it is possible to show by elementary calculation that (−ν + 2k)(−ν + 2k + 1) > 0 for all k = 0, 1, . . . if
ν ∈ (2M − 1, 2M),M = 0, 1, . . . , or ν < 0.

2. In this case we rewrite the sum β(−ν) in the following form:

β(−ν) = − 1

ν
+

∞∑
k=0

1

−ν + k + 1
+

1

−ν + k + 2
=

= − 1

ν
−
∞∑
k=0

1

(−ν + k + 1)(−ν + k + 2)
.

For considered values of ν ∈ (2M − 2, 2M − 1),M = 1, 2, . . . the products (−ν + k+ 1)(−ν + k+ 2) are positive,
and therefore all denominators of the members in the previous sum are positive and so β ≤ 0 (note that − 1

ν
< 0).

�

Remark: Comparing functions Γ(−ν) and β(−ν) we have the relationship

sgn(Γ(−ν)) = sgn(β(−ν)), ν ∈ R.

It shows that normalization factor c(ν) (Eq.3)) is correctly defined.

Lemma 2:

Function y(ν) :=
Γ( 1−ν

2
)

Γ(− ν
2

)
has the following properties:

1. There are asymptotes for νas ∈ {2n+ 1|n ∈ N0} and lim
ν→ν+as

y(ν) =∞, lim
ν→ν−as

y(ν) = −∞. Further

limν→−∞ y(ν) = +∞.
2. The set {2n|n ∈ N0} consists of all zero points of y.

3. In the intervals (−∞, 1), (M,M + 1),M = 0, 1, . . . , y is continuous decreasing function.

Proof:

1. The first assertion is a direct consequence of explicit form [11] of function Γ.

For the remaining assertions it is sufficient to prove that the sequence {y(−2n)|n ∈ N0} is growing and
limn→∞ y(−2n) = +∞. As y(−2n) can be expressed as

y(−2n) =
Γ(n+ 1

2
)

Γ(n)
=

√
π(2n− 1)!!

2n(n− 1)!
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[11], the assertion can be easily verified.

2. Γ – function has no zero points. Therefore y(ν) = 0 only if |Γ(− ν
2
)| =∞, i. e. ν = 2n.

3. For y′(ν) we obtain

dy(ν)

dν
=

1

2

Γ( 1−ν
2

)

Γ(− ν
2
)

[ψ(−ν
2

)− ψ(
1− ν

2
)], ψ(µ) =

d

dµ
lg Γ(µ).

Using the relationships

ψ(−ν
2

)− ψ(
1− ν

2
) = −2β(−ν), and Γ(−ν) =

2−ν−1

√
π

Γ(
1− ν

2
) Γ(−ν

2
),

[11] we obtain
dy(ν)

dν
= −2ν

√
π

Γ(− ν
2
)2

Γ(−ν)β(−ν).

As Γ(−ν)β(−ν) > 0 (see Remark) the proof is completed. �

The consequence of this Lemma is a Theorem

Theorem 1:

For any η ∈ R and any M ∈ N = {1, 2, . . .} there is just one solution ν
(M)
η of Eq. (7) in the interval IM , where

I1 = (−∞, 1), IM = (2M − 1, 2M + 1), M = 2, 3, . . .

No further solution of Eq. (7) exists.

Table 1. Example of first 11 values of νη. The columns show the eleven lowest values of ν for the
corresponding parameter η. The PCFs for a given Dνη are the first 11 functions of the

orthogonal basis

ν−2.18 ν−0.51 ν0 ν0.23 ν0.51 ν0.97 ν2.18

0.77051 0.399912 0 -0.311391 -0.875066 -2.33401 -9.95

2.66471 2.26065 2. 1.86885 1.71369 1.5141 1.26337

4.59639 4.20523 4. 3.90249 3.78578 3.62177 3.36297

6.54652 6.1743 6. 5.91892 5.82117 5.67849 5.42659

8.50776 8.15402 8. 7.92911 7.84326 7.715227 7.47292

10.4764 10.1394 10. 9.93622 9.85874 9.74156 9.50897

12.4503 12.1283 12. 11.9415 11.8704 11.7617 11.5382

14.4281 14.1195 14. 13.9457 13.8795 13.7777 13.5626

16.409 16.1123 16. 15.9491 15.887 15.7908 15.5834

18.3922 18.1062 18. 17.9519 17.8932 17.8019 17.6014

20.3773 20.101 20. 19.9543 19.8985 19.8113 19.6172

Let Ωξ denote the set

Ωξ = {ν(M)
cot ξ, M = 1, 2, . . .}, ξ ∈ 〈0, π), ν

(M)
cot ξ = ν(M)

η ,

(we understand Ω0 = {0, 2, 4, . . .}),

and let denote further by Eξ the set
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Fig. 1. To illustrate: for a given value of the parameter η, the values of νη are determined by

the intersections of the line y(ν) = η with the graph of the function y(ν) =
Γ( 1−ν

2 )
Γ(− ν2 )

.

Eξ = {c(ν)Dν | ν ∈ Ωξ}.

The set Eξ ⊂ Dξ contains all eigenvectors of the selfadjoint operator Hξ, and the set {ν + 1
2
, ν ∈ Ωξ} contains

all eigenvalues of Hξ.

Note that orthogonality of two different eigenvectors can bee seen also from the Eq.(4). For different µ, ν
fulfilling the condition

Γ(
1− µ

2
)/Γ(−µ

2
)) = Γ(

1− ν
2

)/Γ(−ν
2

) = η,

which is our case, Eq. (4) is the scalar product in L2(R+) equal to zero. Moreover, the Eq. (3) guarantees that
the eigenvectors are normalized.

We denote further by Ĥ the restriction of Hξ to domain

D̂ = {f ∈ D̃, f(0) = f ′(0) = 0} ⊂ Dξ(H) ⊂ L2(R+).

Operator Ĥ is closed, symmetric with deficiency indices (1,1) [9], and Hξ is a selfadjoint extension of Ĥ for any
ξ ∈ 〈0, π). Selfadjoint extensions Hξ=0 and Hξ=π

2
have pure point spectra, which is equivalent to the existence

of orthonormal bases in L2(R+). The basis is in the case Dξ=0(H) = {h2n+1|n = 0, 1, 2, . . .}, and it is in the case
Dξ=π

2
(H) = {h2n+1|n = 0, 1, 2, . . .}. As we mentioned in the introduction, the same is true for all operators Hξ

with any parameter ξ.

Consequently, one can write theorem

Theorem 2

The set Eξ consisting of eigenvectors of Hξ is an orthonormal basis in L2(R+) for any ξ ∈ 〈0, π), and σ(Hξ) =
{ν + 1

2
, ν ∈ Ωξ}.
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4 Concluding Remarks

The results we present can be translated to the case L2(R−). In this case an orthonormal basis in L2(R−) is

Ẽξ := {D̃ν | ν ∈ Ωξ}, D̃ν(x) := Dν(−x).

These two bases can be combined to the base in L2(R). As L2(R) = L2(R+) ⊕ L2(R−). Then for any pair
(ξ, σ) ∈ 〈0, π)× 〈0, π) the set Eξ ⊕ Ẽσ is a basis in L2(R). Explicitly

Eξ ⊕ Ẽσ = {(Dν , 0), ν ∈ Ωξ} ∪ {(0, D̃ν), ν ∈ Ωσ}.

Of note, the known orthonormal basis {hn, n = 0, 1, . . .} of L2(R) consisting of Hermitian functions is not
contained in this set. Functions hn are eigenvectors of selfadjoint operator HD with definition domain

D = {f, f ′absolutely continuous, f, Hf ∈ L2(R)},

and operator HD is physically interpreted as Hamiltonian of quantum linear harmonic oscillator. It would be
interesting to use these bases for numerical solutions of time–dependent partial differential equations, as in
publications [5]. Gluing the solutions on the positive and negative axes is suitable for solving an asymmetrical
harmonic oscillator and gives the possibility to construct a family of continuous orthogonal functions on L2(R)
[14].
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