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ABSTRACT 
 
NK cell dysfunction is observed in a variety of physiological and pathological conditions 
and cytotoxic assays allow to evaluating in vitro the lytic activity of NK cells against tumors 
or transformed target cells. Since the earliest cytotoxic tests based on the direct 
visualization of effector/target cell conjugates and the use of trypan blue to exclude non-
viable target cells using a light microscope, a variety of cytotoxic assays have been 
developed. The 51chromium release assay was the most widely used for a long time, 
although it has several significant drawbacks, the major disadvantage being the use of 
radioactive compounds. To overcome this problem, several non-radioactive methods have 
been described, but none is broadly accepted. Among them, flow cytometry has a 
potential for providing information about the ability of the NK cells to lyse their targets. We 
review the clinical conditions associated with NK cell dysfunction as well as the role of the 
NK cells in immunotherapy and describe the available assays for measuring the activity of 
NK-cells with emphasis on flow cytometry. 
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ABBREVIATIONS 
 
7-AAD: 7- amino-actinomycin D; ADCC: Antibody dependent cell citoxicity; AM: Aceto-
methyl esters; BCECF: 2':7'-bis(carboxyethyl)-5:6-carboxyfluorescein; CAM: Calcein 
acetoxymethyl ester; 51Cr: 51chromium; CCA: Colorimetric cytotoxic assay; CDCC: 
Complement dependent cell citoxicity; CFSE:  carboxyfluorescein succinimidyl ester; CTL: 
Cytotoxic T lymphocytes; CRA: Chromium release cytotoxic assay; CTO: Cell Tracker 
Orange; DiO or DiOC18: Dioctadecyloxacarbocyanine; E/T ratio: Effector / target cells ratio; 
EGFP; Enhanced green fluorescent protein; ERA: Europium release assay; F18: 
Octadecylamine-fluorescein isothiocyanate; FCCA: Flow cytometry cytotoxic assay; FHL: 
Familial hemophagocytic lymphohistiocytosis; FITC: Fluorescein isothiocyanate; FSC: 
Forward light scatter; GFP: Green fluorescent protein; GvHD: Graft-versus-host disease; 
HSC: Hematopoietic stem cells; HSCT: Hematopoietic stem cell transplantation; IPSC: 
Induced pluripotent stem cells; HLA: Human Leukocyte Antigen; HL: Hemophagocytic 
lymphohistiocytosis; HS: Hemophagocytic syndrome; IFN: Interferon; IL: Interleukin; KIR: 
Killer cell immunoglobulin like receptors; KLR: Killer cell lectin type receptors; LAK: 
Lymphokine activated killer; LAMP-1, Lysosome-associated membrane protein 1 (CD107a); 
LGL: Large granular lymphocytes; LU: Lytic units; mAb: Monoclonal antibody; MCA: 
Modified micro cytotoxicity assay; MHC: Major Histocompatibility Complex; MTG-FM: 
MitoTracker Green FM; MTT: 3-(4:5-dimethylthiazol-2-yl)-2:5-diphenyl tetrazolium bromide; 
NCR: Natural cytotoxic receptors; NK: Natural killer; PBMC: Peripheral blood mononuclear 
cells; PHA: Phytohemaglutinin; PI: Propidium iodide; SSC: Side light scatter. 
 
1. INTRODUCTION  
 
Natural killer (NK) cells have long been regarded as an important component of immune 
response based on their cytotoxic activity against virus-infected and tumor cells [1-3], 
thereby playing an important role in various clinical conditions [4]. They are identified as 
CD3- and CD16/CD56+ large granular lymphocytes (LGL) and they kill the targets using 
either perforin-granzyme or Fas-Fas ligand based mechanisms, both pathways leading to 
activation of caspase cascades responsible for target cell apoptosis [5,6]. The lytic process 
is characterized by the binding of the NK cell to their targets, target cell recognition, 
activation of the lytic machinery and target cell dead. Physical interaction between NK cells 
and their targets is a critical event and the machinery that controls NK cell behavior is much 
more complex than it was thought before, being now evident that the NK activity is tuned by 
the opposing activity of stimulatory and inhibitory receptors [7,8]. 
 
Different approaches have been used to directly or indirectly evaluate NK cells, using both 
Ex vivo and In vitro studies, and analyzing various parameters [9-11]. The accurate measure 
of cytotoxic function is critical to investigate a number of immunodeficiency states, infections 
and cancer and to evaluate vaccine and immunotherapy effects. New techniques for 
measuring NK cytotoxic activity by flow-cytometry have been developed, offering an 
alternative to the standard chromium (51Cr) release assay [12,13]. 
 
We review the clinical conditions associated with NK cell dysfunction as well as their role in 
cell based and antibody based immunotherapies, and describe the available methods for 
measuring the cytotoxic activity of NK-cells with emphasis on flow cytometry. 
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2. CLINICAL CONDITIONS ASSOCIATED WITH NK CELL DYSF UNCTION 
 
NK-cell cytotoxicity is impaired in various primary and secondary immunodeficiencies, with 
or without a decrease in relative and absolute NK cell counts [14-17]. Of the inherited 
causes, most occur as part of a more generalized immunodeficiency syndrome and involve 
abnormalities of genes codifying for proteins important in cytolysis, whereby perforin and 
granzymes are delivered to induce target cell apoptosis (Table 1) [18-30].  
 

Table 1. Primary immunodeficiency diseases that aff ect NK cell function 
 
Disease  Genes  NK cell 

number 
NK cell 
cytotoxicity 

Ref. 

Familial hemophagocytic 
lymphohistiocytosis 

PFP1, 
UNC13D 

Normal Decreased [18] 

Chediak– Higashi syndrome LYST Normal Decreaseda [19,20] 
Griscelli syndrome RAB27A Normal Decreasedb [21-23] 
X-linked lymphoproliferative 
syndrome 

SH2D1A Normal Decreasedc [24] 

NEMO deficiency IKBKG Normal Decreasedb [25] 

Bare lymphocyte syndrome TAP1, TAP2 Normal Decreaseda,d [26] 
Leukocyte adhesion deficiency-I ITGB2 Augmented Decreasede [27] 

Wiskott–Aldrich syndrome WASP Augmented Decreased [28]  

Severe combined 
immunodeficiency 

IL2RG, 
JAK3, ADA 

Decreased Decreased [29][30] 

Adapted from [4]. Abbreviations: ADCC, Antibody dependent cell cytotoxicity. a: ADCC / CD16 
mediated cell killing is also impaired; b: ADCC/CD16 mediated cell killing is normal; c: NK-cell 

mediated cytotoxicity was induced with anti-2B4 antibodies; d: NK-cell mediated cytotoxicity is partially 
restored by IL-2 stimulation; e: NK-cell mediated cytotoxicity was  induced with anti-DNAM antibodies 

 
Hemophagocytic syndrome (HS) or hemophagocytic lymphohistiocytosis (HL) comprises a 
heterogeneous group of disorders characterized by deregulated T- and NK-cell activation 
causing an aberrant cytokine release that results in uncontrolled macrophage proliferation 
and organ infiltration by activated histiocytes, ultimately leading to multiple organ 
dysfunctions. Common features include fever, splenomegaly, cytopenias, hemophagocytosis 
in the bone marrow, spleen, and/or lymph nodes, liver dysfunction, coagulopathy, 
hypofibrinogenemia, high lactate dehydrogenase, hypertriglyceridemia, high serum ferritin 
and CD25 levels and absent or low NK-cell activity [31,32]. It can be either primary, i.e. due 
to an underlying genetic defect, or secondary, associated with malignancies, autoimmune 
diseases or infections. Infectious agents are frequently herpes viruses, the Epstein Barr virus 
being the most common [33].  
 
The primary form of HL, also known as familial hemophagocytic lymphohistiocytosis (FHL) is 
an autosomal recessive disorder [34]. Five disease subtypes (FHL1, FHL2, FHL3, FHL4 and 
FHL5) were described, mutations of the perforin (PRF1; MIM170280) or of the cytotoxic 
proteins MUNC13-4, Syntaxin 11 and MUNC18-2 genes defining the FHL2, FHL3 FHL4 and 
FHL5 subtypes, respectively [25,35-37]. Related autosomal recessive defects of secretory 
cytotoxic lysosomes, including LYST 1 (Chediak-Higashi syndrome), Rab27A (Griscelli 
syndrome), and X-linked lymphoproliferative disorder also carry a high risk of HL, as the 
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defective proteins also participate in the events occurring at the NK cell immunological 
synapse [25,27,28,38,39]. Clinical manifestations usually arise during infancy and the 
prognosis is usually fatal, whereas that for secondary HL is reported to vary. FHL is difficult 
to diagnose when the patient is a first child or lacks an affected sibling. However, several 
clinical findings can support the diagnosis, including an age of less than 2 years, central 
nervous system involvement, and defective NK cell activity, which has been observed in a 
majority of FHL patients, although the number of circulating NK cells is normal [40]. 
 
Although most patients with HL have defective NK cell cytotoxicity using a 4-hour NK 
cytotoxicity test against K562 targets, the defect is heterogeneous and in some cases it can 
be restored by increasing the incubation time and/or by stimulating NK-cells with mitogens, 
such as phytohemaglutinin (PHA), or interleukins (IL), such as IL-2. Thus, Schneider et al. 
proposed to classify the cytotoxicity deficiency in four subtypes: Type 1, if the NK function 
can be restored either by stimulating NK cells with PHA (but not with IL-2) or by prolonging 
the incubation time from 4 to 16 hours; Type 2, if the recovery is achieved only by adding IL-
2, i.e., lymphocytes with and without PHA stimulation in vitro mediated-lysis at 4h and 16h 
showed low values, but lymphokine activated killer (LAK) cells generated in vitro showed 
normal lysis rates of K562 cells in 4 and 16 hours killing assays; type 4, if it can be increased 
only by prolonging the incubation time, i.e., cytolytic activity with and without stimulation of 
PHA and IL-2 is low or absent as determined in the 4 hours killing assay, but normal in the 
16 hours assay; and, type 3, if they have a lack of cellular cytotoxicity independently of 
assay variations, i.e., cellular cytotoxicity was absent, and neither PHA or IL-2 stimulation 
nor prolongation of the incubation time of effector and target cells could restore the deficient 
cytolytic activity [41]. 
 
Finding a low or absent NK cell cytotoxicity in patients with HL is a high-risk indicator and 
type 3 patients have a poor prognosis [42,43]. Comparison of NK cell activity among the 
FHL2, FHL3, and non-FHL2/FHL3 subtypes did not reveal significant differences, as most of 
the cases have deficient or low cytotoxic activity [18]. However, FHL2 patients showed any 
recovery after chemotherapy, in contrast to the FHL3 and non-FHL2/FHL3 subgroups in 
which a partial recovery may be observed [18]. Moreover, in secondary HL, NK cell activity 
has been reported to normalize during remission [18,43]. Thus, recognition of the cytotoxic 
abnormalities associated with HL may be clinically helpful. 
 
Decreased NK cell mediated cytotoxicity has been also observed in autoimmune disorders, 
such as systemic lupus erythematous [44], rheumatoid arthritis [45] and Sjögren’s syndrome 
[46]. A depression of NK cell function has also been described in patients with disseminated 
infections [47] and advanced cancer [48]. Pregnant women, especially those in a late stage 
of gestation, have been shown to have low NK cytotoxicity [49,50] and this state prolongs 
during the post-partum [51]. Other pathological conditions associated with diminished NK 
cell cytotoxicity include the chronic fatigue syndrome [52] and the obesity states [53]. 
 
In contrast, an enhanced NK cell activity has been observed during viral infections [54,55]. 
Moreover, women with recurrent spontaneous abortion have both higher numbers of 
activated circulating NK-cells [56] and high levels of NK cell cytotoxicity [57], although these 
parameters apparently do not correlate to each other [58]. In addition, various cytokines, 
including IL-2, IL-12, IL-15, IL-21 and interferons do augment the cytotoxic activity both In 
vitro [59-63] and In vivo [64,65], with therapeutic implications [66]. Drugs that modulate NK 
cell function offer therapeutic options in various clinical conditions and some methods have 
been proposed for NK cell assays in immunotoxicity testing and drug evaluation [67,68].  
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Previous studies have indicated that fetal and neonatal cytotoxic activity is lower, whereas 
that observed in children is similar, comparatively to that observed in adults [69-71]. There 
are conflicting data on the functional activity of NK cells during ageing, which was reported to 
remain unchanged [72,73], to decrease [74-76] or to increase [77]. Other factors that may 
influence the NK-cell activity are the nutritional and the feeding status [78-80], the smoke 
[81,82], the circadian rhythm [83] and the stress [84,85]. 
 
3. NATURAL KILLER CELLS IN IMMUNOTHERAPY 
 
In recent years, antibody- and cell-based therapies offered alternatives for the treatment of 
patients with cancer, being now recognized in addition to surgery, chemotherapy, 
radiotherapy and other conventional treatments [86]. Cells used for immunotherapy include 
dendritic cells, cytotoxic T lymphocytes (CTL), and NK cells [86].  
 
Natural killer cells discriminate between healthy self cells from those that are transformed or 
infected by a delicate balance of inhibitory and activating signals [87]. Killer cell 
immunoglobulin like (KIR) and lectin type (KLR) receptors act as inhibitory receptors for the 
NK cells by interacting with self Major Histocompatibility Complex (MHC) class I molecules, 
and tumor and viral infected cells that express low levels of these molecules are the ideal 
targets for NK cells [88]. Activation molecules on NK cells include the natural cytotoxicity 
receptors (NCR), NKp46 (CD335), NKp44 (CD336), and NKp30 (CD337), as well as NKG2D 
(CD314) and some activating co-receptors such as 2B4 (CD244) and DNAM-1 (CD226) [89]. 
Stress-inducible molecules (e.g. MICA, a MHC class I homolog) that acts as ligands for 
activating receptors), are frequently expressed in tumor cells [90]. These molecules involved 
in NK cell regulation can be exploited in NK-cell based immunotherapies. 
 
The NK cells used for adoptive cellular immunotherapy can be derived from several sources 
including autologous or allogeneic NK cells, NK cell lines, genetic modified NK cells, 
hematopoietic stem cells (HSC), and induced pluripotent stem cells (IPSC) [91,92]. 
 
The expansion and activation of the NK cells prior to the adoptive transfer are critical steps 
[93]. Interleukin-2 has longer being used to transform NK cells into LAK cells exhibiting 
greater cytotoxic activity [94-96] and other cytokines, such as IL-12, IL-15 and IL-18 also 
activate NK cells [97]. The functional and genetic manipulation of the NK cells have been 
used to increase tumor-cell killing efficiency [98,99]. Some of the strategies already tested 
include the transgenic cytokine expression [100], induction of chemokine receptor 
expression [101], up-regulation of activating receptors using the appropriate cytokines [102], 
inactivating inhibitory receptors with monoclonal antibodies [103], and redirecting NK cells 
via chimeric tumor-antigen specific receptors [104,105]. For example, antibody blocking KIR 
significantly promote NK cell cytotoxicity responses against tumor cells [106] and novel 
therapies targeting NKG2D ligands expressed on tumor cells are currently under 
investigation [107]. 
 
Antitumor NK cell-based immunotherapy has been tested in various hematological 
malignancies, such as leukemia, lymphoma, and myeloma, not only in the field of allogeneic 
hematopoietic stem cell transplantation (HSCT) but also in non-transplanted patients, as well 
as in non-hematological tumors [91,108]. In general, these NK cell-based 
immunotherapeutic approaches have generating more promising results in hematological 
cancers [109-111] than in solid tumors [112]. Several studies have shown that in patients 
with acute leukemia given allogeneic HSCT, part of the therapeutic effect lies on the anti-
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tumor effect displayed by NK cells and CTL. In particular, donor-derived NK cells play a 
crucial role in the eradication of cancer cells in patients given an allograft from a Human 
Leukocyte Antigen (HLA)-haploidentical relative, especially when there is a KIR-KIR ligand 
mismatch in the donor-recipient direction [113]. Alloreactive donor-derived NK cells have 
been also demonstrated to kill recipient antigen-presenting cells and CTL, thus preventing 
graft-versus-host disease (GvHD) and graft rejection [114]. 
 
In addition to be used in cell based therapies, NK cells are important players in antibody 
based treatments for hematological cancers, solid tumors, allergy and autoimmune diseases 
[115-119], as the mechanisms of action of the monoclonal antibodies (mAbs) directed 
against antigens expressed in cell surface molecules include complement-dependent cellular 
cytotoxicity (CDCC) and antibody-dependent cellular cytotoxicity (ADCC) [120-123]. 
Therefore, developing tests for evaluating NK cell mediated ADCC and CDCC would be 
important not only to elucidate the mechanisms of action of the available mAbs, but also for 
monitoring the effects of the therapy [124,125]. 
 
4. ASSAYS TO MEASURE THE NK-CELL MEDIATED CYTOTOXIC ITY 
 
Different approaches have been used to directly or indirectly evaluate NK cells, using both 
Ex vivo and In vitro studies, and the simultaneous analysis of various parameters allow a 
comprehensive view of the NK cell function [10,11,126-140] (Table 2). 
 
Natural killer cell-mediated cytotoxicity was measured for a long time using radioactive 
51chromium (51Cr) release assays (CRA), which were extensively tested. However, CRA 
are not easy to perform in clinical laboratories because of difficulties with management and 
disposal of radioactive materials, short reagent half-lives, high cost, limited sensitivity, 
nonspecific background and inter-laboratory variability, with difficult standardization. These 
disadvantages led investigators to design alternative non-radioactive assays. 
 
4.1 Radioactive Assays 
 
Radioactive 51Cr release assays has been considered the standard test to study cell-
mediated cytotoxicity In vitro. In this method, target cells are loaded with 51Cr, which 
passively enters cells and binds to intracellular proteins. Upon target cell lysis, 51Cr is 
released into the supernatant and the amount of 51Cr is quantified using a beta or a gamma 
counter [141]. 
 
Using CRA, the NK-cell mediated cytotoxic activity is usually evaluated by co-incubating the 
effector cells and 51Cr labeled targets cells at different effector/target (E/T) ratios. The assay 
is traditionally performed with peripheral blood mononuclear cells (PBMC) (containing the 
effector cells), although whole blood tests were also developed [11,142]. The spontaneous 
and maximal levels of 51Cr release are determined by adding the target cells (but not 
effector cells) to wells containing medium alone and to wells containing a detergent that acts 
as a membrane permeabilizing solution, respectively. After the incubation period (usually 4 
hours), an aliquot of supernatant is collected and read in a scintillation gamma counter, the 
percentage of specific 51Cr release being calculated as (cpm experimental release - cpm 
spontaneous release)/(cpm maximal release - cpm spontaneous release) x 100, where cpm 
indicates counts per minute. In some studies, data on NK mediated cytotoxicity are 
expressed in terms of lytic units (LU40) per 107 cells, calculated on the basis of a dose-



 
 
 
 

Annual Research & Review in Biology, 4(24): ………….., 2014 
 
 

3592 
 

response curve, one LU40 corresponding to the number of effector cells necessary to lyse 
40% of the targets [72,143]. 
 

Table 2.  Available strategies to directly or indirectly eval uate NK-cell function 
 

Strategy used  References  
Quantification of NK cells and NK cell subsets with different 
immunophenotypic and functional properties. 

[126,127] 

Evaluation NK-cell activation, either Ex. vivo or In vitro, under the 
influence of different stimuli, taking in account characteristic 
immunophenotypic profiles or the expression of specific activation related 
markers. 

[128-130] 

Cell surface molecules involved in NK-cell chemotaxis and homing that 
regulate NK-cell migration into inflamed tissues or lymphoid organs and 
tissues. 

[131,132] 

Adhesion molecules and other molecules involved in NK-cell – target cell 
interactions leading to conjugate formation 

[133,134] 

Expression of killer immunoglobulin like (KIR), killer lectin type (KLR), 
leukocyte immunoglobulin like (LIR), natural killer (NCR) and 
costimulatory receptors and their ligands. 

[135] 

Analysis of signal transduction. [136] 
Intracellular expression of cytotoxic granule proteins (e.g. granzymes, 
perforin, granulysin, etc.) involved in target cell killing. 

[137,138] 

Translocation of molecules expressed on the membrane of the 
intracellular granules to the cell surface (e.g. CD107a). 

[10,139]  

Cytokine production after In vitro stimulation with different activators [11,140] 
Ability of NK-cells to form effector/target cell conjugates or capacity to kill 
target cells. 

Reviewed 
herein 

 
4.2 Non-Radioactive Assays 
 
Non-radioactive assays are based on luminescence, colorimetric or fluorometric methods. 
Among them, flow cytometry-based cytotoxicity assays (FCCA) are probable the most 
sensitive and biologically informative, being performable in most clinical hematology and 
immunology laboratories; nevertheless, FCCA are also time consuming and expensive tests 
[144,145]. Several comparative studies between FCCA and CRA have been done, flow 
cytometry being now considered to allow a reliable measure of in vitro cellular cytotoxicity, 
eliminating the use of radioactive material [144-151].  
 
 4.1.1 Flow cytometry based cytotoxic assays  
 
In the first FCCA proposed, effector and target cells were distinguished from each other only 
based on their light scatter properties and dead target cells were identified by staining with 
propidium iodide (PI), a nucleic acid probe that penetrates only in cells with damage 
membranes [144,145]. Since then, the methodology has been progressively improved. In 
accordance, different approaches have been tested for the labeling of the target and effector 
cells, as well as for the identification of E/T conjugates and apoptotic and/or dead targets. 
More recently, FCCA have been used to simultaneously measure the phenotype of effectors, 
the formation of E/T conjugates and the viability of the targets [146], and single platform, no-
wash multicolor assays were developed in order to quantify NK cell cytotoxicity against 
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leukemia cells [152]. FCCA were also optimized for the functional screening of natural 
compounds modulating NK cell activity, using IL-2 stimulated samples as a positive control 
[69], as well as for testing the effect of new drugs on tumor cells using human and animal 
models [67,153]. 
 
Nowadays, the phenotype of effectors, the formation of E/T cell conjugates and the viability 
of the targets are measured by flow cytometry based on light side (SSC) and forward (FSC) 
scatter and fluorescence signals, using fluorescent probes and fluorochrome conjugated 
mAbs. In addition, kinetic studies (usually from 1 to 24h of incubation) at different E/T cell 
ratios (usually 50:1 to 5:1) either in the absence or in the presence of stimulators (e.g. IL-2) 
can be performed. 
 
4.1.1.1 Effector cells 
 
In most FCCA, as in other cytotoxic assays, PBMC are used to as effector cells, although in 
some cases they were depleted from monocytes by adherence from 1h to an overnight 
incubation [78,154]. In other cases, cytotoxic assays are performed either in whole blood 
[152] or with sorted NK-cells, using either flow or electromagnetic sorters [53,155,156]. 
These conditions should be considered when interpreting and comparing the results. In fact, 
there is evidence that monocytes significantly decrease the NK-cell cytotoxic activity [79]. 
Moreover, it has been shown that although cells most effective in mediating cytolysis against 
K562 target cells are NK cells, a substantial degree of cytotoxic activity is detected within the 
cytotoxic T cells [155]. This is because CTL also display a certain degree of spontaneous 
non-MHC-restricted cytotoxicity against K562 targets [157,158], although some advise that 
stimulation with IL-2 or IL-15 is first necessary [159]. 
 
4.1.1.2 Target cells 
 
When evaluating NK-cell cytotoxicity by FCCA, as by other assays, most use standard NK-
sensitive MHC class I deficient cell lines, such as K562 cells, an erythroleukemia cell line 
derived from a patient with chronic myeloid leukemia in blast crisis that has been considered 
the reference-standard target [160], or Daudi cells, a lymphokine-sensitive malignant B-
lymphoblastoid cell line, derived from a Burkitt' lymphoma [161] In other cases, NK cells are 
tested against leukemia cells, or against non-hematological, such as neuroblastoma, gastric, 
breast and ovarian carcinoma and Wilms' tumor cells [153,156]. For CTL evaluation, 
autologous tumor cells, Human Leukocyte Antigen (HLA)-matched allogeneic cell lines or 
dendritic cells loaded with the antigen of interest are used as targets. 
 
4.1.1.3 Effector cell labeling 
 
The percentage of NK-cells among lymphocytes is usually quantified in whole blood and/or 
in the PBMC before testing cytotoxicity, often using the combination of anti-CD3, anti-CD16 
and anti-CD56 mAbs, in order to distinguish NK cells from CTL. However, effector cells are 
not specifically labeled in most FCCA, as the aim of the study is only to observe the cytotoxic 
effect on their targets. If however the purpose is to go further on the cells involved on the 
cytotoxic effect and/or to detect E/T conjugates, co-staining for NK cells and T cells should 
be performed in cell cultures. 
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4.1.1.4 Effector cell stimulation 
 
Two different experimental conditions have been used to test the NK cell mediated cytotoxic 
activity: the assessment of the natural (spontaneous) NK cell activity (unstimulated cell 
cultures) and the evaluation of LAK cell cytotoxicity (stimulated cell cultures, under the 
influence of cytokines). For some target cells (e. g. neuroblastoma cell lines and Daudi cells) 
stimulation is mandatory, whereas for others (e.g. K652 cells) is facultative. As the 
cytotoxicity values really depends on using (or not) a stimulus, as well as on its type and 
intensity, this is also a major factor to be considerer when comparing the results.  In the 
majority of the studies where the LAK cell activity was evaluated, IL-2 was the cytokine used, 
with a concentration ranging from 20 to 200U/ml [162-164], although some other cytokines, 
such as IL-12 and/or IL-15 [165] or interferon gamma (IFN-γ)) [61] have also been tested. A 
few studies have used specific stimulators such as tool like receptor ligands [81,166,167] or 
antibodies against the NK receptors [24,27]. 
 
4.1.1.5 Target cell labeling 
 
Discrimination of target and effector cells is critical in FCCA and in most cases these cells 
can be reasonably separated based on their light scatter and fluorescence profiles. For 
instance, K562 cells are reasonably distinguished from mononuclear cells based on the 
higher SSC and green auto-fluorescence, but not based on the FSC [145,154,168]. If light 
scatter properties are not enough informative and/or if a better discrimination is desired, the 
approach is to label the target cells with a suitable fluorescent dye.  
 
Different dyes have been tested for labeling of target cells, including green or red fluorescent 
probes, which is usually achieved by incubating target cells with the dye just before the 
assay (Table 3) [61,78,146,149,151,152,164,169-177]. Fluorogenic esterase substrates, 
including calcein and 2',7'-bis-(2-carboxyethyl)-5- (and-6)-carboxyfluorescein (BCECF) 
aceto-methyl esters  (AM) and various fluorescein diacetate derivatives can be passively 
loaded into cells. Once inside the cells, these non-fluorescent substrates are converted by 
intracellular esterases into fluorescent products that are retained by cells with intact plasma 
membranes. In contrast, both the un-hydrolyzed substrates and their products rapidly leak 
from cells with compromised membranes, even when they retain some residual esterase 
activity. Alternatively, cells lines transfected with reporter enzymes or fluorescent proteins 
can also be used with success [78,162]. This is the case of GHINK-1 cells, obtained by 
transfection of HFWT cells (an anchorage-dependent NK-cell sensitive Wilms' tumor cell 
line) with the green fluorescence protein (GFP) gene. After being co-cultured with effector 
cells, GHINK-1 target cells release GFP into the medium and the intensity of the 
fluorescence from the released GFP can be used to measure the cytotoxic activity [164]. 
 
When choosing a dye to label target cells several factors should be considered: The dye 
should able to integrate stably in the target cell membrane, allowing for short or long co-
incubation periods without leakage to neighboring cells in order to avoid unspecific staining; 
the vitality of the targets and cytotoxicity of the effector cells should not altered by staining; 
The spectral emission wavelength of the dye should be compatible with those of probes 
used to detect apoptotic and/or dead targets and with fluorochrome conjugated mAbs used 
to stain target and/or effector cells. Some investigators expressed concern about dyes 
leaking into the medium during co-incubation (due to target cell membrane disruption) and 
labeling of other cells in the environment [162,178,179]. In alternative, they advise the use of 
fluorochrome conjugated mAbs (e.g. anti-CD33 for K562 and anti-CD19 for Daudi cell lines) 
for target cell labeling, as mAbs does not pose such a disadvantage [179]. 
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Table 3. Fluorescent probes that have been tested f or target cell labelling in flow 
cytometry based cytotoxic assays 

 

Group  Fluorescent probe  References  
Fluorescein and derivatives F18,FITC,BCECF,CFSE [149,152,169-171]  
Long-chain carbocyanines and derivativesa DiOC18 [61,172-174] 
Mitochondrion-selective probes MTG-FMb [152] 
Calcein acetoxymethyl ester CAM [152,175,176] 
Green fluorescent protein and derivatives GFP, EGFP [78,151,164] 
PKH fluorescent dyesc PKH26 [170,177] 
Cell trackers CTO [146] 
Abbreviations: F18, Octadecylamine-fluorescein isothiocyanate; FITC, Fluorescein isothiocyanate; BCECF, 

2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein; CFSE, Carboxyfluorescein succinimidyl ester; DiO or DiOC18, 
Dioctadecyloxacarbocyanine; MTG-FM, MitoTracker Green FM; CAM, Calcein acetoxymethyl ester; GFP, 

Green fluorescent protein; EGFP; Enhanced green fluorescent protein; CTO, Cell Tracker Orange; PKH26;a: 
Amphiphilic probes comprising a charged fluorophore and lipophilic aliphatic "tails" that anchor the probe to 
the membrane. The most widely used carbocyanine probes are the octadecyl indocarbocyanines DiIC18, 

also referred by the acronym DiI, and oxacarbocyanines DiOC18, also referred as DiO; b: MitoTracker Green 
FM is green-fluorescent mitochondrial stain which appears to localize to mitochondria regardless of 

mitochondrial membrane potential. The dye stains live cells; c: PKH (from the author who developed these 
dyes: Paul Karl Horan) are vital lipophilic, fluorescent, membrane intercalating dyes. They contain two long 

alkyl chains, which allow a strong anchorage in the lipid bilayer. When labelled cells divide, the resulting 
daughter cells receive half the label, reducing the fluorescence intensity to one-half that the parent cells. As a 
consequence, the proliferation of labelled cells correlates to a decrease in fluorescence. Three different PKH 
dyes are used for labelling cells: PKH2, PKH26, and PKH67. PKH2 and PKH67 are green fluorescent dyes, 

whereas PKH26 emits red fluorescence 
 
4.1.1.6 Identification of apoptotic/dead target cells 
 
Another critical step in cytotoxic assays is the identification of dead targets. Morphological 
alterations that occur in dead cells usually produce changes in their light scattering 
properties. In the first FCCA assays the only parameter used to separate dead and viable 
targets cells was the FSC, at the same time the SSC distinguish between effectors and 
targets [168]. 
 
In order to improve this methodology, orange (e. g. PI) or green (e.g. 7- amino-actinomycin 
D, 7-AAD) nucleic acid dyes are usually added at the end of the incubation period in order to 
quantify apoptotic / dead target cells that have lose their membrane integrity. Labeling with 
fluorochrome conjugated annexin V (that preferentially binds to negatively charged 
phospholipids like phosphatidylserine in the presence of Ca2+) [180] or co-labeling with 
fluorochrome conjugated annexin V and nucleic acid fluorescent probes (such as PI or 7-
AAD) [178,181,182] have also been used to identify apoptotic / dead target cells. Since 
phosphatidylserine is translocated to the cell surface in the earlier stages of apoptosis, this 
approach would theoretically make possible to identify earlier the non-viable targets. 
Simultaneous labeling with PI, annexin V and cytoplasmic non-lipophilic membrane-
impermeable dyes, such as BCECF, allow to identifying sequential apoptotic steps on target 
cells, characterized by PI incorporation, annexin staining and BCECF release [183]. 
Alternatively, caspase activation can be measured within target cells using cell permeable 
fluorescent caspase substrates [184-188]. This assay reliably detects, by flow cytometry or 
fluorescence/confocal microscopy, antigen-specific CTL and NK cells, providing an 
alternative sensitive and physiological method, as it measures a biological indicator of 
apoptosis within target cells. 
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Results are usually expressed as percentage of NK cytotoxic activity calculated as follows: 
(% dead K562 target cells in the sample - % spontaneously dead K562 target cells) / (100 - 
% spontaneously K562 dead target cells) × 100. In order to better measure the NK cell 
activity, other concepts were introduced such as the maximal target cell lysis and the slope 
of the cytolytic curve [189]. 
 
4.1.1.7 Identification of effector/target conjugates 
 
Flow cytometry has also been used for a long time to evaluate cell-to-cell interactions 
conditioning the formation of aggregates [190], and the same strategy has been successfully 
employed to measure the binding of NK cells to targets [154,168,191-197]. By quantifying 
conjugate formation, the earliest steps of E/T cell interaction can be evaluated and the role 
of the adhesion molecules and cytokines can be explored [198]. 
 
The first condition to identify E/T cell conjugates is to label effector cells with fluorochrome 
conjugated mAbs. If fluorescent dyes are simultaneously used to detect non-viable targets, 
conjugate formation and target cell death can be measured at the same time 
[78,146,162,179]. However, the formation of conjugates may occur early during the course 
of incubation, been reported to reach a maximum after 40–60 min when LAK cells are used 
as effectors, whereas the maximum of target cell killing is usually observed after 3 to 4 hours 
[78,154]. Thus, kinetic studies are necessary in order to define the best conditions to detect 
both E/T conjugate formation and target cell dead. 
 
4.1.2 Other cytotoxic assays  
 
For the last years various non-radioactive assays have been developed, providing 
alternative methods to evaluate cell-mediated cytotoxicity (Table 4) [156,199-217]. 
 
Bioluminescence assays are based on the production and emission of light (measured by 
luminometers) by living cells as the result of a chemical reaction. The luciferase/luciferin 
system, which depends on the ATP, has been the preferred enzyme/substrate system due to 
its high sensitivity. Colorimetric assays rely on the measurement of the absorbance of light of 
a particular wavelength using a spectrophotometer or an ELISA reader, which is directly 
proportional to the concentration of the substance in solution. When the substance by itself 
does not absorb light, reagents to produce colored compounds have to be employed. 
Fluorometric assays are based on the use of fluorescent probes or fluorochrome conjugated 
mAbs. They are performed with fluorescence microscopes, fluorometers, fluorescence 
microplate readers or flow cytometers. In general, all these assays are alternatives to the 
CRA for measuring cytotoxicity, avoiding the problems associated with the use of 
radioactivity and most are rapid and more amenable to standardization. However, some of 
them perform better in specific applications.  
 
Although some of these methods have been extensively used for specific purposes (e.g. 
MTT assay for cytotoxic drug sensitivity and resistance studies), the majority of them have 
been used only for research and are not validated for use in clinical laboratories. 
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Table 4.  Methods for testing cytotoxicity other than flow-cy tometry based assays 
 

Assay  Type of assay  Main characteristics  Comments  References  
ATP release assay Luminescence assay. Bioluminescent assays in which ATP is the limiting 

reagent for the luciferin / luciferase reaction.  
Unsuitable to evaluate cytotoxicity 
because the lytic signal is indirect. 

[199] 

GAPDH release assay Luminescence assay.  Based on the measurement of the GAPDH released 
from damaged cells. Highly general, since all known 
cells express GAPDH, and, unlike other enzymes, 
GAPDH is very readily released from the cytoplasm 
upon cell lysis. The release of GAPDH is coupled to the 
activity of the enzyme PGK to produce ATP, which is 
detected via the luciferase / luciferin bioluminescence 
methods. 

Useful for measuring cytotoxic activity 
of cells, complement and other lytic 
agents. 
Commercially available. 
Not extensively used. 

[200-204] 

EuTDA assay or Europium  
release assay (ERA) 

Fluorimetric assay. The EuTDA assay is based on loading target cells with 
an acetoxymethyl ester of the fluorescence enhancing 
ligand (BATDA). The ligand penetrates the cell 
membrane quickly and within the cell the ester bonds 
are hydrolyzed to form a hydrophilic ligand (TDA) which 
no longer passes the membrane. Once target and 
effector cells are co-incubated, TDA is released from 
damaged target and reacts with Europium in solution, 
forming a highly fluorescent and compound (EuTDA), 
which is measured by time-resolved fluorescence. The 
measured fluorescence signal correlates directly with the 
amount of damaged cells.  

Sensitive and specific assay that 
performs well using non-adherent 
target cells.  
Needs fewer target and effector cells 
comparatively to CRA, but some 
targets can not be used due to high 
spontaneous europium release (ex. 
Daudi cells). 
Commercially available.  
Not extensively used. 

[205-210] 

LDH release assay Colorimetric and 
fluorimetric assays. 

Based on the measurement of the LDH released from 
damage cells, using enzymatic reactions. The amount of 
color / fluorescent product is proportional to the amount 
of LDH, which is in turn is proportional to the number of 
dead or damaged cells. LDH participates in a reaction 
which converts a yellow tetrazolium salt into a red, 
formazan dye which is measured by absorbance at 492 
nm. Alternatively, LDH is measured with an enzymatic 
assay that results in the conversion of resazurin into 
fluorescent resorufin. 

Commercially available.  
Not extensively used. 

[156,211,212] 
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Assay  Type of assay  Main characteristics  Comments  References  
MTT assay Colorimetric and 

fluorimetric assays. 
Relies on the evaluation of the redox potential of viable 
cells, measured by the reduction of tetrazolium salts 
(yellow) to insoluble colored (purple) formazan crystals. 
Towards the end of the incubation period of target and 
effector cells in microplates, an acid / alcohol solution is 
added to dissolve formazan crystals. After a new 
incubation, the plate is read on an ELISA reader, at 570 
nm. Optical density values of test wells (targets + 
effectors) are compared with that of the control wells 
(targets) and results are presented as percentage of cell 
survival, using a calibration curve. A similar redox-based 
assay has also been developed using the fluorescent 
dye, resazurin. 

Applied in the assessment of 
cytotoxic drug therapy (drug 
sensitivity and resistance studies). 
Commercially available.  

[213-215] 

Modified micro cytotoxicity assay 
(MCA) 

Optical assay Performed in microwells with adherent tumor target 
cells. Following to exposure to effector cells, death 
target cells became non-adherent and are removed by 
washing. Remaining adherent (viable) target cells are 
fixed, stained and optically counted. Solid tumor cell 
lines (such as BT-20 breast cancer), which are resistant 
to granzyme / perforin mediated killing but sensitive to 
killing by cell membrane bound TNF family ligands, are 
killed using MCA (but not using CRA). 

Developed specifically for measuring 
perforin/granzyme-independent NK 
cell-mediated apoptotic killing against 
adherent target cells.  
Not extensively tested. 

[216,217] 

Abbreviations: CRA, Chromium release assay; GADPH, glyceraldehyde-3-phosphate dehydrogenase; LDH, lactic dehydrogenase; PGK, 3-Phosphoglyceric Phosphokinase; MTT, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide 
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5. CURRENT STATE AND FUTURE PERSPECTIVES 
 
Multicolor flow cytometry is now being used to quantify and characterize the NK cells for the 
expression of cytotoxic molecules (e. g. granzymes, perforin), receptors with important 
biological functions (e. g. KIR, KLR, NCR, chemokine receptors) and adhesion (e.g. CD56, 
CD11a-CD11c/CD18) and activation-related (e.g. CD63) molecules, as well as to evaluate 
the cytokine production (e. g. IFN-γ), degranulation process (e. g. CD107a surface 
expression) and cytotoxic activity of the NK cells at a single cell level [140]. These studies 
have been performed in various disease models and are contributing for the characterization 
of the immunological abnormalities in various pathological conditions, as well as to a better 
understanding of the role of the NK cells in the disease etiopathogeny [218]. They are also 
being used to characterize the immunomodulatory mechanism of drugs that are currently 
used in clinical practice [204,219], as well as to investigate the mechanism involved in 
transplant rejection [220]. For instance, new flow cytometry approaches combining both 
cytotoxicity and antibody binding have been developed in order to detect complement fixing 
anti-HLA antibodies that have been associated with an increased risk of early antibody-
mediated graft rejection in kidney transplants [221]. Cytotoxicity assays against virus 
infected cells have also been described, allowing to measuring the ability of NK cells to kill 
target cells infected with different viruses, or expressing different viral proteins [222]. In 
addition, flow cytometry based methods for evaluation of the ADCC activity using NK cells as 
effectors have been developed in order to evaluate the efficacy of antibody therapeutics 
[124,125]. Flow cytometry based assays have also been used to test the cytotoxicity of NK 
cells expanded by co-culture with tumor cell lines representative of pediatric solid tumors, in 
order to be used for NK cell based immunotherapy [223]. 
 
Among the methods described to assess the function of the NK cells, degranulation assays 
deserve attention. Secretory lysosomes containing perforin and granzymes are 
indispensable for NK-cell cytotoxicity because their release results in the induction of target-
cell apoptosis. Previous studies have shown that expression of the lysosome-associated 
membrane protein (LAMP) 1 (CD107a) on the surface of the transport vesicles is important 
for perforin trafficking to lytic granules and for the deliver of the apoptosis-inducing granzyme 
B to target cells [224], having also an important role in protecting the cytotoxic cells from 
self-destruction [225]. CD107a is up-regulated on the surface of activated NK cells and 
degranulation assays based on CD107a expression correlates with both cytokine secretion 
and NK cell-mediated lysis of target cells [10,139], allowing for a rapid and reliable 
classification of patients with genetically determined HL [226]. 
 
6. CONCLUSION 
 
Natural killer cells are able to kill target cells directly through the secretion of cytotoxic 
granules or through binding to death receptors. Measuring the ability of NK cells to kill target 
cells, is important to evaluate the immune response in various clinical conditions, as well as 
to study the effects of new drugs in the NK response. Although chromium release assay is 
recognized as 'gold standard' for measuring NK cell activity, it has disadvantages like use of 
radioactive compounds and standardization problems. Various non-radioactive assays have 
been developed to evaluate cell-mediated cytotoxicity. Among them, flow cytometry based 
assays provide a friendly, biologically informative, and sensitive approach to evaluate the 
cytotoxic response in both clinical and research settings. They include, among others, 
cytotoxic and degranulation assays, as well as evaluation of cytokine production by the 
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activated NK cells, and they are expected to contribute for a better understanding of the role 
of the cytotoxic cells in various physiological and pathological conditions.  
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