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Abstract

Distributed Systems architectures are becoming the standard computational model for

processing and transportation of information, especially for Cloud Computing environ-

ments. The increase in demand for application processing and data management from

enterprise and end-user workloads continues to move from a single-node client-server

architecture to a distributed multitier design where data processing and transmission

are segregated. Software development must considerer the orchestration required to

provision its core components in order to deploy the services efficiently in many inde-

pendent, loosely coupled—physically and virtually interconnected—data centers

spread geographically, across the globe. This network routing challenge can be mod-

eled as a variation of the Travelling Salesman Problem (TSP). This paper proposes a

new optimization algorithm for optimum route selection using Algorithmic Information

Theory. The Kelly criterion for a Shannon-Bernoulli process is used to generate a reli-

able quantitative algorithm to find a near optimal solution tour. The algorithm is then ver-

ified by comparing the results with benchmark heuristic solutions in 3 test cases. A

statistical analysis is designed to measure the significance of the results between the

algorithms and the entropy function can be derived from the distribution. The tested

results shown an improvement in the solution quality by producing routes with smaller

length and time requirements. The quality of the results proves the flexibility of the pro-

posed algorithm for problems with different complexities without relying in nature-

inspired models such as Genetic Algorithms, Ant Colony, Cross Entropy, Neural Net-

works, 2opt and Simulated Annealing. The proposed algorithm can be used by applica-

tions to deploy services across large cluster of nodes by making better decision in the

route design. The findings in this paper unifies critical areas in Computer Science, Math-

ematics and Statistics that many researchers have not explored and provided a new

interpretation that advances the understanding of the role of entropy in decision prob-

lems encoded in Turing Machines.
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Introduction

Distributed Information Systems (DS) are growing in popularity across the software industry

as it provides more computational and data transmission capacity for applications and become

an essential infrastructure that is needed to address the increase in demand for data

processing.

DS are used as a cost-efficient way to obtain higher levels of performance by using a cluster

of low-capacity machines instead of a unique–single point of failure—large node. A DS is

more tolerant to individual machine failures and provides more reliability than a monolithic

system.

Parallel computation such as Cloud Computing and High-Performance Computing (HPC)

are applications of distributed computing [1].

The Cloud Computing market is very consolidated as the cost to deploy, expand and oper-

ate a global infrastructure and network is very large. As of 2020 there are 3 major companies:

Amazon AWS, Microsoft Azure and Google Cloud Platform. Companies can reduce their IT

costs by orchestrating efficiently their workloads across different data centers by their respec-

tive weight impact, defined as a utility function with the Euclidian distance between nodes and

its respective influence on network latency or the financial utilization time-rate cost for a given

set of machines. The Fig 1 illustrate the core components of a cloud computing infrastructure

service.

The components of a DS are located in many different machines over a network. The com-

munication and orchestration of process are done by sending and receiving messages. The ser-

vice exposed are defined by the aggregation of components and its interactions provide the

software functionality. Systems such as Service-Oriented Architecture (SOA), peer-to-peer

(P2P) and Micro-Services are examples of distributed applications.

Deploying and synchronizing components over many distributed cluster of nodes can be

very complex due to multiple variables that can affect the quality of the solution such as net-

work latency between data centers at business hours and at on-demand; cost of renting

machines from different Computing Providers; shared servers resources utilization (“noisy

neighbor effect”- at both virtual machines and bare metal); valorization of the dollar due to

macro and micro economics factors; change in processing time due to model of nodes avail-

able for a given time period and operating complexity of the technology stack.

There are many algorithms proposed in the literature to solve the routing-scheduling prob-

lem such as 2opt, ant colony (AC), greedy algorithm, genetic algorithm (GA), neural networks,

Cross Entropy, and simulated annealing (SA) but very limited work is found using Algorith-

mic Information Theory to find the boundaries of decision problems in Turing Machines. In

this paper we propose a variation of the TSP by defining the decision problem for the candi-

date solution as a Shannon-Bernoulli process that follows a log-normal distribution for the

cost distance variable, defined as a dependable utility function for the TSP.

An orchestration job has to deploy efficiently S types of services, process or tasks in many

different computing resources such as a cluster of containers or a pool of (physical or virtual)

machine nodes connected over a distributed network with different weights (or costs) between

each pair of nodes. This job is a process that needs to run on all M (unique) resources points.

The cost to use each node can be defined as the round-trip latency between the nodes in the

network or the financial cost associated to the proportional quantitative utilization rate for

each resource in a given time period. As more Computational Capacity is added, choosing the

shortest route to multiple target nodes will be more computationally complex. Fig 2 illustrate a

service orchestration across a set of distributed clusters of machines connected over a common

network.
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Materials and methods

The traveling salesman problem

was introduced by William Hamilton and Thomas Kirkman. It also known as the messenger
problem. The problem asks given a list of cities and the distance between each pair of nodes

Fig 1. A Virtual Data Center (VDC) has at least 2 physical data centers composed by 2 server nodes. A

combination of 3 or more VDC’s is a geographic Region.

https://doi.org/10.1371/journal.pone.0242285.g001

Fig 2. Computing provider’s distributed over a network of machines with the respective published service’s and available nodes.

https://doi.org/10.1371/journal.pone.0242285.g002
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what is the shortest route that visits all cities exactly once and returns to the original city at the

end. There are several researches dedicated to address this routing problem and it has applica-

tions in mathematics, computer science, statistics and logistics.

The computational complexity of an algorithm shows how much resources are required to

apply an algorithm such as how much time and memory are required by a Turing machine to

complete execution and can be interpreted as a measure of difficulty of computing functions.

A measurement of computation complexity is the big O notation. It can be defined as: Let two

functions f and g such as f(n) is O(g(n)) if there are positive numbers c and N such that

f ðnÞ � cgðnÞ Eq 1

and is used to estimate the function growth tax (i.e. asymptotic complexity).

The TSP problem is an important combinatorial optimization problem. As most of the

decision problems, it is in the class of NP-hard problems.

Consider a salesman traveling from city to city and some of them are connected. His goal is

to visit each city exactly once and go back to the first city when he finishes. The salesman can

choose any path as long as its valid (i.e. visit each city once and finish at the city it has started

the tour) he also wants to minimize his cost by taking the shortest route. This problem can be

described as a weighted graph G where each city is a node (or vertex) and is connected by a

weighted edge only if the two cities are connected by any kind of road, and this road do not

cross any other city. The utility function in the TSP is the Euclidian distance. Fig 3 demon-

strate the cost matrix between each pair of nodes of a set defined by valid (non-repeating) per-

mutations in a language L with symbols {A, B, C, D}. The cost/weight between points is

calculated as a Euclidian distance in a 2D graph.

Table 1 Demonstrate a sample of valid and invalid strings created from L.

The graph can be represented as a matrix where each cell value is defined as the respective

cost (distance) w between nodes v and u. For N nodes the distance matrix is defined as D = w
(v,u) for all (unique) pair of N. The goal of the TSP is to find a permutation π that minimizes

the distance between nodes. For symmetric instances the distance between two nodes in the

Fig 3. A sample cost matrix for 4 nodes and the Euclidian distance between each pair of nodes.

https://doi.org/10.1371/journal.pone.0242285.g003
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graph is the same in each direction, forming an undirected graph. For asymmetric instances

the weights for the edges between nodes can be dynamic or non-existent.

The weigh value of the edge is defined as the distance of the tour (roads) between cities.

For symmetric TSP, as the number of nodes (or cities) increases in the graph G, the number

of possible tours growth choice also increase and is factorial. If we consider N nodes, the func-

tion of the input size is

f ¼ ððN � 1Þ!=2Þ Eq 2

This is the number of elements (states) an algorithm must evaluate to decide (to halt) the prob-

lem and is very large thus requiring considerable time and computational resources even for

small instances of the problem.A strategy to address this limitation is to accept near-optimal

solutions by setting constrains in the problem using heuristics methods to generate suboptimal

approximations. Algorithms such as 2opt, GA, AC and SA define a-priori knowledge about the

distribution of the solution space and then repetitively try to improve the quality. It works by

following some heuristic function schema while trying to avoid a local minimum. As the heuris-

tics for TSP and NP problems in general are a best effort strategy to find a good near-optimal

solution (by enforcing space and time boundaries), it does not guarantee that the solution

found is the best candidate to the problem and therefore an program can never be sure that if

by running more time the overall solution cost could be improved, unless the entire solution

space to the problem is evaluated. This limitation is set by the definition of NP-hard class.

Computational complexity theory

Problems in the NP class can be solved by a non-deterministic polynomial algorithm. Any

given class of algorithms such as P, NP, coNP, regular etc. must have a lower bound that index

the best performance any problem in the class can have. This bound can be described as the

total amount of input items (or symbols) a machine must process before halting, and the

respective output items produced following a Probability Distribution Function and a given

finite Alphabet. A strategy to find a solution to the decision problem is to find a function that

reduce or transform a problem from a domain in which there is no know solution to a con-

strained domain with a known solution.

This allows the algorithm to search the solution space and decide if any solution is a valid

(yes-instances) or invalid (no-instances) and its computable by a polynomial-time algorithm.

This strategy allows us to map instances of the Hamiltonian circle problem to a decision

version of the Traveling Salesman Problem and can be described as a decision problem to

determine if exists a Hamiltonian circuit in a given complete graph with positive integer

weights hose length is not greater than a given positive integer m. Each valid (yes-instance) in

the TSP problem is mapped to a valid instance in the Hamiltonian problem space and this

transformation can be done in polynomial time.

In Fig 4 reproduced from [2] we have a visual representation of computational complexities

categories. The figure demonstrates the groups of Regular, P, coNP, NP, etc class of

Table 1. Solution sample of valid and invalid candidates for a given string schema.

Word w in Language L Path Sequence for L: {A, B, C, D, E} Is Hamiltonian?

Valid A > B > C > D > E > A Yes

Valid D > B > C > A > E > D Yes

Valid D > B > A > C > E > D Yes

Invalid A > B > A > D > E > A No

https://doi.org/10.1371/journal.pone.0242285.t001
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recognizable problems. In complexity theory, the class P contains all decision problems solv-

able by a deterministic Turing Machine in polynomial time. The Nondeterministic Polynomial

time (NP) class of problems is a category of decision problems that is solvable in polynomial

time by a non-deterministic Turing Machine.

The coNP are the class of problems that have a polynomial-time algorithm mapping for “no-

instance” solutions which can be used to verify that the proposed solution is valid but there is no

such mapping for “yes-instances”. The P class is a subset of both coNP and NP. The bounded-

error probabilistic polynomial time (BPP) is a class of problems solved by a probabilistic Turing

Machine in polynomial time with an attached probability distribution function with a given error

degree. BPP can be interpreted as the complexity class P with a randomness boundary factor.

Hamiltonian graph

A Hamiltonian cycle (or circuit) can described as a "path" that contains all nodes and the ele-

ments in this set are not repeated, with exception to the final vertex. This means that a Hamil-

tonian cycle in G with start node v has all other nodes exactly once and them finishes at node

v. A graph G is Hamiltonian if it has a Hamiltonian cycle. A Hamiltonian cycle with minimum

weight is an optimal circuit and therefore is the shortest tour in the TSP Problem.

The Fig 5 provides an example of Hamiltonian circuit for a Graph G with 5 nodes {A, B, C,

D, E}. The Table 2 shows the cost matrix for the super graph G.

Although heuristics methods define special cases for the TSP problem and produces near-

optimal solutions with short length (weight) Hamiltonian cycles it does not guarantee that the

results are the shortest circuit possible. The algorithms to solve the TSP are grouped in 2 cate-

gories: exact (Brute-force, greedy) and approximation algorithms (Heuristics such as Simu-

lated Annealing and Genetic Algorithm).

Fig 4. Diagram representation for the many categories of computational complexity.

https://doi.org/10.1371/journal.pone.0242285.g004
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Nature inspired models

Researchers have proposed algorithms inspired by natural events and structures like the heat-

ing of metals and the growing behavior of biological organisms. Those methods do not iterate

over the entire solution space but rather a portion in order to find the local minimum. They

start with an initial random solution and tries to improve the solution quality over each inter-

action until some input Threshold parameter factor T is reached like a maximum number of

interactions; maximum number of candidate solutions; no further improvements found after

several iterations; the rate of decay in a dependable temperature probabilistic function or a

minimum quality threshold is achieved.

Therefore, heuristics approximation methods can be interpreted as a non-deterministic

way to address the error rate between the known solutions and the unknown solutions in poly-

nomial time (i.e. Entropy reduction methods). Although such algorithms do not have to tra-

verse the entire solution space it must decide–“outguess” or “bet”—when a random candidate

solution with negative gain will be accepted (i.e. candidate with worst solution quality than

current know best solution) in the hopes that eventually it would lead to the shortest distance

(i.e. a better solution quality).

Nature-inspired models such as Genetic Algorithms (GA), Ant Colony (AC) and Simulated

Annealing (SA) use prior information to improve the solution results and thus are biased

Table 2. Cost matrix for graph G with 5 nodes.

Cost Matrix A B C D E

A 0 2 2 1 1

B 2 0 1 1 1

C 2 1 0 2 1

D 1 1 2 0 2

E 1 1 1 2 0

https://doi.org/10.1371/journal.pone.0242285.t002

Fig 5. Hamiltonian cycle from a super graph.

https://doi.org/10.1371/journal.pone.0242285.g005
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towards this encoding. Alternatively, by modeling the TSP problem as a communication chan-

nel with a probability density function associated with the stochastic process that generates the

solutions at random (following a Bernoulli process), thus we can bound the limits of the search

space to a log-normal distribution.

The advantage of this method is that by relying on the statistical analysis of the solution

space instead of the computational complexity of the problem we can have equal or better

quality than the traditional algorithms without relying on computationally complex imple-

mentations that have a higher time and space constrains.

Therefore, this paper attempts to provide an algorithm to solve the TSP using for the deci-

sion rule the entropy measured for the solution cost distribution H(X) and by maximizing the

expected value of the logarithm of cost/weight/distance variable, defined as the utility function

g(X). This is equivalent to maximize the expected geometric growth rate.

Literature review

Solving hard problems

There are 3 categories of algorithms to solve NP-hard problems such as the TSP:

• Exact Algorithms: Fast to converge to a solution only form small instances of the problem.

• Heuristic Algorithms: Compromise quality but converge with acceptable time require-

ments. Produce sub-optimal results.

• Special cases: Restrict the boundaries of the solution space domain to a subproblem for

which there is an exact (or better) solution quality.

Exact Algorithms try all permutations in the domain and verify if each candidate string is

the best solution. This algorithm uses a brute-force search method. The running time has a

computational complexity of O(n!). As the number of nodes increases the complexity (or run-

ning time) increases with a factorial growth.

Combinatorial problems. Other approaches such as Branch and bound algorithms can

be used to optimize combinatorial problems. The branch-and-bound method produces lists of

candidate solutions by a search in the state space. The set of states forms a graph. Each sub pair

of states is connected if the first and the second state are produced by an operator to transform

the first state in the second state.

From Poole and Mackworth [3], there are two categories of state space search algorithms:

1. Uninformed: The algorithm does not have any prior information about the state distribu-

tion. The Breadth-First Search is an instance of this class.

2. Heuristic Search: The algorithm has encoded information about the solution distribution

defined by a heuristic function. The A� search algorithm is an instance of this class. The A�

is a path finding algorithm and its defined in terms of weighted graphs. It has a running

time of O(bd).

Heuristic algorithms

are method for problem-solving using approximations to find suboptimal solutions, under

some predefined degree of freedom. There are many heuristics designed to address the TSP as

a combinatorial optimization such as genetic algorithms, simulated annealing, tabu search, ant

colony optimization, swarm intelligence and cross-entropy method. There are two class of

heuristics: Constructive Methods and Iterative Improvement.
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Constructive heuristics

Starts with an empty solution and expands the current know partial solution at each execution

time unit until the target complete solution is found. In the Nearest neighbor (NN) algorithm,

the salesman starts at a random city and at each execution time it visits the nearest city (per-

forming a local move) until all nodes have been visited. The method can be optimized by pre-

processing (or filtering) the possible candidate solutions to clusters of best-quality arrange-

ments of node distributions in a 2D graph. This optimization method works as a prefix code

property. The method has a worst-case performance of O(N2).
Nearest Neighbor (NN) and Nearest Insertion (NI). From Asani, Okeyinka and Adebiyi

[4] the Convex-hull and Nearest Neighbor heuristics can be combined. Their results where

compared with two benchmark algorithms Nearest Neighbor (NN) and Nearest Insertion

(NI). Their experimental results show their approach produces better quality in terms of com-

putation speed and shortest distance.

The Christofides and Serdyukov algorithm. Based in graph theory and combines a mini-

mum spanning tree with a minimum-weight perfect matching where the distances between

nodes in a super-graph is symmetric and follow the triangle inequality and thus form a metric

space. The solution Christofides algorithm has the best worst-case scenario currently know

with a quality tour of at most 1.5 the optimal string. The computational complexity is O(n3).
Given a Eulerian path we can find a Eulerian tour in O(n) time. The method finds a mini-

mum spanning tree and duplicate all edges to create a Eulerian Graph. A graph G = (V(G), E
(G)) is Eulerian if is both connected and has a closed trail and thus represents a tour with no

repeated edges, containing all edges of the graph. In graph theory a Eulerian path is a string in

a finite graph that visits every edge exactly once (no repeated edges) and it allows the revisiting

of nodes, then returning to the starting vertex. In Fig 6 we have a comparison between Hamil-

tonian and Eulerian graphs.

The Christofides and Serdyukov algorithm can be described as:

1. Find the minimum spanning tree

2. Create a map for the problem with the set of nodes of odd order

3. Find a Eulerian tour path for the map

Fig 6. Example of Hamiltonian and Eulerian graphs.

https://doi.org/10.1371/journal.pone.0242285.g006
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4. Convert to the TSP: If a node is visited twice create a shortcut from the node before the cur-

rent and next node.

Iterative improvement

Algorithms such as the Pairwise exchange method implemented by the 2-opt algorithm

remove two edges at each interaction and reconnected the edges by a new shorter path.

k-opt method. The 2-opt and 3-opt are a special case of the k-opt method. The method

can be optimized by a preprocessing using the greedy algorithm. For a random input the aver-

age running time complexity is O (n log(n)).
2opt, k-opt. Croes proposed the 2-opt algorithm [5], a simple local-search heuristic, to

solve the optimization problem for the TSP. It works by removing two edges from the tour

and reconnects the two paths created. The new path is a valid tour since there is only one way

to reconnect the paths. The algorithm continues removing and reconnecting until no further

improvements can be found. k-opt implementations are instances of 2-opt function but with

k> 2 and can lead to small improvements in solution quality. However, as k increases so does

the time to complete execution.

In his work [6] proposed the Tabu Search method and it can be used to improve the perfor-

mance of several local-search heuristics such as 2opt. As neighborhood searches algorithms

like 2opt can sometimes converge to a local optimum, the Tabu search keeps a list of illegal

moves to prevent solutions that provide negative gain to be chosen frequently. In 2opt the two

edges removed are inserted in the Tabu list. If the same pair of edges are created again by the

2opt move, they are considered Tabu. The pair is kept in the list until its pruned or it improves

the best tour. However, using Tabu searches increases computational complexity to O(n3), as

additional computation is required to insert and evaluate the elements in the list.

The Fig 7 show the 2-opt moves from [7].

[8] compared several heuristic strategies for the TSP problem such as Greedy, Insertion, SA,

GA, etc. He investigated the performance tradeoff between solution quality and computational

time. He classifies the heuristics in two class: Tour construction algorithms and Tour Improve-

ment algorithms. All algorithms in the first group stops when a solution is found such as brute-

force and Greedy Algorithm. In the second group, after a solution is found by some heuristics,

it tries to improve that solution (up to a certain computation and/or time constraints) such as

implemented by 2opt, Genetic Algorithm and Simulated Annealing. He concluded by showing

that the computational time required is proportional to the desired solution quality.

Simulated Annealing (SA). Simulated Annealing are heuristics with explicit rules to

avoid local minimal. It can be described as a local random search that temporarily accepts

moves with negative gain (i.e. were produced by solutions with worst quality than current).

These methods simulate the behavior of the cooling process of metals into a minimum energy

crystalline structure.

Fig 7. Generating 2-opt moves.

https://doi.org/10.1371/journal.pone.0242285.g007
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This concept is analogous to the search of global maximum and minimum. The probability

of accepting a solution is set by a dependable probability function of a temperature parameter

variable t. As the temperature decreases over time the probability changes accordingly. Fig 8

demonstrates the simulated decay in the temperature function over the number of interactions

in an algorithm.

The acceptance probability is defined as p(x) = 1 if f (y)� f (x) and when otherwise

pðxÞ ¼ e� ðf ðyÞ� f ðxÞÞ=tÞ Eq 3

where t is the input temperature.

[9] research combines the Simulated Annealing method with the Gene Expression Pro-

graming to improve solution diversification and state search. Their results show a better per-

formance that other methods such as ant-colony, naive SA, naive GA, etc.

The SA algorithm specifies the neighborhood structure and the cooling function.

Fig 9 from [9] represents the SA algorithm flowchart.

[10] research explores the optimization technique in Simulated Annealing and the solution

impact by different temperature schedule designs. It concludes that the quality of finite time

SA implementations is a result of relaxations dynamics similar to the analogy with the vitrifica-

tion process of amorphous materials (non-crystalline) or disordered systems (high entropy).

Their results can be generalized in terms of entropy distributions. By the thermodynamics

analogy, we know the position of particles in higher temperatures have a higher degree of

uncertainty and thus there is more entropy as each particle is bouncing randomly. As the tem-

perature decreases the particles forms bounds between them and the overall state distribution

forms a glassy or crystal structure. As there is less uncertainty about the average state value for

each particle there is less entropy and thus more information about the optimal state distribu-

tion is known.

Fig 8. Temperature decay relative to the iterations of the SA algorithm.

https://doi.org/10.1371/journal.pone.0242285.g008
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[11] work provide a numerical analysis of the simulated annealing applied to the TSP. The

cost distribution is compared to the control parameter of the cooling method. It concludes

that the average-case performance can be defined by assuming the deviation between the final

total cost and the optimal solution is distributed by a gamma distribution. This behavior is also

observed in our research and this model is explained by the Kolmogorov Complexity for the

Bernoulli string that represents a random solution candidate. The entropy for this distribution

can be calculated and is the maximum entropy probability distribution. This is the sufficient

statistics needed to represent the state set.

Metropolis algorithm and heuristic optimizations. Let f(X) be a function with output

proportional to a given target distribution function r. The function r is the proposal den-

sity. At each iteration of the algorithm it attempts to move around the sample space. For

each move it decides sometimes to accept a given random solution or stay in place. The

probability of the solution of the new proposed candidate is with respect to the current

know best solution. If the proposed solution is more probable than the know existing

point, we automatically accept the new move. Else if the new proposed solution is less

probable, we will sometimes reject the move and the more the decrease the probability,

less likely we will accept the new move. Most of the values returned will be around the P
(X) but eventually solutions with lower probability will be accepted. This characterizes can

be interpreted as a generalization of the methods proposed by Simulated Annealing and

Genetic Algorithms.

Fig 9. Simulated annealing algorithm flowchart.

https://doi.org/10.1371/journal.pone.0242285.g009
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Other heuristics such as 2-opt, 3-opt, inverse, swap methods can be used to generate candi-

date solutions. Several researches such as [8] have been made to study the performance of dif-

ferent SA operators to solve the TSP problem [12]. proposed a list-based SA algorithm using a

list-based cooling method to dynamically adjust the temperature decreasing rate. This adaptive

approach is more robust to changes in the input parameters. Their research provide an

improved Simulated Annealing method that uses a dynamic list to simplify the parameter set-

tings. This method is used to control the cooling rate for the decrease temperature used by the

Metropolis Rule. The list is updated iteratively following the solution space topology. This

cooling schedule can be defined as a special geometric cooling method with variable coeffi-

cients. This characteristic gives the algorithm more resistance to different input parameters

values while producing good sub-optimal results.

In his work [13] proposed a biological inspired bee system to optimize the routing in Rail-

way systems. They conclude that the average solution results are better or equivalent than the

traditional SA and GA methods.

The quality of the solution can be improved by allowing more time for the algorithm to

run. [14] observed that the performance of 2-opt and 3-opt algorithms can be improved by

keeping an ordered list of the closest neighbors for each city-node and thus reducing the

amount of solutions to search but requiring more memory to keep the list of states.

Genetic Algorithm (GA). Genetic Algorithms was first introduced by [15] based on natu-

ral selection theory, as a stochastic optimization method in random searches for good (near-

optimal) solutions. This approach is analogous to the "survival of the fittest" principle pre-

sented by Darwin. This means that individuals that are fitter to the environment are more

likely to survive and pass their genetic information features to the next generation.

In TSP the chromosome that models a solution is represented by a "path" in the graph

between cities. GA has three basic operations: Selection, Crossover and Mutation. In the Selec-

tion method the candidate individuals are chosen for the production of the next generation by

following some fittest function In the TSP This function can be defined as the length (weight)

of the candidate solutions tour. In Fig 10 we have a representation of genes and chromosomes.

In Fig 11 is demonstrated an example of two parents under the Mutation and Crossover

operators to generate a new offspring.

Next those individuals are chosen to mate (reproduction) to produce the new offspring.

Individuals that produce better solutions are more fit and therefore have more chances of hav-

ing offspring. However, individuals that produces worst solutions should not be discarded

Fig 10. Chromosome for a sample of individual candidate solutions.

https://doi.org/10.1371/journal.pone.0242285.g010
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since they have a probability to improve solution in the future. In other words, the heuristic

accepts solutions with negative gain hoping that eventually it may lead to a better solution.

Several researches have studied the performance trade off of selection strategy and how the

input parameters affect the quality of solution and the computational time [16]. in his work

explores different selection strategies to solve the TSP and compare the performances quality

and the number of generations required. It concludes that tournament selection is more

appropriate for small instance problems and rank-based roulette wheel can be used to solve

large size problems.

[17] compared the quality of the solution and the convergence time on many selection

methods such as proportional, tournament and ranking. They conclude that ranking and tour-

nament have produced better results that proportional selection, under certain conditions to

convergence. In his work [18] explored proportional roulette wheel and tournament method.

He concluded tournament selection is more efficient than proportional roulette selection.

Their work presents a simple genetic algorithm that combines roulette wheel and tournament

selection. Their results suggest that this approach converges faster than roulette wheel

selection.

This conclusion is related to the findings in our research and can be explained by Informa-

tion Theory. The tournament selections mechanism helps to avoid the algorithm to waste exe-

cution iterations with solutions that have more noise (i.e. local minimum candidates–

suboptimal solutions) and also by providing more useful information by giving a chance for all

candidate to eventually produce optimal solutions, through the roulette wheel method.

The Fig 12 contains the pseudo-code for a Genetic Algorithm from [19].

Ant Colony (AC) optimization. Ant colony (AC) optimization is a method that models

the behavior of ants to find the shortest route in the nest. The choice for a given path by each

ant is defined by the distribution of pheromones left by other ants when in transit.

The method is described as:

1. Initialize: Create initial distribution of pheromone in the region

2. For i from (0, n)

a. For each ant

i. Evaluate the objective function

ii. Update know best solution tour

iii. Update pheromone intensity distribution

b. Simulate decay pheromone intensity

Fig 11. Offspring representation for the genetic algorithm mutation and crossover operators.

https://doi.org/10.1371/journal.pone.0242285.g011
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3. Stop Criterion Achieved?

a. Yes: Local minimum found

b. Continue search until maximum iteration n is reached.

In the work “Ant supervised by PSO and 2-Opt algorithm, AS-PSO-2Opt, applied to Travel-
ing Salesman Problem” from Kefi, Rokbani, Krömer and Alimi [20] there is a optimization of

the 2-opt method using a post-processing for the solution paths to help avoid local minimum.

Their results perform better than other benchmark algorithms such as Genetic Algorithm and

Neural Networks.

In Fig 13 we have a representation of ant nest and pheromone distribution across a 2D

region.

Cross-entropy (CE) method. Is a combinatorial optimization method with noise. The

method approximates the optimal utility function estimator with two targets:

1. Create a sample from a probability density function.

2. Minimize the cross-entropy between the distribution and the density function to improve

the candidate solution quality for the next iteration.

The CE algorithm can be described as:

1. Init: Set parameter μ as average and σ as the standard deviation

2. For i in (0, N)

a. Create random sample S with size n using a normal distribution N (μ, σ) with parame-

ters μ and σ

b. Evaluate the Noise (entropy) distribution for the sample S

c. Select the best Z% candidates of the solution sample to form a new subset T� S

d. Update μ and σ with the probability distribution function of T, assuming a normal

distribution

The algorithm works by reducing the entropy using a maximum like hood estimator P(X).
In Fig 14 we have a representation for the entropy function P(X).

Fig 12. Basic genetic algorithm.

https://doi.org/10.1371/journal.pone.0242285.g012
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Fig 14. Entropy decrease process.

https://doi.org/10.1371/journal.pone.0242285.g014

Fig 13. Ant colony pheromone representation.

https://doi.org/10.1371/journal.pone.0242285.g013
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In “Solve Constrained Minimum Spanning Tree By cross-entropy (CE) method” [21] pro-

pose a parallel, randomized method to find a spanning tree using the lowest total cost relative

to the cost weight under constrained weight boundaries.

Special cases are a class of algorithms that restricts the limits in the problem to find the

optimal solution inside a give boundary. A metric TSP defines the distance between nodes

under the triangle inequality and replaces the Real value Euclidian for the Manhattan distance.

The Euclidian TSP is a special case for the metric TSP using integer numbers for the Euclidian

distance.

The Euclidian TSP has a Euclidian minimum spanning tree associated with the minimum

spanning tree of the graph and has the expected running time complexity O(n log n).

Proposed method

Background theory review

Information Theory (IT). Quantifies the amount of information in a noisy communica-

tion channel and is measured in bits of entropy. IT is based in probability theory and statistical

distributions. Entropy quantifies the amount of uncertainty in a random Bernoulli variable

created by a Bernoulli process thus information can be interpreted as a reduction in the overall

uncertainty about a set of finite states. Mutual information is a measure of common informa-

tion between two random variables and it can be used to maximize the amount of information

shared between encoded (sent) and decoded (received) signals. In Table 3 we have the relation-

ship between Information and Entropy. As we increase our knowledge about the states follow-

ing a probabilistic function distribution, we reduce entropy, as there is less uncertainty about

possible state outcomes.

Information theory as an approximation method. Information Theory has applications

in a range of fields and is used as a mathematical framework for encoding and decoding of

information such as in adaptive systems, artificial intelligence, complex systems, network the-

ory, coding theory, etc. IT quantifies the number of bits required to describe a given a set of

states using a statistical distribution function for the input data.

Entropy of a random sequence. Entropy is a measure of uncertainty of a random vari-

able. It is the average rate at which information is produced by a stochastic process [22].

defined the entropy H as a discrete random variable X with possible values as outcomes draw

from a probability density function P(X). Fig 15 demonstrate the variation in entropy H(X) vs

a Bernoulli distribution. In Eq 4 the entropy function is defined as:

HðXÞ ¼ �
Xn

i¼1

PðxiÞlogbPðxiÞ Eq 4

Random variables and utility function. Let X be an independent random variable with

alphabet L: {001, 010, 100–}. A utility function g is used to model worth or value and is defined

by g: {X� R} and it represents a preference of relation between states. The utility function

Y = g(X) of a random variable X express the preference of a given order of possible values of X.

This order can be a logical evaluation of the value against a given threshold or constant

Table 3. Relation between the level of uncertainty and knowledge about possible string outcomes.

Information Entropy Word P (X = 0) P (X = 1) E(X)

High Low 0000 1 0 1�1�1�1 = 1

Medium Medium 0001 0.75 0.25 0.75�0.75�0.75�0.25 = 0.105

Low High 0011 0.5 0.5 0.5�0.5�0.5�0.5 = 0.0625

https://doi.org/10.1371/journal.pone.0242285.t003
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parameter. The g(X) is defined by a normal distribution with given mean and variance under

some degrees of freedom (i.e. confidence level).

As an example if g(X1 = 001 = 1) = c1 and g(X2 = 010 = 2) = c2 are the costs of two routes

between a set of nodes in a super-graph G�, we can use this function to determine the arith-

metical and logical relationship between them and decide if c1 is worst, better, less, greater or

equal to c2. Therefore g(X1)< g(X2). The probability density function pdf(Y) can be used to

calculate the entropy of the distribution of the cost values. An exponential utility is a special

case used to model when uncertainty (or risks) in the outcome between binary states and in

this case the expected utility function is maximized depending on the degree of risk

preference.

Fig 17 demonstrate an example of a normal distribution for cost function g(X) = {50, 51, 49,

49.3, 50.5, 50.3, 49.1, 48} and the probability P(X<48). Fig 16 shows the histogram for g(X).
Table 4 demonstrate the calculation for the mean, standard deviation and variance for g(X),
thus we have:

Kolmogorov complexity. The Kolmogorov complexity [23] of a string w from language L
denoted by

KcðwÞ : pðLÞ ¼ w Eq 5

is the shortest program from alphabet L which produces w as output and halts. The conditional

Kolmogorov complexity of string x relative to word w is defined by

KxðxjwÞ : pðxÞ ¼ w Eq 6

and is the length of the shortest program that receives x as input and produces w as output.

Fig 15. Entropy H(X) vs Probality Pr(X = 1).

https://doi.org/10.1371/journal.pone.0242285.g015
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Complexity of a string and shortest description length. Let U be a Universal computer

(i.e. Universal Turing Machine). If description d(x) is the minimal string to encode x. Kolmo-

gorov complexity Kc(x) of a string x of a computer U is

KcðxÞ ¼ jdðxÞj Eq 7

It is the minimum length program p that output variable x and halts. Assuming the program is

defined by

p : UðpÞ ¼ x Eq 8

It’s the small possible program. Let C be another computer. If this complexity is general there

is a universal computer U that simulates C for any string x by a constant c on computer C.

Thus

KcðxÞU �KcðxÞC þ c Eq 9

Measuring the randomness of a string. Let Kc (x|y): The conditional Kolmogorov com-

plexity of Xn given Y. Consider for example we want to find the binary string with higher com-

plexity between three variables X1(010101010101010), X2(0111011000101110) and Y

Fig 16. The probability density function for cost function g(X).

https://doi.org/10.1371/journal.pone.0242285.g016

Fig 17. The normal distribution with mean 49.65 and standard deviation 0.91. Then P (X<48; X< min g(X)) =

0.0349.

https://doi.org/10.1371/journal.pone.0242285.g017
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(01110110001011). In Table 5 we have the representation and minimal encoding using Xn and

Y. Therefore, we can see X1 and X2 can be encoded as combinations of Y and thus Kc(X1|Y)>
Kc (X2| Y). This relationship is defined as

KcðX; YÞ ¼ KcðXjYÞ þ KcðYÞ ¼ KcðYjXÞ þ KcðXÞ Eq 10

In Fig 18 from [24] we can see a comparison between a series of strings and the correspon-

dent automata state machine and the regular expression patterns (i.e. regex schema).

The expected value of the Kolmogorov complexity of a random sequence is close to the

Shannon entropy. From [25] this relationship between complexity and entropy can be

described as a stochastic process drawn to a i.i.d on variable X following a probability mass

function pdf(x). The symbol x in variable X is defined by a finite alphabet L. This expectation is

HðXÞ : Eð1=nÞ KcðX
nnÞ Eq 11

Kelly criterion and the uncertainty in random outcomes. The Kelly strategy is a func-

tion for optimal size of an allocation in a channel. It calculates the percentage of a resource

that should be allocated for a given random process. It was created by John Kelly [26] to mea-

sure signal noise in a network. The bit can be interpreted as the amount of entropy in an

expected event with two possible binary state outcome and even odds. This model maximizes

the expectation of the logarithm of total resource value rather than the expected improvement

for the utility function from each trial, in each clock unit iteration in a Turing Machine.

The Kelly criterion has applications in gambling and investments in the securities market

[27]. In those special cases, the resource (communication) channel is the gambler’s financial

capital wealth and the fraction is the optimal bet size. The gambler wants to reduce the risk of

ruin and maximize the growth rate of his capital. This value is found by maximizing the

expected value of logarithm of wealth which is equal to maximize the expected geometric

growth rate.

Similarly, the log-normal Salesman’s can improve his strategy in the long run by quantify-

ing the total of available inside information in the channel (or a tape in the Turing machine)

and maximizing the expected value of the logarithm of the value function (defined by Traveled

Euclidean distance) for each execution clock. Using this approach, he can reduce his

Table 4. Statistical metrics for function g(X) distribution.

Parameters Output

Standard Deviation, σ 0.91241437954473

Count, N 8

Sum, Sx 397.2

Mean, μ 49.65

Variance, σ2 0.8325

https://doi.org/10.1371/journal.pone.0242285.t004

Table 5. Example of representation of strings X1 and X2 using substring Y.

Variable Binary Sequence Minimal String Representation Schema

Y 01110110001011 Substring

X1 010101010101010 01 (#7 pairs of bits) + 0 (#1 single bit)

X2 011101100010110 Y + 0

https://doi.org/10.1371/journal.pone.0242285.t005
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uncertainty (entropy H(X)) while optimizing his rate of distance reduction (and solution qual-

ity improvement) at each execution time.

The Fig 19 demonstrate the Kelly criterion value over the Expected Growth Rate.

Kelly uncertainty distribution. Let E(Y) be the expected value of random variable Y, H
(Y) be the measured entropy for the pdf(Y) distribution and K�(E(Y),H(Y)) = f� be the maximi-

zation of the expected value of the logarithm of the entropy of the utility function Y = g(X).
This fraction is known as the Kelly criterion and can be understood as the level of uncertainty

about a given data distribution of the random variable X relative to a probability density func-

tion pdf(Y) of a measured respective cost distribution found at the sample. It’s a measurement

of the amount of useful encoded information.

Fig 18. Examples of representations of a given input string set using regex and an automaton.

https://doi.org/10.1371/journal.pone.0242285.g018

Fig 19. Maximization of entropy in random events.

https://doi.org/10.1371/journal.pone.0242285.g019
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The value of f� is a fraction of the cost-value of g(X) on an outcome that occurs with proba-

bility p and odds b. Let the probability of finding a value which improves g(X) be p and in this

case the resulting improvement is equal to 1 cost-unit plus the fraction f, (1+f). The probability

of decreasing quality for Y is (1-p).
The maximization of the expected value f� is defined by the Kelly criterion formula in Eq 12

f � ¼ ððpbþ p � 1Þ=bÞ Eq 12

Where f� is the optimal fraction, b is the net odds, p is the probability of improving quality (suc-

cess-win) in Y = g(X) and the q is the probability of decreasing (failure-loss) quality q = (1-p).

For example, consider a program with a 60% chance of improving the utility function g(X)

thus p = 0.6 (success) and q = 0.4 (failure). Consider the program has a 1-to-1 odds of finding

a sequence which improves g(X) and thus b = 1(1 quality-unit increase divided by 1 quality-

unit decrease). For these parameters the program has a 20%(f� = 0.20) of certainty that the out-

comes produce values that improve the expected value of g(X) over many trials.

Consider another sample case for a fair coin with probability of success (winning) P (1) =
0.5(50%) and failure(losing) P (0) = 0.5(50%). Table 6 demonstrate the amount improved (+)

and worsen (-) for each scenario:

The Total Expected Outcome, Edge, is defined by:

Edge ¼ ð50% � 2 unitsÞ þ ð50% � 1 unitÞ ¼ 0:5 units Eq 13

The Kelly criterion can be calculated alternatively as:

f � ¼ Edge=Odds

LetOdds ¼ Amount Returned if Success

f � ¼ 0:5 units = 2 units ¼ 0:25 ¼ 25% Eq 14

Therefore, there are 25% bits of useful information in the noisy channel.

Proposed algorithm and results

Quantitative algorithmic information Theory

The algorithm is designed to find the near optimal route in a cluster of machine-nodes

before returning to the original point. This problem is a variation of TSP. Tour improve-

ment heuristics algorithms such as 2opt and Simulated Annealing (SA) are used as a bench-

mark for the proposed Quantitative Algorithm (QA). 3 test cases are used to analyses the

solutions generated by each algorithm. The 2opt algorithms produces solutions with smaller

total distance but required more time units as the number of nodes increase. SA and QA

have a maximum number of allowed interactions, but QA produces better solution quality

than SA for the same time period.

The test samples are grouped in 10, 30 and 50 nodes. Each point represents a machine in a

data center (i.e. computing and network provider) that can deploy a given service S. The

Table 6. Yield returns from bernoulli process P(1) and P(0).

Probability Output Value

Success (1) Gain (True) + 2 units

Failure (0) Lose (False) - 1 unit

https://doi.org/10.1371/journal.pone.0242285.t006
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distance cost in this case is the illustrative round-trip network and processing delay. This

weight is the length of time to send a signal s�(t0) plus the time to reply acknowledging of that

the signal was received with another message s�ack (t1).
To avoid bias and miss interpretation in the research, the first tour loaded in the computer

memory is randomly flushed using a statistical function in Python programming language.

The function swaps all elements (using a normal distribution) of the initial tour list, created

after reading the list of input nodes.

The solutions found from SA and QA heuristics algorithms were analyzed for accuracy and

reliability of the output. We have compared the required time and solution quality between

the methods. Each algorithm was measured with a trial with sample length N = 60 for 3 test

cases.

Fig 20. Flowchart for the Quantitative TSP algorithm based in information theory.

https://doi.org/10.1371/journal.pone.0242285.g020
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Quantitative heuristic

In Fig 20 we have the flowchart design for the Quantitative TSP Algorithm (QA). The con-

straints for the Kelly criterion and the Bernoulli process are presented in Figs 21 and 23. The

pseudo-code for the proposed Quantitative Algorithm (QA) is describe in the Table 7.

Algorithmic information model

The two major components are the simulated Kelly fraction f� (describing the overall uncer-

tainty spread) and the Bernoulli process distribution of the underlining random event between

states (estimated as the mean and standard variance for the weight function for each solution).

The combination of those factors will be evaluated to decide the start of a neighborhood search

(following a Probability density function) when the new alternative solution has a negative

gain (i.e. new proposed solution is worse than current best-known encoded candidate).

Solutions to the TSP routing problem are explored by algorithms such as 2opt, Simulated

Annealing (SA), Greedy and Genetic Algorithm (GA). In this paper we proposed a Quantita-

tive Algorithm (QA) that does not rely on naturally inspired schemas but rather provides a sta-

tistical interpretation as a distribution of signals by a stochastic log normal process.

This stochastic process is defined as an ordered list of random variables {Xn} for a given

trial of length N. N is a set of non-negative integers and Xn is defined as a target measurement

for a specific instance of time.

The utility function is used to find the near optimal route that have the minimum traveling

distance to multiple target node destination while returning to the starting node at the end.

There are 2 constraints to be considered in the model presented in this paper: Simulated

Entropy Uncertainty and Bernoulli Process.

Fig 21. Decision Criterion 1 is implemented as an evaluation of the IF logical statement for the Simulated Kelly Criterion and the

Uniform Random Number output value.

https://doi.org/10.1371/journal.pone.0242285.g021
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Method Constraint 1: Entropy simulation and uncertainty measurement. Simulated

Uncertainty. The first constraint is limited by the entropy. The input parameters for the Kelly

function f� are the Wining probability PW and the expected net-odds b for the Bernoulli trial

B. The value of PW is decreased by a fixed constant rate of 0.0001 at each interaction. The value

b is measured as the ratio of average improvements of the positive interactions divided by the

average reduction of the negative interactions. The result of this function is the percentage of

the useful side information available in a noisy channel.

In Table 8 we have an example for the Kelly criterion calculation.

Fig 23. Decision Criterion 2 is implemented as a OR gate using the input bernoulli distribution Trial B and The output A of the IF

statement from the Simulated Kelly Criterion and the uniform random number output value.

https://doi.org/10.1371/journal.pone.0242285.g023

Fig 22. P(X) for the Bernoulli distribution with P(1) = 0.2 and P(0) = 1—P(1) = 0.8.

https://doi.org/10.1371/journal.pone.0242285.g022
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The decision criterion 1 is implemented as an evaluation of the IF logical statement for the

Simulated Kelly Criterion and the Uniform Random Number output value.

Logical Statement for Method Constraint 1

For each interaction in the program

Produce uniform random number u 2 ð0; 1�

Calculate the Kelly fraction f � ¼ ðPWðbþ 1Þ � 1Þ= b

Ratio of solution quality improvement b ¼ Success = Failure

Conditional Logical Statement A : u � f �
Decrease PW by a constant c

Eq 15

In Fig 21 we have a circuit representation of the first constraint and the representation for a

sequential circuit with input and output values with a clock.

Table 7. Proposed pseudo-code algorithm to solve the TSP.

Quantitative Algorithm for TSP

1. Generate the initial random solution x0 and compute the utility function f(x0)

2. Set the initial probability of Success in finding a state outcome with sub-optimal solution quality as

1. P(X = 1) = p1 = 1.0
2. and the Failure probability defined as

1. P(X = 0) = q = p0 = 1—p1
3. Set estimated solution quality increase qi for P(X) = 1
4. Set estimated solution quality decrease qd for P(X) = 0
5. Set the net fractional odds ratio as b = qi / qd
6. For i in range (0, M)

1. Generate the new solution x1 and calculate the utility function f(x1)

2. Δf = f(x1)–f(x0)

3. If Δf � 0 then

1. Accept new solution

2. x0 = x1

3. f(x0) = f(x1)
4. Else

1. Simulate Entropy distribution acceptance ratio α using the Kelly criterion and a Bernoulli Trial

1. Kelly fraction α: f� = (p1(b+1)– 1)/ b
2. Bernoulli Trial B with P(1) = 1/100 to work as a random binary switch

2. Generate a uniform random number u 2 [0,1]

3. Accept or Reject new solution according to:

1. If (u� α) OR (B = = 1), then accept the candidate

1. Set x0 = x1

2. f(x0) = f(x1)
2. Else then reject the candidate solution

3. Decrease success probability p1 by a constant c
1. p1 = p1–c

https://doi.org/10.1371/journal.pone.0242285.t007

Table 8. Example calculation for the Kelly criterion for P (1) = 90, 50 and 10 and net-odds b = 1.

PW (Win/Cost

Decrease)

PL (Lose/Cost

Increase)

Expected (Averaged) Cost Gain

(Quality Improvement)

Expected (Averaged) Cost Loss

(Quality Worsening)

Success/Failure

Ratio b

(Output) Kelly

Percentage f�

90 10 +100 -100 +100/|-100| = 1 0.8

50 50 +100 -100 +100/|-100| = 1 0

10 90 +100 -100 +100/|-100| = 1 -0.8

https://doi.org/10.1371/journal.pone.0242285.t008
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Method Constraint 2: Discrete computation distribution of a random binary variable.

Bernoulli Process. The second constraint is defined by a Bernoulli process as a finite sequence

of independent and random Bernoulli variables. This module will return as output the value

“True” at 1% of the time for 100 interactions (N = 100) and it will accept unlikely (risky) solu-

tions with negative gain to eventually provide improvements bets for the solution quality,

under some degree of freedom. The process is defined as a trial with two binary states either

“True/Success” (1) or “False/Failure” (0) with domain p 2 [0,1]

P ðXi ¼ 1Þ ¼ p

P ðXi ¼ 0Þ ¼ 1 � p

EðXÞ ¼ p

Variance Var ðXÞ ¼ p � p2

Eq 16

In Fig 22 we can see a Bernoulli distribution with P (0) = 80% probability of output a Failure

state

PðX ¼ 0Þ ¼ 0:8

PðX ¼ 1Þ ¼ 0:2

Otherwise PðXÞ ¼ 0

Eq 17

Examples of Bernoulli trials are show in Table 9.

The decision criterion 2 is implemented as a OR gate using the input Bernoulli Distribution

Trial B and the output A of the IF statement from the Simulated Kelly Criterion and the Uni-

form Random Number output value.

Logical Statement for Method Constraint 2

For each interaction in the program

Bernoulli Trial B with

P1ðXÞ ¼ P1ð1=100Þ ¼ True ¼ Success ¼ 1

P0ðXÞ ¼ 1 � P1 ¼ False ¼ Failure ¼ 0

Conditional Logical Statement B, 1

Conditional Logical Statement A� B

Eq 18

In Fig 23 we have the circuit representation of the second constraint and the memory feedback

loop for the program.

Table 9. Examples of random events and the respective binary outcome.

Event Outcome

Play a game Win/Lose

Coin toss Head/Tail

Processing a request On time/Late

Defect in equipment’s Good/Defect

Buy-Sell an asset Profit/Deficit

Optimizing traveling cost Reduction/Increase

https://doi.org/10.1371/journal.pone.0242285.t009

PLOS ONE Information theory inspired optimization algorithm for efficient service orchestration in distributed systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0242285 January 4, 2021 27 / 59

https://doi.org/10.1371/journal.pone.0242285.t009
https://doi.org/10.1371/journal.pone.0242285


Algorithm analysis

This paper tries to address a few algorithm‘s design questions to solve the TSP:

1. What is the shortest code that produces the optimal solution for the problem?

a. Objective: What is the minimal binary encoding, the self-information or the basic quan-

tity required to represent the Bernoulli process

2. What is the path with less risk “of ruin” for the Salesman while also maximizing the solution

quality?

a. Objective: Find the shortest Euclidian distance with less uncertainty

3. How to minimize running time requirements?

a. Objective: Optimize computational complexity

Fig 24 illustrate the TSP goal to optimize solution quality and the factors involved: Mini-

mize Running Time; Maximize Utility Function and Minimize Code Length

Fig 24. TSP target objectives.

https://doi.org/10.1371/journal.pone.0242285.g024

Table 10. Auxiliary theorems for the proposed model based in information theory.

1. The Bernoulli process B(p) is used to generate strings with length n and a pattern-code schema encoded as a

Hamilton graph with probability p
2 The strings S are a Bernoulli sequence B formed with a random variable X from a finite alphabet L

3. The utility function U(S=B(X)) = Y is defined as the Euclidian Distance between nodes in a 2D plane

4. Bernoulli variables X and Y have Mutual Information

5. The Entropy Function for H(X), H(Y) and H(X|Y) can be calculated

6. E(X) is the Expected Value for X with mean x1 and standard deviation σ1
7. E(Y) is the Expected Value for Y with mean x2 and standard deviation σ2
8. f�(Y) is the optimal encoding defined by the Total Expected Value (“Edge”) divided by the Expected Solution

Quality Increase if Successful (“Odds”), for Sequence Y

a. f�(Y) = Edge/Odds

https://doi.org/10.1371/journal.pone.0242285.t010
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Shortest distance and shortest encoding. The computational complexity problem in

Graph Theory such as the TSP and NP-Hard Problems is reduced to a combinatorial problem,

using an entropy function optimization method from a Bernoulli variable defined by a Log-

Normal distribution.

The method is based on the amount of self-information available in a random variable and

this is the minimum encoding required to represent the problem in a Turing Machine, while

producing as output the near-optimal solution found before halting. By the Kolmogorov Com-

plexity this is the optimal program with the minimum amount of encoded information.

Mathematical definition. Assuming the Euclidian distance between nodes is the utility

function for the problem. The proposed algorithm instead of trying to find the best solution

directedly, using an arbitrary stochastic process, and interactively improving the string path,

alternatively, the QA algorithm assumes the symbols from output Y is produced by processing

the input from Bernoulli variable X, that is defined by a log-normal distribution and variables

X and Y share Mutual Information. This is the amount of information X has about Y and is

equal to the information Y know about X.

The lemmas for the proposed model are defined in Table 10.

Logarithm utility model. The method provides an alternative narrative for the Traveling

Salesman Problem as it asks, “what is the best path between cities that simultaneously minimizes
cost losses in the long run while also provide the best rate of improvement for each interaction”.
The salesman wants to avoid solutions with local minima. There are several possible paths the

salesman can choose, and he must guess which choice will lead to the best route over a set of

candidate solutions. The uncertainty between states outcomes indicates the level of entropy (i.e.

more entropy means less knowledge about the state values distribution). The reverse of entropy

is the negentropy, which is defined as a temporary state condition in which a certain state distri-

bution is more probable and more organized and thus there is less uncertainty about the state

distribution for a given time frame. The utility function is demonstrated in Fig 25.

This approach is a model for risk measurement over many possible outcomes and is based

in the work of John Kelly, Edward O. Thorp, von Neumann and Claude Shannon in

Fig 25. Utility function.

https://doi.org/10.1371/journal.pone.0242285.g025
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logarithmic information utility, with applications in the financial markets and game theory

such as the optimization in wealth growth in the long run and diversification in investment

strategies in portfolio management.

Random path construction. In Fig 26 we have a representation of the possible path

choices to produce a candidate solution tour for TSP. The example has an alphabet L with 4

elements (n = 4). At each interaction the Salesman’s needs to choose the next node in the

route. In the begging at T = t0, starting in the arbitrary node L: {a}, it has several possibilities

for the next move with L’: {b,c,d}. Each element (or symbol) has a 1/3 probability in t0. In the

second iteration t1, the probability for the remaining possible symbol increase to 0.5, however

the probability for the nodes already chosen drops to zero, and the possible choice outcome

for the next state move is reduced to L’: {c,d}.
From initial solution in time T = t0 there are a few valid sequences that can be chosen.

There is no universal function to guide the Salesman with certainty on what is the best choice.

This statement is supported by the Kolmogorov complexity of the string. The Salesman must

then outguess this problem using the available side-information.

The side-information can be defined by the probability density function of the Euclidian

distance distribution, formed by a set of valid candidate solution strings. The condition for a

candidate to be valid is to be a Hamiltonian graph. Invalid solutions have zero probability of

being chosen. In Fig 27 we have a set of candidate solutions with examples of valid and invalid

sequences.

This feature reduces the search space to only Hamiltonian circuits. From observation, we

know that there is a greater probability that edges that crosses generally produce a total path

distance larger than those nodes that do not have edges that overlap. The Fig 28 demonstrate a

crossing of edges in a graph.

Algorithms such as 2opt takes advantage of this cluster aggrupation of edges and uses a strat-

egy to remove the crossing between a group of nodes until no further improvement is found.

Solution quality and time to convergence. The method proposed is not an exact method

but is guaranteed to produce the best quality in the long run, eventually, with probability 1 and

Fig 26. Tour construction for a weighted graph with a probability function p 2 [0,1].

https://doi.org/10.1371/journal.pone.0242285.g026
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smaller time to convergence, in average. This is a method that almost surely converges to a bet-

ter solution quality if compared to any other heuristics when approaching the limit, as the num-

ber of algorithm iteration goes to infinity, and without needing complex string and array

manipulations. Therefore, the method has a better computational cost optimization in average.

The proposed algorithm also brings more simplicity of implementation with lower encod-

ing overhead, when compared to other algorithms such as Genetic Algorithm, Neural Net-

works and Ant Colony.

Fig 27. Candidate solution production and path decision.

https://doi.org/10.1371/journal.pone.0242285.g027

Fig 28. Edge crossing between nodes.

https://doi.org/10.1371/journal.pone.0242285.g028
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Computational requirements and cost effectiveness. The time constraining in QA heu-

ristic is not a problem because the only factor to decide the running time is the degree of freedom

allowed to the program. If the algorithm is expected to be more precise and with less errors, the

time parameters can be adjusted with time complexity O(n) and with each interaction the

entropy about the solution states is reduced, as the knowledge about the best solution increases

(i.e. Smaller Euclidian distance). Therefore, the error rate can be adjusted to any level desired.

Relation with other heuristic methods. This is similar to the approach proposed by the

Cross-Entropy Method, but the Quantitative Algorithm method does not resample or update

the probability density function at each interaction, but instead embraces randomness and

accepts candidate solution according to a simulated decreasing entropy function, with a binary

random switch attached.

This mechanism is similar to the Manhattan Rule used by the Simulated Annealing algo-

rithm. The proposed method use the simulated Kelly function ratio value α = f� to compare

against a random control value u, than the output is evaluated again using a binary operation

switch B which returns True or False, following a dependable probability function, that is

decremented by a constant rate c from P(X) = 100 until P(X) = 1/100, at each interaction tN.

This schema is used to provide alternatives paths and solve the hill-climbing limitation that is

also present in many solvers of the TSP.

In Fig 29 we have a demonstration for the hill-climbing with examples of Global and Local

points with the respective Maximum and Minimum positions.

Running costs. The running cost for the Quantitative Algorithm is the defined by the

computational effort to generate a random candidate tour string and to evaluated with the cur-

rent registered best-known solution, encoded by a Hamiltonian graph pattern, in O(N) time.

For each iteration, it has the computing cost to calculate the simulated entropy heuristic

function and compare against the control values. These values can be calculated in constant

time T(n). The memory required is defined by an array M of candidate solutions elements

with size O(M) = 2. The array is a buffer to store the best candidate solution and the alterna-

tive solution.

Fig 29. Hill-Climbing problem.

https://doi.org/10.1371/journal.pone.0242285.g029

PLOS ONE Information theory inspired optimization algorithm for efficient service orchestration in distributed systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0242285 January 4, 2021 32 / 59

https://doi.org/10.1371/journal.pone.0242285.g029
https://doi.org/10.1371/journal.pone.0242285


Disadvantages and Limitations. Because of this design, the running time to converge is

worst for the QA algorithm when compared to other methods, such as 2opt and greedy, at

small instances of the problem with less than a few nodes (n<15). If compared to heuristics

such as Simulated Annealing, Genetic Algorithm or Ant Colony the execution time is similar

but requires less time in average. This behavior is observed in our computer simulation.

This is explained by the overhead in calculating the probabilistic temperature-function in

Simulated Annealing (or the mutate-reproduce-selection operations in Genetic Algorithms)

that are used as the acceptance criteria for the random candidate solutions and therefore the

proposed entropy derived function in QA has a smaller running time overhead.

The running time cost for the proposed algorithm scales linearly to input with length n and

the solution can be found in polynomial time in any Turing Machine. In Table 11 we have a

comparison between classes of computational time complexity.

The proposed method has limitations. It needs a larger running time to converge for small

instances if compared to heuristics such as 2opt and Greedy Algorithm, as it must run until

the predefined max number of interactions parameter value is reached.

We have also observed that the local search methods such as 2opt, converge with less run-

ning time when the input is pre-sorted and thus help avoiding the algorithm to being lock

down in local minima solutions. However, this implies that a predefined prefix schema must

be directly encoded in the input string values, with the goal to improve running time perfor-

mance. The pre-processing of the input string works as a prefix set for filtering “above average”

solutions. This is explained by the Kolmogorov randomness of a string.

Alternatively, the proposed method does not need such implementation bias. This behavior

can be explained by Algorithm Information Theory. The 2opt method for example is sensitive

to the initial solution set sequence and if provided with an initial state with more noise than

the running time also increases.

This means there are more elements to verify in the search space and thus more time is

needed until converge. In the other hand, if there is less noise in the initial state, than the sub-

optimal end state is found quickly. In comparison the proposed model is resistant to variations

in the initial path sequence positions.

Computational results

The research evaluates the performance of the proposed algorithm through a series of test

cases and statistical analysis. The new method is tested against the traditional method Simu-

lated Annealing (Benchmark). Each test case was run for a trial with population length of

N = 60. In the statistical analysis section, the t-test was used to compare the means between the

Table 11. Classes of computational complexity.

Runtime Complexity Computational Class Time to Convergence (1/8) Solution (Search)Space Volume Example Algorithm

O(1) Constant 0000000000 0000000000

O(log n) Logarithmic 0000000001 0000000001 Binary Search

O(n) Linear 0000000011 0000000011 Linear Search

O(n log n) Linearithmic time 0000000111 0000000111 k-opt method

O(n2) Quadratic 0000001111 0000001111 Nearest neighbor (NN)

O(n3) Cubic 0000011111 0000011111 Christofides and Serdyukov

O(nk) Polynomial 0000111111 0000111111 A�

O(2n) Exponential 0001111111 0001111111

O(n!) Factorial 0011111111 0011111111 Brute-Force

O(inf) Infinite Time 0111111111 0111111111

https://doi.org/10.1371/journal.pone.0242285.t011
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sample groups. The null hypothesis is that there is no difference between the means of the two

populations.

The input parameters where tested with different values in order to verify if the method was

sensitive to changes in the controlling parameters. In the numerical simulation we have imple-

mented 3 variations for graphs with 20, 30 and 50 nodes. Each 2D graph was used as input for

the Quantitative Algorithm (QA) and the benchmark heuristic algorithm Simulated Annealing

(SA). The maximum number of interactions was set to be the same with 40,000 interactions.

Similarly, to heuristics such as GA, SA and AC the method runs until it reaches a maximum

number of iterations. We have set this parameter equality between the proposed and bench-

mark method to a fixed value of i = 40,000 iterations. The constant decay rate for the simulated

entropy probability was set to c = 0.0001, the starting probability was set to p = 0.999 and vari-

able net-odds b was defined by a random uniform value between (0.01, 2]. These parameters

can be adjusted to improve the quality according to the number of input nodes, but the simula-

tion results support the thesis the proposed method is resistant to variations in the input

parameters under a given degree of freedom.

The sample trial length was also set equality to both samples with N = 60. We have also per-

formed the Shapiro-Wilk test for normality to guarantee the input sequences were not skewed

or distorted to any side. The T-Test was used to than verify if the results where statically signif-

icant in regards of the final best cost distance and the running time variables, with a confidence

level of 95%.

We have also taken additional precautious to compare the performance in the numerical

simulation. To achieve this all starting paths are randomly flushed—with a function in Python

programing language—before execution begin, in order to guarantee the fairness when run-

ning and comparing all algorithms.

Computational statistical analysis

To demonstrate the significance and accuracy of the results we have performed a series of sta-

tistical tests to guarantee they are fair. For the numerical simulations we have created 3 test

cases with 2D graphs n = {20, 30 50} nodes. Each trial has a sample with length N = 60. There

are three variables recorded:

• Initial Random Tour Cost: Starting total Euclidian cost for the initial path

• Best Tour Cost Found: Distance for the best candidate solution found

• Total Execution Time: Running Time until convergence.

The method has a few requirements:

• The cost distance X can be calculated by a logarithmic utility function U

• X is a random variable defined by U(X) = Y

• Variables X and Y have Mutual Information

• Variable X is encoded by a log-normal distribution

• A path is a random sequence produced by a Bernoulli process B with probability p

• The paths are Hamiltonian

• The estimated value for Y is the expected solution quality
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We will use a subset with N = 10 from trial with n = 50 nodes and length N = 60 to demon-

strate the simulation results in Table 12.

Fair run and descriptive statistics

We have implemented the proposed quantitative algorithm (QA) and the Simulated Annealing

(SA) heuristic in a set of trials with n = {20, 30, 50} nodes and a sample with length N = 60. To

guarantee the results are fair we have analyzed the distribution with the Shapiro-Wilk test to

demonstrate the sample is normally distributed. The QA and SA tests for n = 50 nodes is

described below:

Results from QA simulation: Initial random tour cost variable

The statistical description for the QA method distribution with n = 50 nodes and length

N = 60 is described as follow

• Nodes in the graph (n): 50

• Sample size (N): 60

• Average (x): 4679.279218

• Median: 4633.623941

• Sample Standard Deviation (σ): 348.057997

• Sum of Squares: 7147517.782

• b: 2640.163152

• Skewness: 0.543901

• Skewness Shape: Potentially Symmetrical (pval = 0.078)

• Excess kurtosis: 0.152926

• Tails Shape: Potentially Mesokurtic, normal like tails (pval = 0.802)

• P-value: 0.260661

• Outliers: 5651.239742

Table 12. Subset of the simulation results for 50 nodes with trial length of N = 60.

50-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

1 4584.994704 4350.530615 783.6135781 1013.45381 91.94147284 127.121441

2 4931.04388 3829.72755 1002.266343 856.714194 79.49352819 93.1328427

3 4459.545641 4285.493079 892.4679561 878.335327 67.90769484 73.4395111

4 5189.508014 4873.122362 825.1186081 986.814761 65.57152077 74.8066559

5 5303.265261 5389.224823 846.448402 1085.77975 65.92321619 72.4844698

6 4792.633045 4595.016823 1036.163983 855.195737 71.40535116 70.3046693

7 4951.587728 4711.457297 735.82339 1110.36984 61.43196151 78.8009844

8 5127.650419 4851.865628 1028.714485 974.535522 67.16026587 80.7510912

9 4213.123791 4227.131367 1006.163651 693.015657 61.80173641 75.0614487

10 4388.805181 5361.415343 887.0345646 813.130685 68.36587932 73.5915055

https://doi.org/10.1371/journal.pone.0242285.t012
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The normal distribution with average x = 4679.279 and standard deviation σ = 348.057

with Significance level (α): 0.05 is shown in Fig 30. The Histogram and QQ-Plot are repre-

sented in Figs 31 and 32, respectively.

Shapiro-Wilk test, using a right-tailed normal distribution

1. H0 hypothesis

Since p-value> α, we accept the H0. It is assumed that the data is normally distributed. In

other words, the difference between the data sample and the normal distribution is not big

enough to be statistically significant.

2. P-value

p-value is 0.260661, hence, if we would reject H0, the chance of type1 error (rejecting a cor-

rect H0) would be too high: 0.2607 (26.07%). The larger the p-value, the more it supports

H0

3. The statistics

W is 0.975228. It is in the 95% critical value accepted range: [0.9605: 1.0000]

Results from SA simulation: Initial random tour cost variable

The statistical description for the SA method distribution with n = 50 nodes and length N = 60

is described as follow

• Nodes in the graph (n): 50

• Sample size (N): 60

• Average (x): 4719.187703

• Median: 4713.7218465000005

Fig 30. QA sample: Normal distribution for n = 50 and N = 60.

https://doi.org/10.1371/journal.pone.0242285.g030
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• Sample Standard Deviation (σ): 336.776436

• Sum of Squares: 6691683.709

• b: 2562.233720

• Skewness: -0.0726740

• Skewness Shape: Potentially Symmetrical (pval = 1.186)

• Excess kurtosis: -0.128238

• Tails Shape: Potentially Mesokurtic, normal like tails (pval = 1.167)

• P-value: 0.475660

• Outliers:

The normal distribution with average x = 4719.187 and standard deviation σ = 336.776436

with Significance level (α): 0.05 is shown in Fig 33. The Histogram and QQ-Plot are repre-

sented in Figs 34 and 35, respectively.

Fig 31. Histogram for the initial tour cost in the QA method.

https://doi.org/10.1371/journal.pone.0242285.g031

Fig 32. QQ-Plot for the initial tour cost in the QA method.

https://doi.org/10.1371/journal.pone.0242285.g032
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Shapiro-Wilk test, using a right-tailed normal distribution

1. H0 hypothesis

Since p-value> α, we accept the H0. It is assumed that the data is normally distributed. In

other words, the difference between the data sample and the normal distribution is not big

enough to be statistically significant.

2. P-value

p-value is 0.475660, hence, if we would reject H0, the chance of type1 error (rejecting a

Fig 33. SA Sample: Normal distribution for n = 50 and N = 60.

https://doi.org/10.1371/journal.pone.0242285.g033

Fig 34. Histogram for the initial tour cost in the SA method.

https://doi.org/10.1371/journal.pone.0242285.g034
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correct H0) would be too high: 0.4757 (47.57%). The larger the p-value, the more it supports

H0

3. The statistics

W is 0.981075. It is in the 95% critical value accepted range: [0.9605: 1.0000]

Next we have created the boxplot graph to represent the median, average and the quartiles for

QA and SA sample distributions.

Results from QA simulation: Best tour cost found

The statistical description for the QA method distribution with n = 50 nodes and length

N = 60 is described as follow

• Sample size: 60

• Median: 897.3196982

• Minimum: 700.0706523

• Maximum: 1123.628464

• First quartile: 829.287859975

• Third quartile: 971.0301233

• Interquartile Range: 141.742263325

• Outliers: none

The boxplot for the QA distribution is illustrated in Fig 36

Results from SA simulation: Best tour cost found. The statistical description for the SA

method distribution with n = 50 nodes and length N = 60 is described as follow

• Sample size: 60

• Median: 961.0134322

• Minimum: 679.4900154

• Maximum: 1358.45442

Fig 35. QQ-Plot for the initial tour cost in the SA method.

https://doi.org/10.1371/journal.pone.0242285.g035
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Fig 36. Boxplot for the QA simulation.

https://doi.org/10.1371/journal.pone.0242285.g036
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Fig 37. Boxplot for the SA simulation.

https://doi.org/10.1371/journal.pone.0242285.g037
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• First quartile: 865.4905371

• Third quartile: 1057.63755725

• Interquartile Range: 192.14702015

• Outlier: 1358.45442

The boxplot for the SA distribution is illustrated in Fig 37

Test cases and computer simulation

The test cases are a set with 20, 30 and 50 nodes. The network latency between each node is

bounded by the geographic distances between the machines, made available by the computing

service provider. It’s the time required to send a message over a noisy communication channel.

The proposed algorithm was used to find the optimal network route to deploy a process in a

cluster of machines. In Tables 13–15 we present the Euclidian coordinates used to generate the

candidate solutions and the cost matrix. We have provided a sample to demonstrate the results

between QA and SA from the 180 trials (N = 60 for each sample). The data shows the first ini-

tial tour and the optimal solution found for each algorithm (the example data was extracted

from the results produced by the simulations).

List of nodes with length N = 20 with coordinates (X, Y) in a 2D plan.

The QA simulation results are described with four variables

• First solution path: [’1’, ’20’, ’8’, ’7’, ’17’, ’13’, ’2’, ’3’, ’16’, ’9’, ’15’, ’11’, ’14’, ’10’, ’6’, ’19’, ’4’, ’5’,

’18’, ’12’]

• Total distance cost from the first(starting) solution: 1145.7617186058662

Table 13. Node coordinates with size n = 20.

Node X Y

1 288 149

2 288 129

3 270 133

4 256 141

5 256 157

6 246 157

7 236 169

8 228 169

9 228 161

10 220 169

11 212 169

12 204 169

13 196 169

14 188 169

15 196 161

16 188 145

17 172 145

18 164 145

19 156 145

20 148 145

https://doi.org/10.1371/journal.pone.0242285.t013
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• Best solution Path: [’6’, ’5’, ’1’, ’2’, ’3’, ’4’, ’9’, ’15’, ’16’, ’17’, ’18’, ’19’, ’20’, ’14’, ’13’, ’12’, ’11’,

’10’, ’8’, ’7’]

• Total distance cost for the best solution found: 332.1144088148687

List of nodes with length N = 30 with coordinates (X, Y) in a 2D plan

The QA simulation results are described with four variables

• First solution path: [’20’, ’24’, ’23’, ’9’, ’2’, ’6’, ’21’, ’15’, ’27’, ’1’, ’11’, ’14’, ’29’, ’25’, ’5’, ’28’, ’13’,

’7’, ’18’, ’22’, ’26’, ’4’, ’19’, ’12’, ’3’, ’17’, ’10’, ’30’, ’8’, ’16’]

• Total distance cost from the first(starting) solution: 2114.8616643887417

• Best solution Path: [’4’, ’9’, ’12’, ’13’, ’14’, ’24’, ’23’, ’25’, ’22’, ’26’, ’27’, ’28’, ’29’, ’30’, ’21’, ’20’,

’19’, ’18’, ’17’, ’16’, ’15’, ’11’, ’10’, ’8’, ’7’, ’6’, ’5’, ’1’, ’2’, ’3’]

• Total distance cost for the best solution found: 423.26765018746386

List of nodes with length N = 50 with coordinates (X, Y) in a 2D plan

Table 14. Node coordinates with size n = 30.

Node X Y

1 288 149

2 288 129

3 270 133

4 256 141

5 256 157

6 246 157

7 236 169

8 228 169

9 228 161

10 220 169

11 212 169

12 204 169

13 196 169

14 188 169

15 196 161

16 188 145

17 172 145

18 164 145

19 156 145

20 148 145

21 140 145

22 148 169

23 164 169

24 172 169

25 156 169

26 140 169

27 132 169

28 124 169

29 116 161

30 104 153

https://doi.org/10.1371/journal.pone.0242285.t014
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Table 15. Node coordinates with size n = 50.

Node X Y

1 288 149

2 288 129

3 270 133

4 256 141

5 256 157

6 246 157

7 236 169

8 228 169

9 228 161

10 220 169

11 212 169

12 204 169

13 196 169

14 188 169

15 196 161

16 188 145

17 172 145

18 164 145

19 156 145

20 148 145

21 140 145

22 148 169

23 164 169

24 172 169

25 156 169

26 140 169

27 132 169

28 124 169

29 116 161

30 104 153

31 104 161

32 104 169

33 90 165

34 80 157

35 64 157

36 64 165

37 56 169

38 56 161

39 56 153

40 56 145

41 56 137

42 56 129

43 56 121

44 40 121

45 40 129

46 40 137

47 40 145

(Continued)
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The QA simulation results are described with four variables

• First solution path: [’38’, ’48’, ’39’, ’40’, ’9’, ’26’, ’28’, ’29’, ’33’, ’43’, ’41’, ’14’, ’12’, ’23’, ’1’, ’17’,

’20’, ’5’, ’49’, ’7’, ’35’, ’22’, ’18’, ’31’, ’6’, ’19’, ’13’, ’36’, ’2’, ’16’, ’42’, ’15’, ’4’, ’32’, ’25’, ’46’, ’8’,

’47’, ’50’, ’27’, ’37’, ’24’, ’34’, ’3’, ’10’, ’30’, ’45’, ’21’, ’44’, ’11’]

• Total distance cost from the first(starting) solution: 4919.680538441

• Best solution Path: [’49’, ’48’, ’47’, ’41’, ’42’, ’43’, ’44’, ’45’, ’46’, ’40’, ’39’, ’38’, ’37’, ’36’, ’35’,

’34’, ’33’, ’32’, ’31’, ’30’, ’29’, ’21’, ’20’, ’19’, ’18’, ’17’, ’16’, ’9’, ’5’, ’1’, ’2’, ’3’, ’4’, ’6’, ’7’, ’8’, ’10’,

’11’, ’12’, ’15’, ’13’, ’14’, ’24’, ’23’, ’25’, ’22’, ’26’, ’27’, ’28’, ’50’]

Total distance cost for the best solution found: 700.0706523445637

In Figs 38, 39 and 40 we have the line charts with the results for each test case. The figures

demonstrate that the QA algorithms produces expected results with smaller cost and best qual-

ity in average than the benchmark SA method with smaller time requirements. In all cases the

initial path loaded from the input files was randomly flushed before the algorithm execution to

guarantee the results were not biased.

Tables 16–21 compares the results between the proposed algorithm and the heurists meth-

ods. They demonstrate that the result generated by the QA algorithm achieves solutions with

better quality than the benchmark SA heuristic algorithm, by finding optimal solutions with

smaller total cost and lesser running time. The QA algorithm converges more quickly than the

2opt algorithm for large instances of the problem. The results suggest the proposed Quantita-

tive Algorithm is likely to perform better and generate consistent results as other traditional

heuristics methods applied to the TSP. Additionally it provides an Information Theory model-

ling for Computationally Complex domains such as the NP class of problems in Turing

Machines.

In the Appendix sections we have the Tables 22, 23 and 24 for the 3 test cases with nodes n

= {20, 30, 50}, with the trial input variables for best final tour cost, total execution time and the

initial tour cost for a sample length of N = 60. In Tables 19–21 we have the t-test p-value for

each test case for the cost and execution time variable. Tables 16 and 17 demonstrate the T-test

calculation for 2 independent means for n = 20.

These findings can be expanded to other complex problems and it scales linearly to the

search space sample. The proposed method is also resistant to the time and space constraints

and it has a constant number of maximum iterations. In this paper we have introduced a new

interpretation for the entropy rate for a binary program that implements a given NP problem.

The results can be used by many real-world applications such as the optimization of routing

messages over a network and the orchestration of services across a distributed system such as

provided by Cloud Computing environments and micro-services-oriented architectures.

Besides it is also a future reference on the subject of Information Theory, Computational Com-

plex Theory and Logarithmic utility in optimization routing, deployment, scheduling and

planning. The research demonstrated that the proposed concepts have statistically significant

results with better solution quality in tour planning. The model provides a new interpretation

Table 15. (Continued)

Node X Y

48 40 153

49 40 161

50 40 169

https://doi.org/10.1371/journal.pone.0242285.t015
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Fig 38. Chart with results for test cases with n = 20 nodes with sample size N = 60.

https://doi.org/10.1371/journal.pone.0242285.g038
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Fig 39. Chart with results for test cases with n = 30 nodes with sample size N = 60.

https://doi.org/10.1371/journal.pone.0242285.g039
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of entropy in problems encoded in Turing Machines and has the potential to change the tradi-

tional interpretation of the limits of Computing Theory.

The results are statistically significant (with p-value < 0.05), and we can conclude the pro-

posed algorithm has better solution quality with reduced computational requirements and bet-

ter cost improvement.

Fig 40. Chart with results for test cases with n = 50 nodes with sample size N = 60.

https://doi.org/10.1371/journal.pone.0242285.g040
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Statistical analysis of the test cases

In order to test the performance in solving the TSP we have created trials with sample length

N = 60 for each test case with different number of nodes n = {10, 30, 50} and then compared

the results obtained with a benchmark heuristic (SA) and the proposed algorithm (QA).

Table 25 demonstrate the two-tailed t-test for two independent samples of costs and times

measurements with Significance Level of 0.05. This is a two-sided test for the null hypothesis

with two independent means have the identical expected value. This test measures if the aver-

age expected cost and running time value differs significantly across the measured samples. If

Table 16. T-test for n = 20 nodes and N = 60 trials–total distance cost variable.

t-Test: Two-Sample Assuming Unequal Variances

Cost Variable

QA SA
Mean 336.552862 339.645729

Variance 6.35307736 18.1161823

Observations 60 60

Hypothesized Mean Difference 0

Df 96

t Stat -4.8431338

P(T< = t) one-tail 2.4468E-06

t Critical one-tail 1.66088144

P(T< = t) two-tail 4.8935E-06

t Critical two-tail 1.98498431

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 336.552, Var = 6.353) compared to the 60 iterations in the SA

algorithm (M = 339.645, Var = 18.116) demonstrated significantly better cost reduction, with value p = 4.8935E-06.

https://doi.org/10.1371/journal.pone.0242285.t016

Table 17. T-test for n = 20 nodes and N = 60 trials—execution time variable.

t-Test: Two-Sample Assuming Unequal Variances

Execution Time Variable

QA SA
Mean 28.1821012 34.06591929

Variance 43.5437993 69.06678708

Observations 60 60

Hypothesized Mean Difference 0

df 112

t Stat -4.2948228

P(T< = t) one-tail 1.8689E-05

t Critical one-tail 1.65857263

P(T< = t) two-tail 3.7379E-05

t Critical two-tail 1.98137181

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 28.182, Var = 43.543) compared to the 60 iterations in the SA

algorithm (M = 34.065, Var = 69.066) demonstrated significantly better time to complete execution, with value

p = 3.7379E-05.

https://doi.org/10.1371/journal.pone.0242285.t017
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the p-value is small than the significance level of 0.05 (5%) then we can reject the null hypothe-

sis of equal average means.

The Table 25 shows that results are statistically significant (with p-value < 0.05) for test

cases n = {20, 30, 50}, and we can conclude the proposed Quantitative Algorithm (QA) has bet-

ter solution quality with reduced computational requirements and better cost improvement

than benchmark heuristic Simulated Annealing (SA).

Simulation review. As with any heuristics and metaheuristics, it is not an exact process

defined by a general linear function, but the results from the statistical analysis demonstrate

Table 18. T-test for n = 30 nodes and N = 60 trials–total distance cost variable.

t-Test: Two-Sample Assuming Unequal Variances

Cost Variable

QA SA
Mean 455.9177842 500.1505

Variance 917.1905283 3396.48698

Observations 60 60

Hypothesized Mean Difference 0

df 89

t Stat -5.216694386

P(T< = t) one-tail 5.88396E-07

t Critical one-tail 1.662155326

P(T< = t) two-tail 1.17679E-06

t Critical two-tail 1.9869787

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 455.917, Var = 917.190) compared to the 60 iterations in the

SA algorithm (M = 500.150, Var = 3396.486) demonstrated significantly better cost reduction, with value

p = 1.17679E-06.

https://doi.org/10.1371/journal.pone.0242285.t018

Table 19. T-test for n = 30 nodes and N = 60 trials—execution time variable.

t-Test: Two-Sample Assuming Unequal Variances

Execution Time Variable

QA SA
Mean 45.3019303 53.1616159

Variance 83.6019137 82.7521257

Observations 60 60

Hypothesized Mean Difference 0

df 118

t Stat -4.7202404

P(T< = t) one-tail 3.2683E-06

t Critical one-tail 1.65786952

P(T< = t) two-tail 6.5365E-06

t Critical two-tail 1.98027225

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 45.301, Var = 83.601) compared to the 60 iterations in the SA

algorithm (M = 53.161, Var = 82.752) demonstrated significantly better time to complete execution, with value

p = 6.5365E-06.

https://doi.org/10.1371/journal.pone.0242285.t019
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the algorithm’s quality are significant. In this paper we have demonstrated the statistical signif-

icance of the results, as the p-value for the t-Test with Unequal Variances between the Simu-

lated Annealing (SA) heuristic (Benchmark) and the proposed Quantitative Algorithm (QA),

is less than the significance level for alpha with p< 0.05. The statistical test was performed for

graphs with 20, 30 and 50 nodes and all trials have returned a significant result by rejecting the

null hypothesis.

This supports the evidence that the schema proposed by heuristics methods such as GA,

SA, AC or CE produces results that are, in average, equal or worse than the proposed QA

Table 20. T-test for n = 50 nodes and N = 60 trials–total distance cost variable.

t-Test: Two-Sample Assuming Unequal Variances

Cost Variable

QA SA
Mean 901.7845936 960.3116942

Variance 8917.028193 18189.17941

Observations 60 60

Hypothesized Mean Difference 0

df 106

t Stat -2.753583529

P(T< = t) one-tail 0.003468798

t Critical one-tail 1.659356034

P(T< = t) two-tail 0.006937597

t Critical two-tail 1.982597262

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 901.784, Var = 8917.028) compared to the 60 iterations in the

SA algorithm (M = 960.311, Var = 18189.179) demonstrated significantly better cost reduction, with value

p = 0.006937597.

https://doi.org/10.1371/journal.pone.0242285.t020

Table 21. T-test for n = 50 nodes and N = 60 trials—execution time variable.

t-Test: Two-Sample Assuming Unequal Variances

Execution Time Variable

QA SA
Mean 67.6962824 78.4087974

Variance 215.812669 334.607097

Observations 60 60

Hypothesized Mean Difference 0

df 113

t Stat -3.5368778

P(T< = t) one-tail 0.00029419

t Critical one-tail 1.65845022

P(T< = t) two-tail 0.00058839

t Critical two-tail 1.98118036

The result is significant at p< .05.

The 60 iterations who executed the QA algorithm (M = 67.696, Var = 215.812) compared to the 60 iterations in the

SA algorithm (M = 78.408, Var = 334.607) demonstrated significantly better time to complete execution, with value

p = 0.00058839.

https://doi.org/10.1371/journal.pone.0242285.t021
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Table 22. Execution results for 20 nodes (n = 20) with samples size N = 60.

20-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

1 1195.634925 1108.393775 336.620892 339.439482 30.12948538 39.6077362

2 986.9352715 1177.732299 338.5615264 344.758321 30.26399596 32.3809037

3 900.0458995 1054.1641 334.8573413 345.966652 34.91276873 38.7632731

4 916.5463351 1057.927051 335.3011739 341.855037 27.23480984 38.4763941

5 966.1553232 1253.494224 336.620892 332.114409 29.91621914 32.1631082

6 1194.232179 1064.387485 335.8914965 338.044106 31.12498264 33.1915936

7 1036.191977 1029.253756 338.5615264 340.135251 31.81935215 32.060559

8 963.2410995 999.9887981 339.3638244 339.439482 54.49795967 65.4112282

9 1145.761719 1050.78347 332.1144088 340.059594 25.79352437 50.170809

10 1085.090655 1073.381069 337.2219503 337.316661 27.91745513 35.5128518

11 1147.417441 1012.068389 343.0294931 334.857341 25.94175636 31.4301689

12 965.8459042 958.2459652 334.8573413 335.301174 24.29773869 28.3900081

13 1128.489942 1283.781151 335.9022323 339.231552 29.54066219 37.4386245

14 1131.818667 928.6586146 337.0140207 335.902232 47.45874454 40.282868

15 1229.658241 1153.404679 335.9022323 346.41498 40.86180719 40.4422965

16 884.1357153 1138.13307 332.7154672 338.561526 34.48849958 49.9608527

17 1235.918025 1052.377384 335.9022323 336.620892 28.82108637 37.7635394

18 783.6900544 929.1934876 335.8914965 338.561526 31.23878077 42.0187519

19 1130.320419 1174.181378 337.0140207 342.439171 30.00009195 34.7658014

20 989.3865301 951.2563694 343.5134562 339.363824 35.36053606 40.5407622

21 904.2377617 1063.30281 335.9022323 338.741826 29.65111817 38.7390394

22 869.7243065 1029.595623 335.3011739 338.561526 28.38350387 32.86863

23 1116.176649 953.0821731 334.8573413 338.561526 31.87757207 36.2553472

24 1110.200886 931.6046509 337.3166611 345.685585 43.94790548 40.1406831

25 1064.184077 1139.258709 334.8573413 338.119763 41.20329418 45.7096829

26 887.1252702 940.9695223 335.3011739 345.685585 25.25219875 45.1240136

27 1040.447342 1308.425282 336.4925548 336.620892 23.90627663 28.4887706

28 1263.036989 1297.030551 337.2219503 339.231552 26.12993897 31.0484482

29 1115.022094 1055.582523 337.0140207 335.902232 29.95108272 58.9338429

30 998.9318306 981.3689839 335.9022323 348.044562 35.33063453 44.3207047

31 1127.712215 1066.313009 336.4129623 339.342884 28.56060964 43.9690071

32 945.3399049 1133.277072 335.3011739 338.561526 25.08187038 34.241621

33 1079.60359 913.4123438 338.0441064 334.857341 23.84379763 28.6076721

34 913.3758632 1151.462443 332.1144088 334.932998 24.00100185 28.4874175

35 1210.249512 1120.714135 338.3112039 338.561526 24.2204857 28.3244191

36 1147.723302 1130.778705 338.0441064 343.649497 23.43391117 27.3482798

37 971.3903556 1076.686391 336.620892 332.715467 23.04826988 27.2579731

38 998.2103312 887.1398159 332.1144088 339.439482 23.30005102 27.9801567

39 1162.280089 924.1853956 337.9177195 335.301174 23.55994665 28.0173068

40 1054.008142 869.5783019 345.095262 348.044562 24.4069206 28.0580326

41 1062.958346 1092.610068 337.3166611 334.857341 23.58406409 30.9849236

42 1316.550471 1132.915517 335.9022323 332.715467 24.49907442 27.7148466

43 944.5629418 1096.900034 334.8573413 338.561526 27.42394148 29.689707

44 1090.841136 973.9952212 336.620892 345.879822 23.22344759 30.1561858

45 985.9883167 915.8312807 338.0441064 343.428117 23.68698814 27.5134631

(Continued)
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method based in Information Theory and Entropy simulation, running for the same number

of finite iterations. The best cost and running time are in average, found in the sample from

the QA method, although it was also found in the control group SA, used as our benchmark.

This result is expected, as outliers can happen and are expected to be found in random process

in the long term.

The results obtain in this research showed a smaller runtime overhead in QA method possi-

bly because of the simpler numerical calculations and instructions set in the code, if compared

to the above-mentioned traditional heuristics. In GA, SA, AC and Neural Networks for exam-

ple there are complex matrix, string and graph manipulations.

The Christofides algorithm also has to keep track and detect short-cuts between nodes in

the know state search-space and thus increasing memory requirements. The proposed method

does not need a buffer of illegal moves, such as proposed by the Tabu search method used to

optimize the k-opt algorithm.

It also doesn’t need to continuously look for short-cuts or swapping ties, it works by gener-

ating a random sequence that encode a Hamiltonian graph (i.e. A path that visits all nodes

exactly once). After generating the random candidate solution there are only 3 conditions to

decide:

1. Have we reached the maximum number of iterations defined in the input parameters? If

yes than halt

2. If new path is better than the current best route than updates the current control state.

3. If the candidate solution is worse, than we accept the solution, according to a decaying Ber-

noulli process B(X) for random variable X and a probability density function estimation

with entropy H(X) with dependent utility function Y = g(X).

Applications for the method

The Traveling Salesman Problem is the foundation for many optimization methods, algo-

rithms, models and process with applications in many areas and fields such as

Table 22. (Continued)

20-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

46 1193.337578 1001.967642 332.7154672 337.22195 23.15058773 27.6503922

47 1085.046538 1056.207841 336.4129623 339.439482 22.89809065 27.6979532

48 1170.592904 1204.896611 332.7154672 335.301174 22.811833 27.1470865

49 888.3716219 1119.310235 332.7154672 353.222205 23.53460078 27.1795784

50 957.744169 896.1779984 339.4394815 337.917719 22.97475352 27.4758247

51 1105.010107 1023.615603 338.0441064 338.710086 22.86918458 27.2797519

52 868.7296417 1001.961386 336.4925548 341.484758 23.09712953 27.1193013

53 1147.110698 1261.361139 336.620892 338.561526 23.20182619 27.8441451

54 1007.496906 1076.417337 336.4129623 339.231552 22.91703718 27.7154546

55 888.3254017 1028.532428 334.8573413 337.014021 23.08894057 27.652091

56 1015.389387 1037.982865 338.5615264 335.301174 24.19610564 27.4061656

57 1118.083211 1218.690552 334.8573413 343.500897 23.50864635 27.9921575

58 1196.871246 1056.936272 334.8573413 343.428117 23.84533973 27.6875045

59 1172.5209 765.331396 339.3638244 340.059594 23.19705539 27.9977026

60 1225.40291 1041.148332 339.3638244 345.962516 32.50677825 27.3577434

https://doi.org/10.1371/journal.pone.0242285.t022
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Table 23. Execution results for 30 nodes (n = 30) with samples size N = 60.

30-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

1 2114.861664 2138.958342 424.5873682 464.700899 42.98706438 59.0712779

2 1941.575116 2007.049171 475.6796776 472.590934 39.46565883 52.120306

3 1950.142483 1989.063029 488.989852 504.453757 38.60825704 47.8920127

4 1902.474244 1796.927917 424.3794386 506.801158 48.13539106 61.4913984

5 1580.54924 2121.678062 510.318469 472.980497 44.92054756 44.2866884

6 2040.501524 1887.043741 474.6886065 433.933129 43.33821167 48.5092938

7 1933.189429 2005.284134 426.0105826 478.033092 43.31067901 54.8387858

8 1791.060214 2174.057473 429.9694289 462.536112 40.27118746 50.435126

9 1697.688572 1712.42956 443.4357473 548.033561 41.870426 48.4660826

10 2159.279821 2101.511052 439.9631361 526.162767 43.91304872 51.6482356

11 2037.032939 1964.471053 436.517103 507.74012 37.68801916 48.1148758

12 2057.901751 1892.015046 467.0236214 562.704654 52.46498072 51.1041011

13 1930.750408 1831.163179 460.014352 426.528003 52.34054281 79.7551805

14 1596.34284 1709.164989 484.0191023 571.764133 41.91429676 57.815061

15 1989.991866 1932.746628 453.6891305 428.101727 52.06071529 63.1093559

16 1532.819374 2294.07567 432.8197583 443.083125 45.44243764 61.380042

17 1933.611183 2091.996596 453.529067 595.347046 40.35533853 50.0510586

18 1928.551184 1860.347264 495.9653506 580.368162 43.90844072 46.7043453

19 1892.952203 2098.647235 491.0938606 468.450763 45.20533055 53.5513851

20 1727.389612 1746.213002 428.8730412 587.027872 39.56974309 50.744991

21 1840.460231 2052.640373 486.8539675 510.278944 55.44163731 51.324384

22 1734.505095 1843.716782 491.0156727 427.122371 40.87608984 57.7772876

23 1804.725607 1840.418372 447.2951117 486.01134 57.19451948 55.1076989

24 1900.969989 1597.14205 460.1507211 662.168972 47.51163171 69.8538226

25 1902.159287 1982.433073 433.0617383 477.980165 52.9507134 52.5828033

26 1861.379571 1732.215165 478.1275476 481.88559 63.18074776 61.506958

27 1632.125705 1705.527663 551.6573018 534.398358 45.71926259 59.901718

28 1724.804881 2004.34791 464.0476771 533.121258 45.68037277 57.0611448

29 1711.276107 1851.488894 426.6765623 565.016049 43.55173205 53.7347876

30 1798.24361 2147.552334 467.8403795 491.540871 39.89643796 48.881184

31 1505.540858 2286.236266 427.122371 592.196033 48.98996233 48.1386252

32 1868.889925 1772.226931 427.4357473 488.765595 47.68942928 50.6868412

33 1986.199157 1831.914237 423.8687085 530.861945 54.60683943 70.0300942

34 1893.774487 2191.409802 476.6245181 482.210099 56.77093291 69.9386231

35 2254.034678 2057.794281 450.6222049 470.823818 50.39574996 56.2931122

36 1641.972013 1951.754928 456.9229002 470.823818 57.52063273 67.2678736

37 2190.641527 1892.120281 427.1980282 479.691631 45.58968535 54.0853191

38 2059.180754 1991.897847 446.6225652 443.410875 43.33406437 68.1481031

39 1816.734006 1938.160932 423.2676502 457.649743 43.01746808 48.3186617

40 2009.362159 2057.941367 442.9039608 449.980838 42.63856604 48.0714487

41 1619.209653 1977.29523 430.5704872 625.975132 63.20465673 72.4023792

42 1803.072488 2008.969722 436.3291255 434.210099 38.81750628 49.0113726

43 1905.327122 2139.748939 431.6159736 422.823818 90.17018865 57.4507498

44 1396.063861 1510.800171 427.122371 446.937846 46.57496965 56.7508254

45 1961.970303 2085.66334 461.2238488 423.868709 40.88945298 47.0390539
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• Computer science

◦ Optimize package routing for sending and receiving messages in a network

◦ Task Scheduling for batch processing in a cluster of servers

• Logistics

◦ Optimize package and mail delivery between addresses in a city

◦ Vehicle route optimization for GPS systems

◦ Job shop problem to assign activities to a pool of resources

◦ Minimize the total execution length schedule of a set of tasks (makespan)

Fig 41 illustrates some applications of the TSP for shortest driving route, maximize server

utilization and minimize makespan.

Conclusion

Service scheduling and network routing has many applications and is related to the optimiza-

tion problem modeled by the Traveling Salesman Problem. It’s possible to improve perfor-

mance by reducing the cost of transmission of information across many distributed systems

locations. A new interpretation and verified optimization algorithm and statistical model

based in Information Theory is presented in this paper and it demonstrated how it can be used

to solve the TSP. The results support the idea that the proposed method can be used reliably to

generate solution under a given degree of freedom. The algorithm can be expanded to large

scale problems without the high requirements of computational resources utilization imposed

by the brute-force and traditional heuristics methods such as Simulated Annealing, Ant Col-

ony, Neural Networks and Genetic Algorithms. The algorithm can be adapted to any case of

the routing problem. The research can be used as a framework for future works and extend the

Table 23. (Continued)

30-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

46 2016.906558 1945.01613 431.6159736 482.392057 37.00943786 41.2652409

47 1615.747074 1679.767432 438.5243978 540.930956 34.94234454 41.9965412

48 1919.853209 1791.446699 442.7060685 468.628522 39.62350488 43.5543638

49 1864.485907 1841.077381 427.122371 478.851995 47.30976915 52.8924325

50 2033.030066 2044.268536 427.1980282 427.122371 41.87760103 45.4800351

51 1717.798426 1690.966193 474.7739314 629.184876 35.09427462 42.9087137

52 1943.528232 1778.978193 553.2831374 599.182846 34.25907436 41.3755334

53 2011.609188 1652.077927 460.8365081 489.159339 36.82620546 41.3364099

54 1893.324832 1873.394732 483.4554998 491.107552 34.69045473 41.6829564

55 1761.65708 1971.263332 448.7644393 426.010583 36.35978929 41.3863896

56 1948.645928 2020.716704 428.0260698 542.400253 48.97381794 43.9572916

57 1867.947796 1850.588061 455.8265125 505.167828 34.33525243 67.9172457

58 1858.698459 1717.237261 461.1244452 485.823316 39.20625309 44.2034129

59 2046.855774 1778.212757 461.5046079 554.4155 43.44987886 42.5260492

60 2054.476294 2022.162447 522.5612263 457.556595 34.17459443 44.7598619

https://doi.org/10.1371/journal.pone.0242285.t023
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Table 24. Execution results for 50 nodes (n = 50) with samples size N = 60.

50-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

1 4584.994704 4350.530615 783.6135781 1013.45381 91.94147284 127.121441

2 4931.04388 3829.72755 1002.266343 856.714194 79.49352819 93.1328427

3 4459.545641 4285.493079 892.4679561 878.335327 67.90769484 73.4395111

4 5189.508014 4873.122362 825.1186081 986.814761 65.57152077 74.8066559

5 5303.265261 5389.224823 846.448402 1085.77975 65.92321619 72.4844698

6 4792.633045 4595.016823 1036.163983 855.195737 71.40535116 70.3046693

7 4951.587728 4711.457297 735.82339 1110.36984 61.43196151 78.8009844

8 5127.650419 4851.865628 1028.714485 974.535522 67.16026587 80.7510912

9 4213.123791 4227.131367 1006.163651 693.015657 61.80173641 75.0614487

10 4388.805181 5361.415343 887.0345646 813.130685 68.36587932 73.5915055

11 4862.966377 4203.513913 877.8178844 1104.47353 73.62834893 81.1984111

12 4265.85426 5334.298362 986.2523487 742.17075 70.93162192 78.2357104

13 4830.792434 4901.318711 826.6711289 827.602189 68.93372081 76.0991019

14 4619.684576 4464.911989 749.4744233 871.360054 56.4622385 71.1095197

15 4672.945496 5012.768994 930.1932444 930.647017 57.45928662 66.9842984

16 4301.693121 4563.371791 1048.809952 1059.51057 56.40269137 66.0322041

17 4240.292119 4453.55102 960.9380585 679.490015 57.05427107 66.3409535

18 4546.900924 4368.046961 837.1380532 1269.71181 57.57915765 66.263964

19 4736.784109 4563.713271 803.5690309 1149.69257 57.39472165 75.1020043

20 4927.370618 4985.626756 802.0707333 949.201069 58.56337916 66.5018131

21 4745.962526 4268.210716 971.2161657 1035.84231 84.97886224 77.278123

22 4704.060283 4530.930051 871.0047479 946.415563 83.75003637 107.235943

23 5181.527463 4709.96614 869.6858203 1049.75812 88.00241065 110.964508

24 4718.091802 4570.219583 1003.026828 917.555919 74.77390515 102.335962

25 4226.097192 5336.282205 863.4354307 897.940395 74.88039926 88.0454088

26 4706.978399 4680.602383 919.2626516 999.01329 84.28058593 87.6437221

27 4782.240302 4696.840091 805.5766865 988.048877 77.9414429 94.365899

28 5287.422498 4883.631664 746.8961081 797.72096 76.3188141 84.3477808

29 4916.756496 5036.485112 934.4805999 1063.60839 121.2328974 94.1907275

30 5467.182912 4862.394357 881.0823054 898.962836 99.58652921 145.672337

31 4306.529303 4833.371655 902.1714403 982.659335 113.7672365 90.4546303

32 4183.027842 4974.432819 838.7087408 909.242445 72.86395342 140.711226

33 4392.939578 5062.464887 1037.318628 912.246168 93.25543078 96.0741311

34 4047.530913 4624.516897 855.2813664 997.411612 80.5475141 101.864948

35 4529.583132 4333.230947 877.4782972 948.148568 70.2493321 85.4985131

36 4255.799236 5016.586688 844.0019669 851.668489 58.39587275 69.6642768

37 4591.115727 4742.024106 801.0967517 1122.03704 57.4895984 68.7700118

38 4446.710076 4328.66242 908.2987592 972.825796 56.3946521 65.6056279

39 4463.651251 4803.549729 750.8183686 831.071231 55.89729563 65.1255863

40 4420.655007 4951.243552 909.1278545 866.473154 57.14852512 65.213147

41 4760.124614 4634.478576 1011.834532 987.252055 57.32113831 66.0356184

42 4644.224719 4979.032088 964.2360348 1157.92977 71.29050156 66.2798815

43 4919.680538 4208.101093 700.0706523 1085.31132 57.79070051 66.251104

44 5651.239742 4145.447347 955.4124378 1052.01851 56.53862412 66.9480465

45 4868.697543 4959.720826 813.4887026 872.689612 56.64083376 66.3630462

(Continued)
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implications of Information Theory and Kolmogorov-Complexity in solving TSP and NP

Problems in general.

The advantage of this approach is that it is independent of the computer encoding the prob-

lem and the time and space complexities are additive up to a limit that is linearly proportional

to the input size. Other heuristics methods assume a predefined knowledge about the data

structure and thus are biased towards this encoded schema. The implications of this interpre-

tation is that by reducing the NP problems to a matter of modularization of encoded and

decoded random signals in an communication noisy channel, we can find near optimal solu-

tions that are statistically significant and are guaranteed to produce the best rate of improve-

ment in the long run over many trials(i.e. simulation iterations) even though the problems

itself is computationally complex and the alternative sequential brute force algorithm would

require exponential time to solve. This mathematical model can be interpreted as a generaliza-

tion of heuristics methods.

The findings in this paper unifies critical areas in Computer Science, Mathematics and Statis-

tics that many researchers have not explored and provided a new interpretation that advances

the understanding of the role of entropy in decision problems encoded in Turing Machines.

Table 24. (Continued)

50-node

Trial N = 60 Initial Random Tour Cost Best Tour Cost Found Total Execution Time

0 QA SA QA SA QA SA

46 4548.266669 4667.805502 857.9641925 698.448853 56.46022322 67.1403534

47 4526.748229 4364.07524 944.2137708 1083.92177 56.08612165 67.1104689

48 4477.883901 5024.492103 972.2009554 999.856492 57.63071399 66.3520515

49 4317.125097 5044.001873 933.6392304 948.603177 58.23602575 65.5457691

50 4575.872243 4903.155907 1087.920943 839.863471 57.96136195 66.182039

51 4563.047938 4424.909203 934.2368709 1019.90042 56.72733254 65.8799768

52 4820.853628 4875.868205 970.4719961 1112.21415 55.71390442 66.183776

53 4615.052748 5386.727246 1034.389805 939.401344 55.77318577 65.8460782

54 5105.564284 4715.986396 873.7197202 836.813936 55.55562469 65.2542301

55 4633.267827 4585.63924 825.4093226 996.826956 57.06582138 66.729305

56 4487.584383 4467.312127 1123.628464 1071.80932 70.06335915 66.4194826

57 5282.957016 4620.83047 779.0921158 865.162998 56.55935544 69.5257076

58 4045.585905 4825.07628 944.2176677 747.969855 56.93291826 67.0270058

59 4633.980055 5006.414463 918.037855 1358.45442 57.70211316 66.7727485

60 4957.692367 4740.435311 1006.171011 1104.39786 56.55972443 66.2560434

Tables 18 and 19 demonstrate the T-test calculation for 2 independent means for n = 30. Tables 20 and 21 demonstrate the T-test calculation for 2 independent means

for n = 50.

https://doi.org/10.1371/journal.pone.0242285.t024

Table 25. Comparison matrix for the two-tailed t-test independent means p-values for the test cases with nodes

with n = 20, 30, 50 and sample size N = 60.

20-node 30-node 50-node

Cost variable t-test for N = 60 QA-SA. QA-SA. QA-SA.

p-value 4.89351E-06 1.17679E-06 0.0069376

20-node 30-node 50-node

Time variable t-test for N = 60 QA-SA. QA-SA. QA-SA.

p-value 3.73787E-05 6.53652E-06 0.00058839

https://doi.org/10.1371/journal.pone.0242285.t025
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