
RESEARCH ARTICLE

Measuring novelty in science with word

embedding

Sotaro ShibayamaID
1,2,3*, Deyun YinID

4,5, Kuniko Matsumoto3

1 School of Economics and Management, Lund University, Lund, Sweden, 2 Institute for Future Initiative,

The University of Tokyo, Tokyo, Japan, 3 National Institute of Science and Technology Policy, Tokyo, Japan,

4 School of Economics and Management, Harbin Institute of Technology, Shenzhen, China, 5 World

Intellectual Property Organization, Geneva, Switzerland

* sotaro.shibayama@fek.lu.se

Abstract

Novelty is a core value in science, and a reliable measurement of novelty is crucial. This

study proposes a new approach of measuring the novelty of scientific articles based on both

citation data and text data. The proposed approach considers an article to be novel if it cites

a combination of semantically distant references. To this end, we first assign a word embed-

ding–a vector representation of each vocabulary–to each cited reference on the basis of text

information included in the reference. With these vectors, a distance between every pair of

references is computed. Finally, the novelty of a focal document is evaluated by summariz-

ing the distances between all references. The approach draws on limited text information

(the titles of references) and publicly shared library for word embeddings, which minimizes

the requirement of data access and computational cost. We share the code, with which one

can compute the novelty score of a document of interest only by having the focal document’s

reference list. We validate the proposed measure through three exercises. First, we confirm

that word embeddings can be used to quantify semantic distances between documents by

comparing with an established bibliometric distance measure. Second, we confirm the crite-

rion-related validity of the proposed novelty measure with self-reported novelty scores col-

lected from a questionnaire survey. Finally, as novelty is known to be correlated with future

citation impact, we confirm that the proposed measure can predict future citation.

Introduction

Novelty constitutes a core value in science, as new discoveries shape the basis of scientific

advancement [1, 2] and has broader impact on technological innovation [3]. Accordingly, nov-

elty serves as a key criterion for the evaluation of scientific output as well as decision makings

such as funding allocation, employment, and scientific awards [1, 4–6]. It is therefore critical

that scientific novelty can be reliably measured. In practice, novelty is usually assessed through

peer review on a small scale [7], while evaluating novelty on a larger scale remains to be a chal-

lenge. Though recent bibliometric techniques have enabled us to measure various qualities of

scientific discoveries, including novelty [8–11], the validity and practical utility of the extant

measures are debatable [12, 13].
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Previous bibliometric measures for the novelty of scientific documents draw on roughly

two data sources, either citation data or text data. Text data are of obvious use, in that once a

scientific discovery is documented, its novelty should be revealed in text information. None-

theless, due to the ambiguity and complexity of natural languages, previous measures use text

data rather superficially without sufficiently exploiting the semantic information [e.g., 14]. It is

relatively recently that such semantic information got extracted from text data and translated

into bibliometric indices [e.g., 15]. To circumvent the technical challenges in extracting

semantic information from text data, citation data have been extensively utilized in previous

novelty measures. As a citation represents information flow from a cited document to a citing

document, it can be used to infer certain qualities, including novelty, of a document without

scrutinizing the content [10, 16]. However, the validity of this approach has been occasionally

questioned [12]. In fact, insufficient validation has been a limitation common to most novelty

measures [17]. Furthermore, a practical limitation common to previous measures is that they

require access to a large-scale bibliometric database (often the whole universe of scientific doc-

uments), which are usually proprietary and expensive, and high computational power, which

potential users of the measures do not always have.

To address previous limitations, we propose a new approach to compute the novelty of sci-

entific documents by combining both citation and text data (see Fig 1). Our approach features

recombinant novelty [18–21], considering a document to be novel if it cites a combination of

semantically distant documents. This is in line with the previous measures based on citation

data [e.g., 8]. Unlike previous measures, however, we use text data to quantify the distances

between cited documents. Specifically, based on the text information included in cited docu-

ments, we map each document to a word embedding–a high-dimensional vector assigned to

each vocabulary [22]–with which to compute distances between cited documents. To the best

of our knowledge, this is the first to use the word-embedding technique to measure the novelty

of scientific documents.

For text information, we test three sources–the abstract, keywords, and the title of cited

documents–finding all satisfactory performance. Of the three sources, titles of cited documents

are often included in the focal document itself, and the burden of data access is minimized. As

a library of word embeddings, we draw on scispaCy [23], which is publicly available and thus

significantly reduces the computational cost. We publicly share the code [24], with which one

can compute the novelty score of a document only with the focal document’s reference list.

We validate the proposed measure in three exercises. First, we confirm that word embed-

dings from the selected library can be used to quantify semantic distances between documents

by comparing with an established bibliometric distance measure. Second, we test the criterion-

Fig 1. Algorithm of novelty computation.

https://doi.org/10.1371/journal.pone.0254034.g001

PLOS ONE Measuring novelty in science with word embedding

PLOS ONE | https://doi.org/10.1371/journal.pone.0254034 July 2, 2021 2 / 16

https://doi.org/10.1371/journal.pone.0254034.g001
https://doi.org/10.1371/journal.pone.0254034


related validity of the proposed novelty measure based on self-reported novelty scores collected

from a questionnaire survey. Third, as novelty is known to be a predictor of future citation

impact [8, 11], we test whether the proposed measure is correlated with future citation.

This paper is structured as follows. In the next section, we categorize previous novelty mea-

sures and discuss their characteristics and limitations. The following section describes our pro-

posed measure and outlines its operationalization. Then, we present the methods and data for

the validation exercises. Finally, we present the results and conclude.

Literature review

Previous bibliometric measures for novelty can be categorized based on their conceptualiza-

tion and operationalization (Table 1). Conceptually, some measures aim to represent the

uniqueness of a certain knowledge element (Groups 1 and 4)–for example, a discovery of a

new molecule and development of a new material. In contrast, other measures aim to capture

a recombination of knowledge elements (Groups 2 and 3), in which a new or rare combination

of knowledge is considered to be a sign of novelty. The notion of recombination as a source of

novelty has been widely discussed in the literature. The creativity literature argues that associ-

ating remote elements is a path to creative solution in general as well as in science [18, 19], and

the management literature suggests that combining components is a major route to technolog-

ical innovation [20, 21].

For operationalization, a group of measures exploits citation information to assess novelty

indirectly (Group 3), and the other draws on text analysis to assess the content of documents

(Groups 1, 2, and 4). Among the latter, the majority uses text information only superficially

without using the semantic information of the text (Groups 1 and 2), but recent measures

attempt to extract semantic information (Group 4). Studies on novelty measures have been rela-

tively advanced in technology management, in which a patent is used as a unit of document

[e.g., 16, 25]. We also refer to these measures because the key idea behind the measures is appli-

cable to scientific documents. In what follows, we discuss four groups of previous measures.

(1) A new word

The first group of novelty measures is based on the first appearance of a word(s) that appears in

a document [14, 25]. If a document includes or is associated with a certain word or a sequence

of words that is new to the world, it can be inferred that the document delivers novel informa-

tion. For example, if a document contains a previously unknown chemical compound, it sug-

gests that the document is novel. In this category, Azoulay et al. [14] drew on Medical Subject

Heading (MeSH), a controlled keyword dictionary, and operationalized the novelty of a journal

article based on the average age of keywords (the number of years since its first appearance).

Table 1. Previous novelty measures.

Group Description Concept Data

Recombination Uniqueness Citation Text

1 A new word [14, 25�, 26�] X X

2 A new combination of words [9, 25�, 27�] X X

3 A new combination of cited references [8, 10, 11, 16�, 17] X X

4 A distant text [15�] X X

Note.

�patent measures

https://doi.org/10.1371/journal.pone.0254034.t001
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Balsmeier et al. [26] and Arts et al. [25] also identified novel inventions based on the first occur-

rence of a word as well as a sequence of words (bigram and trigram) in patent documents.

(2) Recombination of words

The second group is technically similar to the first group but conceptually different as it is to

measure "recombinant" novelty [19, 20]. When a document includes a rare combination of

knowledge elements, even if each element has been known, the document can be considered

to be novel. In this category, Boudreau et al. [9] measured the novelty of a research grant pro-

posal based on a new combination of MeSH keywords. Similarly, drawing on a controlled dic-

tionary of patent classifications, Verhoeven et al. [27] measured recombinant novelty by a new

combination of IPC codes assigned to the patent. Arts et al. [25] also measured the novelty of a

patent based on a new combination of two words that appeared in the patent.

The first and second groups are intuitively straightforward but have some limitations.

Among others, these measures largely disregard semantic information included in text data.

For example, the first group may consider a new synonym of an existing concept to be novel,

unless controlled dictionaries are available. Similarly, the second group may consider any

recombination equally novel regardless of the semantic distance between combined elements.

(3) Recombination of cited documents

The third group also measures recombinant novelty, but instead of using text information, it

draws on citation information. A document citing another document implies that knowledge

in the latter is used by the former [28]. Thus, a document can be characterized by its cited doc-

uments, by considering each of cited documents to be a knowledge element that is incorpo-

rated into the citing document. Based on the recombinant novelty concept [18, 19], a

document citing a set of documents that have rarely been cited together can be considered as a

sign of novelty. In contrast to the first and second groups, in which a single word is considered

a representation of knowledge, considering a cited document as a knowledge element adds

semantic richness, making this approach popular in previous studies.

In this group, Dahlin and Behrens [16] proposed a novelty measure of patents based on a

rare combination of cited references. Trapido [10] applied the same approach to journal arti-

cles, specifically in the field of electrical engineering. This approach is extended by Matsumoto

et al. [17] so that it is applicable in any scientific field. A variation of this approach is to draw

on journals in which cited documents are published [8, 11]. That is, if a focal document cites

documents in two journals that have rarely been cited together, it is considered as a sign of

novelty. This approach thus consolidates the unit of knowledge further at the journal level.

Though considering a document or a journal as a unit of knowledge, without needing to scru-

tinize the content of documents, is convenient, its validity is under dispute [12, 13].

(4) A distant text

The last group quantifies the uniqueness of a document based on text analysis, and relies on more

recent development of natural language processing (NLP) to extract semantic information. In

particular, drawing on the word embedding technique, Hain et al. [15] proposed a measure of pat-

ent novelty. Word embeddings map each word to a high-dimensional vector (i.e., a list of num-

bers). It allows us to quantify a semantic relationship between a pair of words by calculating the

distance between the vectors–i.e., similar words have close vectors while dissimilar words have

remote vectors. Hain et al. [15] assigned a vector to each patent by aggregating the vectors for a

set of words that appear in the patent. Then, they calculated a distance between every pair of pat-

ents, with which a patent remote from any other patent is considered to be novel.
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Proposed measure of novelty

Measuring novelty with word embedding

As a new approach, we propose to measure recombinant novelty of scientific documents by

applying the combination of the word embedding technique and citation analysis. We con-

sider a cited document as an appropriate unit of knowledge input, as in Group 3. Unlike the

previous measures, which disregard the content of cited documents, we draw on the word

embedding technique to extract semantic information in cited documents.

The word embedding technique often draws on machine learning algorithms (e.g., word2vec)

to calculate a vector representation for each word based on the co-occurrences of words in a text

corpus [22]. The approach is gaining confidence as the performance of machine learning has

been improving, and has been recently applied to scientific documents for various purposes. For

example, Tshitoyan et al. [29] captures the knowledge structure in the extant literature in mate-

rial sciences with which they predict future scientific discoveries in the field. Still, to the best of

our knowledge, the technique has not been used to measure the novelty of scientific documents.

Although computing word embeddings is demanding, some algorithms are publicly avail-

able, and some well-trained word embedding models (a list of vectors for a set of vocabularies)

are also publicly accessible [30]. In this study, we use scispaCy as an established and publicly

available library of word embeddings. ScispaCy builds on a popular spaCy model [30] and

offers vector representations in a 200-dimensional vector space for 600,000 vocabularies spe-

cializing in biomedical texts [23, 31].

Operationalization

With the selected word embedding library and citation information, the novelty of a document

is computed through the following steps (Fig 1). Suppose that a focal document cites N refer-

ences, and that each of the cited references has some text information. One can use various

sources of text information, such as the full text and the abstract. In the following analysis, we

construct respective measures from three text sources: the abstract, keywords, and the title of

cited documents. Of the three sources, we intend to propose primarily using the title to mini-

mize data requirement and maximize the utility of the measure.

Step 1. First, we vectorize the text information of the i-th reference as vi2R200 (i2{1,. . .,N}).

Since the text information includes multiple words, vi is calculated as the mean of word

embeddings of all words included.

Step 2. Second, we compute the distance of each pair of cited documents. The cosine dis-

tance between i-th and j-th references (1�i<j�N) is given by:

dij ¼ 1 �
vi � vj
jvijjvjj

ð1Þ

The cosine distance ranges from 0 to 2, where a larger value indicates a larger distance.

Step 3. Finally, we aggregate the distance scores over all pairs of cited references. In our

dataset, one document has 32 cited references on average, which gives approximately 500 ref-

erence pairs. As a novelty measure of a focal document, we take the q-percentile value of the

distance scores (Novelq), where q2[0,100] and the 100-percentile value is defined as the maxi-

mum. Hence,

Novelq ¼ R� 1 Nq
100

� �

ð2Þ

where R(dij) is the ordinal rank of dij of all the distances of N(N−1)/2 reference pairs.
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Computational cost

The aforementioned previous measures of novelty require extensive data access and process-

ing. Text-based approaches (Table 1, Groups 1, 2, and 4) require the entire history of word

uses, and citation-based approaches (Table 1, Group 3) need comprehensive citation network

data. This poses two practical challenges for potential users of the novelty measures. First, the

required data are usually proprietary, and thus, literally expensive. Second, processing the mas-

sive data takes high computational power. Not all users have such rich resources, compromis-

ing the utility of the measures.

Our proposed approach addresses these issues and aims to allow anyone to compute and

use the novelty measures. Our measure requires only limited data access and little need for

proprietary data. The measure can be computed only with the titles of a focal document’s cited

references, which is often included in the focal document itself, and a publicly available library

of word embeddings. The approach requires only small data processing. Unlike previous mea-

sures, our approach does not require extensive citation network analysis unlike Group 3, nor

comparison with the whole document universe unlike Group 4. With the publicly shared code,

anyone can compute the measure.

Methods and data

Previous novelty measures have been rarely validated with a few exceptions [17]. To confirm

the validity of our proposed measure, we carry out three exercises. The primary analysis is to

test the criterion-related validity based on self-reported novelty scores for selected documents.

As a preparatory step to this main analysis, we test whether scispaCy word embeddings can be

indeed used to measure distances between documents (corresponding to Step 2). Finally, since

novelty is known as a predictor of future citation impact [8, 11], we run regression analyses to

test whether our proposed measure is positively associated with future citation.

To compute the proposed measures, we downloaded bibliometric information from Web

of science (WoS). Since scispaCy specializes in the vocabularies in biomedicine, we focus on

documents within relevant Subject Categories [32]. We focus on "article" as a document type

and documents written in "English" [33]. We employ different sets of random samples for each

analysis as detailed below.

Validation of distance

Before validating the novelty measure itself, we test if scispaCy word embeddings convey

semantic information of a text, and that they can assess the distance between a pair of docu-

ments. To this end, we compute distances of pairs of documents in two approaches–one based

on scispaCy word embeddings and the other with a previously established approach–and con-

firm that the two are sufficiently correlated.

As a previously established approach, we compute the co-citation distance between a pair

of documents i and j:

dC
ij ¼ 1 �

corefij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
refi � refj

q ð3Þ

where refi is the number of references cited by i and corefij is the number of references cited by

both i and j. Co-citation distance has been previously used to measure the distance of scientific

documents without a need to look into the content of the documents [10, 17]. A basic assump-

tion is that a pair of documents should include a similar content if they cite a similar set of doc-

uments. We do not consider that the co-citation distance is superior to the word-embedding
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distance, but the two distances are expected to be correlated if scispaCy word embeddings do

convey semantic information.

Second, using scispaCy word embeddings, we assign vectors respectively to the same pair of

documents i and j (see Step 1 in Fig 1) and compute their distance (Eq 1). As text data for vec-

torization, we draw respectively on three sources (the title, the abstract, and keywords) from

the pair of documents, preparing three distance measures (dT
ij ; d

A
ij , and dK

ij ). Note that the

word-embedding distance between a pair of focal documents is computed in this analysis, and

this is applied to pairs of references cited by focal documents when we compute novelty.

For this analysis, we employed the following sampling strategy. First, we randomly sampled

100 authors in the field of biomedicine. Then, we collected all documents authored by these

authors [34]. Finally, we filtered out documents outside of the biomedical field as well as docu-

ments missing reference information, resulting in 1,600 documents (16 documents per author

on average). We compute the distance measures between documents written by the same

author (i.e., we do not compare documents written by different authors). This is because co-

citation is rare between a randomly chosen pair of documents written by different authors,

which spuriously inflates the correlation.

Validation of novelty

After confirming that the scispaCy word embeddings carry semantic information of text, we

test the criterion-related validity of the proposed novelty measure (Eq 2). To this end, we draw

on self-reported novelty scores, which we obtained from a questionnaire survey we conducted

in 2009–2010 [35, 36]. The survey was responded by 2,081 scientists from various scientific

fields, of whom this study draws on a subset of 321 respondents in biomedical fields.

The survey included a wide range of questionnaire items, one section of which asked the

respondents to assess a randomly selected journal article that they published in 2001–2006.

This section includes eight items to characterize the finding reported in the article (Table 2).

As novelty is a multifaceted concept [37], the survey incorporated four aspects (theory, phe-

nomenon, method, and material) in which the article may make scientific contribution. For

each aspect, the survey further included two items, one indicating newness and the other indi-

cating improvement over existing literature. We expect that the proposed measure should be

correlated more with the newness items but less with the improvement items. Each item was

responded in a 5-point scale (1: not relevant at all—5: highly relevant).

For the selected articles, we computed the proposed novelty measures (Eq 2), based on the

title, the abstract, and keywords respectively, which generates three series of novelty measures

(NovelTq ; Novel
A
q , and NovelKq ) where q2{100, 99, 95, 90, 80, 50}.

Table 2. Questionnaire of novelty.

Aspect New vs. Improvement Questionnaire item

Theory / Hypothesis New (1) Developing a new hypothesis or theory

Improvement (2) Supporting or rejecting an existing hypothesis or theory

Phenomenon New (3) Discovering an unknown phenomenon or material

Improvement (4) Understanding a phenomenon

Method New (5) Developing a new research method

Improvement (6) Improving an existing research method

Material / Function / Mechanism New (7) Creating a new function, mechanism, or material

Improvement (8) Improving on an existing function, mechanism, or material

Note. Responded in a 5-point scale (1: not relevant at all—5: highly relevant).

https://doi.org/10.1371/journal.pone.0254034.t002
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Prediction of future citation

Previous studies consistently indicate a positive association between novelty and future cita-

tion impact of scientific documents [8, 11]. Thus, we test whether the proposed novelty mea-

sure can predict future citation effectively. For this analysis, we use "top-1% cited" (TC) in the

respective field as the dependent variable and regress it on the proposed novelty measures. TC
is a dummy variable coded 1 if the citation count of the article is within top 1% and 0 other-

wise. Three sets of novelty measures are calculated with the title, the abstract, and keywords

respectively (NovelTq ; Novel
A
q , and NovelKq ) where q2{100, 99, 95, 90, 80, 50}. Since the depen-

dent variable is a dummy variable, we draw on logistic regressions:

PrðTC ¼ 1Þ ¼ f ðb0 þ b1Novelq þ εÞ ð4Þ

where f is the logistic function.

For this analysis, we randomly sampled 2,000 articles published in biomedicine fields in

2010, and evaluated their citation impact as of 2020 (10 years after publication). We over-

sampled top-1% cited articles, so that the final sample consists of approximately 1,000 top-1%

cited articles and 1,000 non-top-1% cited articles.

Results

Description of the measure

To illustrate the distribution of the proposed measures, we computed the novelty of randomly

selected documents (Fig 2B) and the distances of cited references of the documents (Fig 2A).

Fig 2. Distribution of distance and novelty. The same sample for the third validation study (prediction of future

citation) is used, except that oversampled highly-cited documents are excluded. The 947 selected documents include in

total approximately 230,000 combinations of cited references, for which the distance (Eq 1) is computed (A). The

distances are summarized at the focal document level (Eq 2), and Novel100 is displayed as an example (B). Novelty

measures with different q values are illustrated in S1 Appendix. Since abstracts and keywords are not available for all

documents, the sample sizes are smaller.

https://doi.org/10.1371/journal.pone.0254034.g002
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Comparing distances based on three text data sources, Fig 2A shows that the abstract-based

measure (dA
ij ) takes lower values. This is because abstracts include longer text information,

which increases the chance that two cited documents share something in common. Based on

the distances, novelty measures (Novelq) with various q’s are computed (see S1 Appendix). Fig

2B presents Novel100, which takes the maximum value of all reference pairs.

Validation of distance

Table 3 presents the result of the validation of the distance measures. The sampled 1,600 arti-

cles authored by 100 authors yield 21,908 article pairs to compute the distances for. As the

abstract and author keywords are not always available, the sample sizes are smaller for the anal-

yses of the distances based on abstracts (dA
ij ) and keywords (dK

ij ).

Table 3A shows that three word-embedding distances (dT
ij ; d

A
ij , and dK

ij ) are all strongly positively

correlated with the co-citation distance (dC
ij ). Given that the co-citation distance is an accepted mea-

sure for the distance of scientific documents, this result supports our idea that scispaCy word

embeddings can be used as a basis of novelty measurement. Compared to the title distance (dT
ij ), the

abstract distance (dA
ij ) and the keyword distance (dA

ij ) indicate greater correlations with the co-cita-

tion distance (dC
ij ). Still, the title distance (dT

ij ) has a strongly significant correlation.

As we propose to use titles as the main source of text data for practical utility, we further

examine the validity of the title distance (dT
ij ). We anticipated that short titles may carry insuffi-

cient semantic information and may not allow us to compute the distance reliably. We thus

carry out correlation analyses with documents with different title lengths (word counts).

Table 3B shows that the title distance (dT
ij ) is significantly correlated with the co-citation dis-

tance (dC
ij ) regardless of the word count. In fact, the correlation is strongest when the title

length is shortest (10 words or shorter), contrary to our expectation. Thus, longer titles might

bring more noise than information.

Validation of novelty

Table 4 reports the correlation between the series of the proposed bibliometric measures (on

the vertical axis) and the self-reported questionnaire scores (on the horizontal axis). On top of

Table 3. Validation of distance measures.

(A) All distance measures

Co-citation (dC
ij ) Title (dT

ij ) Abstract (dA
ij )

Title (dT
ij ) .231��� (21,908)

Abstract (dA
ij ) .310��� (16,706) .337��� (16,706)

Keyword (dK
ij ) .318��� (8,781) .450��� (8,781) .407��� (8,481)

(B) Co-citation distance (dC
ij ) and title distance (dT

ij ) by title length

Title word count Correlation coefficient

1–10 .440��� (1,395)

11–13 .246��� (1,151)

14–17 .197��� (1,827)

18- .259��� (1,867)

Note. Pearson’s correlation coefficient (the number of observations in parentheses).

���p<0.001. (B) Subsamples of document pairs are selected based on the title word count of both paired documents.

https://doi.org/10.1371/journal.pone.0254034.t003
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the eight scores from the questionnaire, we added two summary scores by taking the mean of

the four newness scores (Column 9) and the mean of the four improvement scores (Column

10) respectively. We expect that our proposed measure should be correlated with the newness

scores (Columns 1, 3, 5, 7, and 9) rather than the improvement scores (Columns 2, 4, 6, 8, and

10). Focusing on the newness summary score (Column 9), Fig 3 illustrates the correlation coef-

ficients with novelty measures from three different text sources and with different q values.

The result presents a few findings mostly consistent with our expectation. First, Column 9

shows significant correlations between the proposed measures and the self-reported newness

score, while Column 10 shows insignificant or negatively significant correlations with the self-

reported improvement score. This suggests that our proposed approach does measure the

newness of a scientific document and can distinguish novel discoveries from mere improve-

ments. Second, comparing different q values, the result shows more positive correlation coeffi-

cients for the title and abstract measures (NovelTq and NovelAq ) with greater q’s. This suggests

that a small number of distant recombination (even a single new combination), rather than

many recombinations, is sufficient for a document to be novel. Interestingly, however, correla-

tion coefficients for the keyword-based measures (NovelKq ) are rather constant over a range of

q values. Third, comparing the three sources of text information, the result overall shows

somewhat larger correlation coefficients for the keyword-based measures (NovelKq ) than for the

Table 4. Validation of novelty measures.

Self-reported measure

Theory Phenomenon Method Material Summary

(1) New (2) Impr. (3) New (4)

Impr.

(5) New (6)

Impr.

(7) New (8) Impr. (9) New (10) Impr.

Bibliometric measures Title (NovelTq ) q = 100 .126 � -.012 .137 � .066 .038 -.002 .187 ��� .014 .170 �� .024

q = 99 .096 † -.021 .097 † .034 .017 -.015 .173 �� .016 .135 � .004

q = 95 .086 -.038 .076 .031 .021 -.009 .174 �� .021 .125 � .002

q = 90 .073 -.065 .060 .030 .028 -.010 .147 �� .004 .108 † -.016

q = 80 .066 -.079 .048 .027 .022 -.017 .127 � -.003 .092 -.027

q = 50 .051 -.082 .027 .024 .008 -.072 .098 † -.019 .065 -.057

Abstract (NovelAq ) q = 100 .159 �� -.049 .130 � .067 .038 -.034 .212 ��� -.038 .188 ��� -.022

q = 99 .131 � -.074 .085 .040 .017 -.041 .184 �� -.043 .146 �� -.045

q = 95 .109 † -.094 † .058 .021 -.007 -.051 .169 �� -.050 .116 � -.066

q = 90 .108 † -.116 � .059 .042 -.002 -.053 .173 �� -.066 .119 � -.074

q = 80 .080 -.145 �� .053 .039 -.043 -.077 .142 � -.089 .083 -.104 †

q = 50 .019 -.162 �� .079 .041 -.074 -.104 + .119 † -.088 .055 -.120 �

Keyword (NovelKq ) q = 100 .186 �� .068 .144 � .136 � .065 -.030 .129 � .022 .180 �� .070

q = 99 .188 �� .059 .137 � .139 � .057 -.032 .125 � .024 .175 �� .068

q = 95 .183 �� .043 .124 � .128 � .056 -.041 .118 � .027 .165 �� .055

q = 90 .198 ��� .022 .112 † .117 � .051 -.044 .103 † .011 .158 �� .036

q = 80 .194 ��� .009 .123 � .087 .072 -.043 .104 † .006 .168 �� .020

q = 50 .180 �� -.019 .164 �� .087 .118 � -.025 .120 � .020 .200 ��� .022

Note. Pearson’s correlation coefficient.
†p<0.1

�p<0.05

��p<0.01

���p<0.001. N = 321 (Title), 318 (Abstract), and 293 (Keyword).

https://doi.org/10.1371/journal.pone.0254034.t004
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abstract-based (NovelAq ) and the title-based measures (NovelTq ). Nonetheless, the difference is

not substantial when we focus on the measures with the highest q (Novel100). The title-based

novelty (NovelT
100

), which has the smallest correlation, is still strongly correlated with the self-

reported newness summary score (r = .170, p< .01). Finally, looking into different aspects of

newness and improvement (Columns 1–8), the result shows that newness in terms of theory,

phenomenon, and material (Columns 1, 3, and 7) are correlated with the proposed measures

but newness in terms of method (Column 5) is not. This may be attributed to a specificity of

the biomedical field and needs further investigation.

Prediction of future citation

Table 5 reports the result of logistic regressions to test if our proposed novelty measures pre-

dict future citation impact. It presents the odds ratios that a document falls within the top one

percentile of citation counts. For example, the odds of a document with NovelT
100
¼ 1 to be in

the top one percentile is 154 times the odds of a document with NovelT
100
¼ 0. Overall, the

Fig 3. Correlation between bibliometric and self-reported novelty measures. Pearson’s correlation coefficient.

Novelq (q2{100,99,95,90,80,50}) is correlated with the mean of four self-reported newness scores (Column 9 in

Table 4). †p<0.1, �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0254034.g003

Table 5. Odds ratio of top-1% citation rank.

NovelTq NovelAq NovelKq
q = 100 154.02 ��� 27.89 ��� 5.91 ���

q = 99 53.26 ��� 7.98 ��� 4.42 ���

q = 95 29.27 ��� 3.17 � 3.46 ���

q = 90 20.30 ��� 2.26 2.89 ���

q = 80 14.97 ��� 1.04 2.04 ��

q = 50 5.87 ��� 0.08 �� 1.31

N 1,921 1,903 1,814

Note. Logistic regressions. Two-tailed test.

�p<0.05

��p<0.01

���p<0.001. The sampling weight is incorporated in the regression analysis.

https://doi.org/10.1371/journal.pone.0254034.t005
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result shows significantly positive correlations between most variations of the novelty mea-

sures and citation impact, supporting the construct validity of our novelty measures.

The result also shows that the measures with greater q’s (e.g., Novel100) have higher odds

ratios with greater statistical significance. This suggests that documents with a small number

of distant recombination (even a single new combination) is sufficient to attract citations. Fur-

ther to compare different text sources, Fig 4A graphically illustrates the regression result for

Novel100. The graph shows that the title-based measure (NovelT
100

) has steeper curves than those

based on abstracts (NovelA
100

) and keywords (NovelK
100

), thus best distinguishing highly-cited

documents from less cited documents.

Since previous studies occasionally reported that novelty and citation impact have an

inverted-U shaped relationship [38], we regress the citation impact on the quadratic term of

the novelty measures on top of the linear term:

PrðTC ¼ 1Þ ¼ f ðb0 þ b1Novelq þ b2ðNovelqÞ
2
þ εÞ ð5Þ

We find that adding the quadratic term increases a model fit for the novelty measures with

smaller q’s. Fig 4B and 4C illustrate the curvilinear associations for Novel90 and Novel50, show-

ing that the optimal level of novelty scores decreases for lower q’s. This also suggests that a doc-

ument with too many recombinations does not attract citation.

Alternative measure of recombination within a document

Although the proposed measure utilizes recombination between cited documents, it is

plausible to find recombination within a focal document itself. By decomposing the text

information (the title, the abstract, or keywords) of a focal document into words, assign-

ing word embeddings to them, and measuring the distance of every pair of words, we

additionally constructed similar sets of novelty measures. This is in line with a category

of previous measures [25] except that we use word embeddings to compute word

distances.

We tested the validity of this additional set of measures for the correlation with self-

reported novelty as well as for the prediction of future citation (S1 Appendix). The result is

overall unsatisfactory. Correlations with the self-reported scores are mostly insignificant and

sometimes negatively significant. Similarly, correlations with future citation impact are insig-

nificant or negatively significant. Thus, the proposed approach to quantify recombinant nov-

elty does not work with the text information within a focal document itself. This contrasts with

the previous measures of recombination within a document [9, 25], which may be attributable

to a different operationalization that the previous measures are based on the first appearance

of a combined use of two words rather than their distance.

Fig 4. Prediction of top-1% citation rank. The probability of a focal document falling within the top 1 percentile is

predicted. For easier interpretation and comparison, the horizontal axis takes the percentile of the novelty measures.

(A) based on Row 1 in Table 5. (B) and (C) based on curvilinear models incorporating the quadratic term of the

novelty measures (S1 Appendix).

https://doi.org/10.1371/journal.pone.0254034.g004
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Discussion and conclusion

Novelty is a core value in science [1, 2], and thus, a reliable approach to measure the novelty of

scientific documents in a large scale is crucial. This study is the first to propose measuring the

recombinant novelty of scientific documents based on the word-embedding technique. Most

previous measures for recombinant novelty in science have been based solely on citation data

[8, 10, 11, 16, 17]. Although citation network data is an effective tool to indirectly retrieve

semantic information, recent advancement in text analysis allows us to extract it more directly

and possibly more accurately [39, 40]. Combining citation data and text data, we provide a

well-validated and user-friendly measure of scientific novelty.

One limitation common to most previous measures is insufficient validation [17]. To

address this issue, we investigated our proposed measure from multiple angles. First, we show

that the word embeddings, with which the novelty measure is computed, can be used to gauge

the distance between scientific documents. Second, the novelty measures are significantly posi-

tively correlated with self-reported scores for various dimensions of newness but not with

those for improvement, suggesting that the proposed measure can distinguish novel discover-

ies from mere improvements. Third, the novelty measure is found to be a significant predictor

of citation impact in 10 years. Overall, these results confirm the validity of the proposed

measure.

We examined several variations of novelty measures. First, we tested different percentile

values (q) in aggregating the distance scores across all pairs of cited references. The result

shows greater performance with higher q’s both in the correlation with self-reported novelty

measures and in the prediction of future citation. Thus, the novelty of scientific documents is

determined by a small number of distant recombination. This contrasts with the previous

recombinant novelty measures based on more average distances [9].

Second, we use three different sources of text data, the abstract, keywords, and the title of

cited references, to which the word-embedding technique is applied. The three text sources

have different advantages. Abstracts offer rich information and keywords may be beneficial for

conciseness, while titles are easiest to access. Based on the validation exercises, we find that the

abstract-based measure (NovelA
100

), if we focus on the highest q = 100, demonstrates slightly

higher performance in the correlation with the self-reported novelty scores, though the differ-

ence is only marginal. In the prediction of future citation, the title-based measure (NovelT
100

)

presents highest performance. Overall, we recommend the title-based measure for data acces-

sibility and reasonable validation results.

Another limitation common to previous measures is their computational cost for expensive

data access as well as processing of massive data. Many potential users of the novelty measure

cannot afford to it, which has substantially compromised the utility of the measures and

delayed the progress of studies on scientific novelty. Our proposed approach overcomes these

challenges. Drawing on limited text information (titles of cited references) and publicly shared

library of word embeddings (scispaCy), our approach minimizes data access requirement as

well as computational cost. Using the shared code, one can compute the novelty score of a doc-

ument of interest only with the reference list of the document. Thus, we encourage the applica-

tion of the approach for various purposes.

The approach has two limitations that future work needs to address. First, it depends on

publicly available word-embedding libraries. ScispaCy specializes in biomedicine. Similar

libraries are available in some fields but not in others, in which one needs to start with comput-

ing word embeddings. When a different library is used, the external validity of our approach

needs to be tested. Second, we disregard the time dependency of word embeddings. The

semantic distances between words change over time. Iterated computation of word
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embeddings may be required, for example, when novelty scores across different time points

are to be compared.
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