
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Particle-based fast jet simulation at the LHC with
variational autoencoders
To cite this article: Mary Touranakou et al 2022 Mach. Learn.: Sci. Technol. 3 035003

 

View the article online for updates and enhancements.

You may also like
Interpretable embeddings from molecular
simulations using Gaussian mixture
variational autoencoders
Yasemin Bozkurt Varolgüne, Tristan
Bereau and Joseph F Rudzinski

-

Deep learning in electron microscopy
Jeffrey M Ede

-

A class imbalanced wafer defect
classification framework based on
variational autoencoder generative
adversarial network
Yitian Wang, Yuxiang Wei and Huan
Wang

-

This content was downloaded from IP address 106.213.28.225 on 06/07/2023 at 08:45

https://doi.org/10.1088/2632-2153/ac7c56
https://iopscience.iop.org/article/10.1088/2632-2153/ab80b7
https://iopscience.iop.org/article/10.1088/2632-2153/ab80b7
https://iopscience.iop.org/article/10.1088/2632-2153/ab80b7
https://iopscience.iop.org/article/10.1088/2632-2153/abd614
https://iopscience.iop.org/article/10.1088/1361-6501/ac9ed3
https://iopscience.iop.org/article/10.1088/1361-6501/ac9ed3
https://iopscience.iop.org/article/10.1088/1361-6501/ac9ed3
https://iopscience.iop.org/article/10.1088/1361-6501/ac9ed3


Mach. Learn.: Sci. Technol. 3 (2022) 035003 https://doi.org/10.1088/2632-2153/ac7c56

OPEN ACCESS

RECEIVED

1 April 2022

REVISED

17 June 2022

ACCEPTED FOR PUBLICATION

27 June 2022

PUBLISHED

13 July 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Particle-based fast jet simulation at the LHC with variational
autoencoders
Mary Touranakou1,2,∗, Nadezda Chernyavskaya1, Javier Duarte3, Dimitrios Gunopulos2,
Raghav Kansal3, Breno Orzari4, Maurizio Pierini1, Thiago Tomei4 and Jean-Roch Vlimant5
1 European Organization for Nuclear Research (CERN), CH-1211 Geneva 23, Switzerland
2 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, 157 72, Greece
3 University of California San Diego, La Jolla, CA 92093, United States of America
4 Universidade Estadual Paulista, São Paulo/SP—CEP 01049-010, Brazil
5 California Institute of Technology, Pasadena, CA 91125, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: mtouranakou@di.uoa.gr

Keywords: generative models, sparse data simulation, particle physics

Abstract
We study how to use deep variational autoencoders (VAEs) for a fast simulation of jets of particles
at the Large Hadron Collider. We represent jets as a list of constituents, characterized by their
momenta. Starting from a simulation of the jet before detector effects, we train a deep VAE to
return the corresponding list of constituents after detection. Doing so, we bypass both the
time-consuming detector simulation and the collision reconstruction steps of a traditional
processing chain, speeding up significantly the events generation workflow. Through model
optimization and hyperparameter tuning, we achieve state-of-the-art precision on the jet
four-momentum, while providing an accurate description of the constituents momenta, and an
inference time comparable to that of a rule-based fast simulation.

1. Introduction

At particle colliders, collimated sprays of particles are produced as a consequence of the parton shower and
hadronization processes typical of quantum chromo dynamics. These sprays of particles, called jets, are
reconstructed applying a recombination clustering algorithm, exploiting physics-inspired metrics such as the
anti-kt distance [1]. Often, jets are clustered from energy deposits recorded in the electromagnetic and
hadronic calorimeters of a particle detector. At the Large Hadron Collider (LHC), jets can be clustered from a
list of reconstructed particles, the so-called particle-flow (PF) candidates [2, 3]. In this case, jets would be
sparse sets of objects (the constituents), each represented by its momentum6 and possibly a set of auxiliary
features, such as the nature of the particle (electron, muon, etc), its electric charge, etc.

A time- and resource-effective strategy to simulate jet production is a fundamental asset for physics
studies at the CERN LHC. Whether testing predictions of the standard model (SM), searching for evidence
of physics beyond the SM, or assessing systematic uncertainties associated to a given measurement, physicists
rely on an accurate simulation of the full collision process and of the detector response. This implies the need
for a detailed simulation of a chain of very different steps, from the proton collision to the generation of the
collected signal in the detector sensors. Typically, physicists simulate datasets at least 10 times larger than the
amount of collected data, so that the precision on the final measurement is not limited by the amount of
simulated data at hand.

6 As common for collider physics, we use a Cartesian coordinate system with the z axis oriented along the beam axis, the x axis on the
horizontal plane, and the y axis oriented upward. The x and y axes define the transverse plane, while the z axis identifies the longitudinal
direction. The azimuth angle ϕ is computed with respect to the x axis. The polar angle θ is used to compute the pseudorapidity η =
− log(tan(θ/2)). The transverse momentum (pT) is the projection of the particle momentum on the (x, y) plane. We fix units such that
c= ℏ= 1.
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A typical high-energy physics (HEP) simulation software relies on the GEANT4 [4] library to model the
interaction of particles traversing the detector material. This approach, based on Monte Carlo (MC)
techniques, provides a typical accuracy at the percentage level, but it comes at a high cost in terms of
computing resource utilization. At the LHC, the simulation workflow consumes up to∼50% of the total
computing resources of an experiment. With the amount of collected data increasing, the need for MC
simulation is going beyond what the available computing infrastructure could sustain. Projected to the
planned high-luminosity LHC upgrade, this trend will eventually become unsustainable [5]. Jet simulation is
one of the most expensive tasks, since jets are very abundant in LHC collisions and are made of many
particles. Since the simulation of each of these particles is a demanding operation, the possibility of
simulating all particles in a jet at once would be a major improvement. The main difficulty of this task is to
match state-of-the-art accuracy, which also depends on the specific use case, e.g. which quantity a specific
analysis uses. For instance, an algorithm reproducing the jet kinematics but not describing the angular
distribution of the particles in the jet might be suitable for an analysis needing a good description of the jet
momentum (e.g. a dijet resonance search), but not for an analysis exploiting jet substructure techniques
(e.g. an all-jet diboson resonance search). Certainly, an algorithm describing every aspect of jet physics
would be an ideal solution.

As a first step, a typical LHC simulation makes use of an event generator, modeling a proton-proton
collision, the consequent production of quarks and gluons (among other particles), and their hadronization
into jets of particles. Since no detector response is involved, this step typically requires a relatively modest
amount of computing resources7. In addition, its content is independent of experimental aspects
(reconstruction software, detector configuration, etc), so that a dataset of these generator-level events can be
stored for long term and used many times (as is the case for the CMS experiment). Computing requirements
significantly increase when detector effects are to be taken into account. At first, one typically uses GEANT4
to simulate the detector response. Then, the reconstruction software runs on the event and produces the
objects (e.g. the PF candidates for CMS), eventually clustered into jets. These two steps could be bypassed by
a jet response function, taking as input the list of jet constituents at generator level and returning the list of
constituents at reconstruction level. In this paper, we aim at approximating this jet response function with a
variational autoencoder (VAE), trained using generator-level jets as input and the corresponding
reconstruction-level jets as a target. We represent a jet as a list of particles’ momenta. Doing so, the VAE
returns a reconstructed jet in a format that is already compatible with a typical PF-based analysis software.
A different approach to the problem of data sparsity consists of representing the jet as a point cloud, as
proposed for many HEP-specific problems [7]. We investigated that approach when training a generative
adversarial network (GAN) [8] to generate the list jet constituent momenta from random numbers. A similar
approach was presented in [9], where a graph VAE was used to generate detector hits in a jet, from which jet
constituents could be reconstructed using standard rule-based algorithms, e.g. PF reconstruction [2, 3]. This
work has many common points with [9], with two main differences: we do not use graph architectures, and
we aim at learning the detector response and bypassing the standard rule-based reconstruction algorithms
(to offer further speed up of the simulation process). We do so by taking the reconstructed jet as a target. In
this respect, our algorithm could be used to replace detector parametrization approaches now used in Fast
Simulation tools [10–12], while the algorithm of [9] aims at speeding up a GEANT-based full simulation. In
the future, both approaches will be useful to HEP experiments and, most likely, the ultimate generative
model will emerge from a combination of the two.

This paper is organized as follows: section 2 discusses related work. Sections 3 and 4 describe the
benchmark dataset and the model architecture, respectively. A strategy to apply the model to a realistic use
case is discussed in section 5. Training results are discussed in section 6. Conclusions are given in section 7.

2. Related works

In the recent past, several studies explored the possibility of speeding up the data simulation process using
generative models based on deep neural networks (NNs). In particular, convolutional neural networks
(CNNs) have been proposed to generate single-particle showers in a calorimeter [13–19], full jets at the
LHC [20–22], multi-dimensional functions of kinematic quantities [23, 24], event kinematics at
colliders [25, 26], and cosmic ray showers [27]. Both GANs [28–30] and VAEs [31] were considered.

These studies clearly demonstrate that integrating deep generative models in the data simulation
workflows of HEP experiments could lead to an important saving in terms of computing resources. But
there is an objective difficulty when scaling up these proof-of-concept solutions to production-ready

7 This picture could in principle change if next-to-leading order precision would be adopted as a default. On the other hand, ongoing
work on parallelizing event generation libraries on GPUs [6] may compensate for this precision increase.
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simulation tools. The main problem lies in the complexity of a typical HEP detector, characterized by
detector elements with different technology and geometry, partially overlapping with each other and with
passive material (e.g. absorbers in calorimeters) in between. As a consequence of this, a typical HEP dataset
consists of a sparse set of energy deposits, which often cannot be represented as a regular grid of pixels.
Future detectors will be characterized by higher granularity, with small-size sensors designed to resolve hits
from individual particles in dense environments, such as jet cores. This will make the sparsity of the event
even more complicated. This is the main reason why most of the great ideas based on CNNs had so far a little
impact on HEP experiments. Instead, other approaches were explored as alternatives to CNNs, e.g. a
recurrent neural network (RNN) trained adversarially [32], graph NNs [8, 9, 33], or normalizing flows [34].
Similar issues are present in other domains, e.g. galaxy simulation in cosmology [35].

In this paper, we investigate an alternative strategy to overcome difficulties with the peculiar nature of
HEP data. In previous studies, we discussed how to sample jets as sparse data from a probability density
function, modeled using deep generative models. To this purpose, we considered both GANs [8] and
VAEs [36]. Here we take a different approach, in which the input is a generator-level jet (as opposed to a
vector of random coordinates in some latent space) and the aim of the training is to learn a morphing
function from generator to reconstruction level.

The strategy is similar to what is discussed in [37], where a similar approach is followed to morph a set of
analysis-specific features from generator- to reconstruction-level precision.

3. Dataset

The reference dataset consists of jets generated in pp→WW collisions at a center-of-mass energy√
s= 13 TeV. TheW bosons are forced to decay to quarks, that then shower to jets. The event generation is

performed using PYTHIA8 [38]. The generated list of particles is passed to DELPHES [10], which applies
detector effects using the CMS DELPHES description. At this stage, additional collision events are
superimposed to the generated collision, to mimic the effect of so-called pileup. The number of collisions is
randomly sampled from a Poisson distribution with expectation value set to 50, in agreement with the
expected LHC running conditions for Run 3. The DELPHES PF reconstruction algorithm is applied to
the event, returning the list of reconstructed particles. Reconstructed particles are required to have
pT > 250 MeV and be within |η|< 3.2. These particles are then clustered into jets using the anti-kt [1]
algorithm with jet-size parameter R= 0.5. Jets with pT > 200 GeV and within |η|< 2.5 are retained. These
jets represent the target dataset. With the same setting, generator-level jets are clustered from the stable and
detectable particles produced in the collision, before detector effects are taken into account. These jets
represent the input dataset.

Target jets within pT and η acceptance are matched to input jets minimizing the angular distance
∆R=

√
∆ϕ2+∆η2. An input-target pair is formed, taking the closest input jet to each target jet. For both

input and target jets, constituents are ordered by decreasing pT and the first 50 particles are retained. When
fewer particles are present, the list is zero-padded. The list contains the momentum of each constituent in
Cartesian coordinates (px,py,pz). The constituent mass is implicitly assumed to be zero. The main
advantages of this specific choice are: it retains information of the position of the jet in the detector
(as opposed to local coordinate choice); the distribution of these quantities is unbounded and symmetric
around 0, which makes the learning process easier. In particular, we avoid issues related to the periodicity of
ϕ and hard-threshold at boundaries (e.g. on pT).

We apply feature-dependent standardization by subtracting the mean and scaling the features to unit
variance. During early stages of this work, we verified that these choices help the model training to converge
to more accurate configurations of the network weights. After this pre-processing, each jet is represented as a
2D array of 3× 50 numbers. The whole dataset includes∼1.7M jets. We split these data in three parts: 60%
for training, 20% for validation, and 20% for testing. The dataset is published on Zenodo [39].

4. VAE architecture

The VAE architecture is schematically shown in figure 1. The encoder receives a single-channel 3× 50 table,
which is processed by three 2D convolutional layers, with 32 3× 5 kernels, 64 1× 5 kernels, and 128 1× 5
kernels, respectively. The stride is set to 1 and zero padding is used when the kernel arrives at the edge
of the table. The output tensor is flattened and passed to two dense layers, with 640 and 150 nodes,
respectively. From the second layer, two 20-dimensional vectors are derived, corresponding to the mean µ
and log-variance values of the latent space variables z. These values are used to define the Gaussian prior
function from which a set of z values is sampled and passed to the decoder. The decoder architecture mirrors
the encoder, with the Conv2D layers being replaced by ConvTrans2D layers. Leaky ReLU activation functions
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Figure 1. Graphical representation of the VAE architecture.

are used across the whole architecture with the coefficient of the negative slope set to 0.1, except for the
encoder and decoder output layers, for which a linear activation function is used. Max pooling with the
kernel size 1× 2 and stride of 2 is applied after each of the first two convolution operations in the encoder.
Respectively, two upsampling operations are used in the decoder, each placed before the last two
ConvTrans2D layers with a bilinear interpolation scheme. Dropout is added to the output of the first dense
layer in the encoder and to the output of the two dense layers in the decoder with a dropout rate of 0.2. The
final architecture of the model was optimized starting from a much larger convolutional autoencoder with
about 10 million trainable parameters based on the network developed in [36]. While experimenting with
the number and size of convolutional kernels and dense layers, the dimension of the latent space, and the
activation functions, we then reduced the size of the network down to about 300 000 trainable parameters
while matching the performance. The deep learning (DL) model is implemented in PyTorch [40].

The model is trained using an input dataset, containing the list of particles at generator level, and a target
dataset, containing the corresponding list after detector effects and event reconstruction. In this way, the
model is trained to regress the detector response function starting from a generator-level jet, i.e. it
corresponds to a Fast Simulation software in HEP computing literature. For this kind of application, in the
similar phase space as the one used in this study, a typical state-of-the-art simulation has a 10% accuracy on
jet kinematic distributions such as the momentum and pseudorapidity [10]. At the same time, the Fast
Simulation software has difficulty faithfully reproducing detailed jet particle composition, and larger
discrepancies are observed when comparing variables that depend on it, such as jet mass [41].

The model training is performed minimizing a domain-specific loss function:

LVAE =
1

N

N∑
i=0

[
βDi

KL+(1−β)

(
LiR+αm

(
mi

jet− m̂i
jet

)2
+αpT

(
pT

jet,i − p̂jet,iT

)2
)]

, (1)

where N is the dataset size, LR is the reconstruction loss (i.e. a distance between the target and the output),
DKL is the Kullback-Leibler (KL) divergence regularizer usually employed to force the data distribution in the
latent space to a multi-dimensional Gaussian with unitary covariance matrix [42], and β is a parameter that
controls the relative importance of the two terms [43]. The reconstruction loss LR is computed using the
permutation-invariant Chamfer loss [44]:

LR =
∑
i

min
j
(pi − p̂j)

2+
∑
j

min
i
(pi − p̂j)

2, (2)

where pi is the feature for the ith target particle, and p̂j is the corresponding quantity for the jth output
particle. By construction, this quantity is invariant under the permutation of the input or output particle
lists. We also experimented with a mean squared error (MSE) loss, observing typically worse results, as using
MSE implies breaking permutation invariance of the data, since the reconstructed particles in the jets have
no intrinsic ordering.

In equation (1), pTjet andmjet are the transverse momentum and mass of a target jet, respectively. Jet
features are computed from the momenta of the target-jet constituents, while p̂jetT and m̂jet are the
corresponding quantities computed from the model output. The coefficients αm and αpTwere chosen based
on a grid search in the range between 0.1 and 10. The best learning configuration corresponds to the values
αm = 1.0 and αpT = 0.1, such that the reconstruction loss LR and the jet-pT and jet-mass MSE constraints in
equation (1) have similar magnitudes. The expression in equation (1) is only one of the possible ways one
could enforce kinematic constraints on the jet generator. Similar approaches have been followed in previous
works, e.g. for particle energy in GAN-based single-particle generators [14, 45]. The main difference here is
that the quantity on which the constraint is applied on is analytically computed from the output list, as
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Figure 2. Jet phase space in the training sample extended to pT > 130 GeV is shown in blue, final jet phase space with the
selection of pT > 200 GeV is shown in orange.

opposed of being regressed from an image. We also tried other combinations of kinematic constraints, e.g.
the three momentum components in Cartesian coordinates, observing similar or worse results after training.

5. Target application

The aim of this work is to create a fast-simulation workflow for an analysis demanding a large sample of
multijet events. As a reference, we consider the case of dijet resonance searches, where a search for a localized
excess on top of a smooth background is performed. Traditionally, these searches are carried on through
maximum-likelihood fit, in which the background is analytically modeled [46, 47]. Large samples of
simulated multijet events are used to find an adequate model. In addition, a novel simulation-assisted
strategy uses ratios of simulated distributions to avoid the need of a specific background analytical
model [48]. Also in this case, having at hand a large simulated sample is crucial. Finally, the proposed
strategy could be crucial to move the default event-generation precision to next-to-leading order, trading
simulation computing time for generation computing time. This would be also relevant for analyses
exploiting angular information about the dijet system [49]. Similar considerations hold for multijet searches.

The reference analysis requires an accurate model of jet kinematic properties for jets momenta larger
than 200 GeV. As we will see, this can be achieved. But some care is required to model the sharp threshold at
200 GeV. As we experienced in the early stages of this study, an ML-based simulation struggles to model such
a sharp threshold. As a solution, we extend the jet phase space in the training sample down to pT > 130 GeV
and we apply the selection of pT > 200 GeV on the jets obtained as output of the VAE, as shown in figure 2.
A similar problem exists for the pT threshold of the jet constituents. In this case, we also extend the pT range
of the predicted model down to pT > 0 MeV and apply the selection pT > 250 MeV afterwards. Similar
considerations hold for η, where the acceptance requirements are imposed on the predicted jets after
inference.

As discussed in section 6, this setup provides an adequate description of the jet kinematics, but it fails in
providing an accurate description of jet substructure. In this respect, the proposed model cannot be extended
to other dijet resonance analyses, e.g. diboson resonance searches, where the accurate modelling of jet
substructure is crucial. One could have then enforced a limited scope from the beginning and avoided
generating jet constituents, working directly at the level of jet four momenta. However, we see two added
values in working with jet constituents: on the one hand, we obtain a faithful description of the jet mass, the
most crucial jet-substructure high-level feature; on the other hand, we establish a baseline model which
could further improve to also model jet substructure. This will be the subject of future studies exploiting a
permutation-equivariant graph architecture.

6. Results

We train all models using the Adam [50] optimizer with a learning rate of 0.0001 for 300 epochs. The
training was repeated for several values of β, and the value corresponding to the best agreement between the
output and target (β = 1/9) was chosen. During the training, we monitor the values of the total loss and its
individual components evaluated on the training and validation datasets to check for overtraining.
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Figure 3. (Left) Evolution of various contributions to the loss, evaluated on the training (dashed lines) and validation (solid lines)
datasets, as a function of the training epoch. (Right) Evolution of the KLD evaluated on the testing dateset as a function of the
epoch. The total KLD, a sum of the KLD for the 5 jet features (mass, pT, energy, η, ϕ), and three individual components are
shown. The dashed vertical line indicates the selected epoch for the final model, where both the validation loss and the KLD are at
the minimum.

To quantitatively evaluate the performance of different training settings, we compare the values of the loss
function evaluated on the validation dataset. However, while the loss function is inherently multi-objective,
the multiple objectives are combined in an ensemble in equation (1), thus reducing the problem to a scalar
optimization. This might lead to overfitting to some individual objectives despite overall good performance,
and in turn make it more difficult to compare different learners and select the best one. Therefore, in
addition to comparing the loss values between different models, we also use the symmetrized version of the
KL divergence (KLD) [51] between probabilities of the predicted and the target jet-kinematic distributions
(mass, pT, energy, η, ϕ) to evaluate reconstruction capabilities of the models. The smaller the values of the
KLD, the smaller is the error of using predicted jet-kinematic distributions instead of the true ones, thus, the
model with smaller KLD is preferential. The KLD is computed every 10 epochs on the testing dataset, after
rescaling the DL-predicted and target distributions so that the reconstructed distribution is contained in the
[0,1] range.

Figure 3(left) shows the evolution of various contributions to the loss function (see equation (1)),
evaluated on the training and validation datasets, as a function of the epoch. After the epoch number 120,
the values of the reconstruction loss and the jet-pT and jet-mass MSE constraints in the loss are all starting to
increase, indicating an overtraining. The monitored evolution of the KLD computed on the testing dataset
for the three jet features (mass, pT, ϕ) and the total KLD sum of 5 features (mass, pT, energy, η, ϕ) is shown
in figure 3(right). The values of the KLD components and the total sum reach a plateau after the epoch
number 100. We select the best model based on the minimum values of both, the total and individual
components of the validation loss, as well as the KLD, while ensuring no overtraining. Therefore, the model
from epoch number 100 is chosen as the best.

We compare the distributions of the DL predicted and the target px, py, and pz of the jet constituents in
figure 4. These distributions are obtained applying the constituents acceptance thresholds (see section 3) to
the list of particles which is output by the VAE, as discussed in section 5. We observe a good agreement
between the model prediction and the target reconstruction.

The output list of particles is then used to analytically compute the jet kinematic properties. Figure 5
(figure 6) shows the distribution of the jet kinematic properties explicitly used (not used) in the likelihood.
The jet acceptance thresholds (see section 5) are imposed on the jet pT and η for both the target and output
jets. In general, a good agreement is observed. The residual discrepancies between the model prediction and
the target reconstruction are smaller than the modelling differences typically observed between the jets data
and MC reconstruction [52–54]. Remarkably, once forced to learn the jet mass and transverse momentum
components, the model learns to model the entire jet kinematics, including non-linear functions of the three
quantities above. This aspect proves that the training process converges to a solution that preserves the main
physics of the jet shower. At this stage, such a generator would be useful to generate events for most of the
physics studies performed at the LHC.

In appendix, we show the distribution of the jet features in the entire generation phase space, i.e. without
enforcing the jet pT > 200 GeV requirement on the target and output jets. There, the problem of modeling
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Figure 4. Comparison of the jet-constituent px (top-left), py (top-right), and pz (bottom-center) distributions, for the output
(DL prediction) and target (reconstruction) datasets. In the bottom panels, the ratio between the two distributions is shown.
These distributions are obtained removing the zero-padding particles from the target list, and enforcing on the output of the DL
model the same acceptance requirements that define the jet constituents (see section 3).

Figure 5. Comparison of the jet pT (left) and mass (right) distributions, for the output (DL prediction) and target
(reconstruction) datasets. In the bottom panels, the ratio between the two distributions is shown. These distributions are
obtained removing the zero-padding particles from the target list, and enforcing on the output of the DL model the same
acceptance requirements that define the jet constituents (see section 3).

the sharp pT threshold is visible. Remarkably, this issue has little impact on the agreement observed in the jet
mass distribution.

While our algorithm could serve the bulk of data analyses at the LHC, it still fails in faithfully describing
the jet dynamics at constituents level. In fact, we verified that jet substructure quantities are not well
reproduced. This is shown in figure 7, where the distribution of four momentum flows [55] are shown. The

momentum flows are computed as Flown =
∑

p
p p
T

pJetT
, where the sum runs over all particles with distance

∆R=
√
∆ϕ2+∆η2 from the jet axis falling within (n− 1)/4×R and n/4×R, where R is the jet size
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Figure 6. Comparison of the jet px (top-left), py (top-right), pz (middle-left), energy (middle-right), η (bottom-left), and ϕ
(bottom-right) distributions, for the output (DL prediction) and target (reconstruction) datasets. In the bottom panels, the ratio
between the two distributions is shown. These distributions are obtained removing the zero-padding particles from the target list,
and enforcing on the output of the DL model the same acceptance requirements that define the jet constituents (see section 3).

parameter. We tracked the cause of the mismodeling to the noise induced by zero-momentum fake particles
(both in input and target), resulting from zero-padding the jet representation to a fixed dimension. This
problem could be solved moving to a graph-based VAE architecture, as in [9]. Through a PyTorch
Geometric [56] implementation, for example, one could avoid the need of zero-padding the datasets, possibly
leading to a better representation of the jet substructure. This approach will be investigated in future studies.

The inference speed of the algorithm was measured running it on 1000 generator-level jets, and
measuring the execution time. The test was performed calling the PyTorch library from a python script and
running the algorithm on different hardware platforms. We obtain an inference time of 0.007 (0.004)
seconds per event when running on a Intel Xeon Silver 4216 CPU (NVIDIA T4), while the traditional
approaches typically require O(100) seconds per event of CPU time. This demonstrates how the proposed
strategy represents a major speedup with respect to currently employed simulation algorithms. One should
also keep in mind that this is an overestimate of the actual inference time in real world C++ computing
environment, where tools such as ONNX run time [57] typically offer a further speed up with respect to a
python environment. When running on a GPU, one could further increase the throughput by running the
difference on a batch of all jets in an event.
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Figure 7. Distribution of the four Flown quantities (see text) for the output and target jets.

7. Conclusions

We present a jet fast-simulation algorithm based on a VAE, trained to learn the detector response function to
a generator-level jet, represented as a list of particle momenta, and returning a list of reconstructed particle
momenta. This algorithm correctly captures the reconstructed jet kinematics with high accuracy.

By bypassing the detector simulation and particle reconstruction step, an algorithm of this kind could be
important to make simulation on demand a concrete possibility at the High-Luminosity LHC.

The main strength of the current algorithm is in its speed and high accuracy when modeling jet kinematic
quantities, which makes it applicable to the majority of LHC physics studies. Its main limitation stands with
the poor description of the jet substructure, a consequence of the noise induced by zero-momentum ghost
particles introduced to equalize the length of the input particle list. A possible solution to this problem could
be the use of a graph architecture with variable-length input, which we aim at investigating in the future.
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Appendix

In this appendix, we show the distribution of the jet features in the entire generation phase space before
applying the jet pT selection pT > 200 GeV. Figure A.1 (figure A.2) shows the distribution of the jet kinematic
properties explicitly used (not used) in the likelihood within the extended jet phase space before any
selections.
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Figure A.1. Comparison of the jet pT (left) and mass (right) distributions, for the output (DL prediction) and target
(reconstruction) datasets before applying the jet pT selection pT > 200 GeV. In the bottom panels, the ratio between the two
distributions is shown. These distributions are obtained removing the zero-padding particles from the target list, and enforcing
on the output of the DL model the same acceptance requirements that define the jet constituents (see section 3).

Figure A.2. Comparison of the jet px (top-left), py (top-right), pz (middle-left), energy (middle-right), η (bottom-left), and ϕ
(bottom-right) distributions, for the output (DL prediction) and target (reconstruction) datasets before applying the jet pT
selection pT > 200 GeV. In the bottom panels, the ratio between the two distributions is shown. These distributions are obtained
removing the zero-padding particles from the target list, and enforcing on the output of the DL model the same acceptance
requirements that define the jet constituents (see section 3).
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