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Abstract
Modern broadband telecommunications require microelectromechanical filters which
mechanically vibrate at ultra-high frequencies up to several gigahertz. Heterodyne
interferometers, so-called laser-Doppler vibrometers (LDVs), provide a sensitive and
contactless measurement technique for vibrations in such filters, but are limited in GHz
heterodyning by the efficiency drop of acousto-optic frequency shifters. Heterodyning by
frequency-offset locking of two lasers in an optoelectronic phase-locked loop (OPLL)
overcomes this limitation. This is demonstrated with our LDV setup with heterodyning up to
1.4 GHz via offset locking of two semiconductor lasers at visible wavelength. The experiments
show a vibration-amplitude resolution of less than 1 pm per

√
Hz for frequencies higher than

50 MHz up to 700 MHz. The bandwidth is only limited by our photodetectors. This amplitude
resolution already qualifies our LDV for vibration measurement of microelectromechanical
filters at ultra-high frequencies. We present a comprehensive model for the vibration-amplitude
resolution of a LDV with this technique including the laser linewidths, the OPLL transfer
function, and interferometer delays. The experiments with our LDV validate the model
predictions from numerical simulations. Finally, we discuss the collapse of the heterodyne
carrier at vanishing mutual coherence due to interferometer delays, the transition to
shot-noise-limited detection, and provide design recommendations.

Keywords: heterodyne interferometry, optical phase-locked loop, MEMS testing, vibration
measurement

(Some figures may appear in colour only in the online journal)

1. Introduction

With the steadily-increasing demands for broadband tele-
communications, highly selective radio-frequency microelec-
tromechanical (RF-MEM) filters have been developed with
microacoustic vibrations at frequencies up to several GHz
[1] and vibration amplitudes of few nanometers or less. The

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

sensitive and contactless measurement of RF vibrations and
the operating deflection shape of these microelectromech-
anical systems (MEMS) is vital for quality control and
optimization.

Laser-interferometric techniques are well established in
vibration analysis of RF-MEMS in the gigahertz range.
The vibration measurement relies on the laser-Doppler
effect, which transduces the motion at the measurement
spot into a phase modulation of the scattered laser light.
Therefore, this class of interferometers is often referred as
laser-Doppler vibrometers (LDVs) [2, 3]. Homodyne LDVs
directly measure the phase modulation in the baseband and
are capable to measure vibrations up to more than 10GHz
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[4, 5]. However, homodyne LDVs are sensitive against pho-
todetector nonlinearities and reflectivity modulations, which
typically occur at edges of the structure or imperfections. The
reconstruction of the vibration in amplitude and phase requires
elaborate stabilization and calibration [6]. Therefore, a general
uncertainty for the vibration amplitude cannot be derived [7].

In heterodyne LDVs, a carrier frequency in the measure-
ment signal is conventionally introduced by shifting the fre-
quency of one of the two interfering beams. Thus, the phase
modulation due to Doppler shifts results in a Bessel spec-
trum around the heterodyne carrier in the photodetector sig-
nal. For an unambiguous reconstruction of small vibration
amplitudes, the heterodyne-carrier frequency must exceed the
maximum vibration frequency. Further, the electronic band-
width has to be larger than twice the maximum vibration fre-
quency. Obeying these requirements, heterodyne LDVs are
insensitive against intensity modulations and provide a defined
uncertainty for the vibration amplitude. However, this imposes
ambitious demands on both the heterodyning technique and
the bandwidth of photodetectors. Further, the small acous-
tic wavelengths at UHF frequencies require high-resolution
or even super-resolution microscopy in combination with
the LDV. In previous applications, we proposed absorbance-
modulation nanoscopy in reflection [8] and studied its
potential [9].

Conventionally, heterodyning in LDVs is introduced by
frequency shifting in acousto-optic devices. However, conven-
tional paratellurite frequency shifters are inefficient for shift-
ing higher than 409MHz [10]. To measure RF vibrations,
published approaches employ multiple beam passes through
the acousto-optics [11], which suffers from losses due to dif-
fraction efficiency. Those approaches can be combined with
deconvolution of the spectrum from the imaged lower side-
band of the phase modulation [11], which requires a-priori
knowledge, or evaluation of only the lower (imaged) side-
band [12]. With this single-sideband evaluation, the hetero-
dyne LDV cannot discriminate phase and intensity modula-
tions anymore.

The technique of heterodyning by frequency-offset lock-
ing between two or more laser sources with an optoelec-
tronic phase-locked loop (OPLL) has established itself in
many fields of application, e.g. coherent optical telecommu-
nication [13–15], swept-frequency sources for ranging [16],
coherent combining [17], terahertz photonics [18], gravita-
tional wave detection [19, 20], atomic clocks [21], frequency
metrology [22, 23], and interferometry [24]. In previous con-
ference publications [25, 26] we already presented the poten-
tial of offset locking of two semiconductor lasers as a flexible
technique for heterodyning in laser-Doppler vibrometry in the
gigahertz regime. Therefore, LDV can overcome the limita-
tions of acousto-optic frequency shifting and achieve unam-
biguous measurement capability in the gigahertz regime.

In this work, we present a comprehensive model for the
achievable vibration-amplitude resolution with offset-locked
semiconductor lasers, which expresses the vibration-
amplitude resolution limit based on the differential-phase
noise determined by the OPLL. In our model, we consider
frequency noise of the incorporated lasers, the OPLL transfer

function, and interferometer delays. Hitherto, published mod-
eling approaches for the differential-phase noise from an
OPLLs assume ideal OPLL transfer function [17] or sim-
plified transfer function of the OPLL without intra-loop
delays [27] with the aim to quantify the generated mutual
coherence.

We validate the model predictions theoretically and with
experimental data from our LDVwith frequency-offset-locked
semiconductor lasers. We further discuss the heterodyne car-
rier strength and its collapse, when the mutual coherence
between the interfering beams vanishes due to long optical
path differences in the interferometer setup. Finally, we
express the transition frequency for shot-noise-limited detec-
tion in dependence on the linewidth of the lasers. The model
and the discussion shows the general potential and limitations
of heterodyning with offset-locked lasers for laser-Doppler
vibrometry and it gives valuable estimates for the LDV design.

2. Laser-Doppler vibrometer with heterodyning via
offset-locked lasers

2.1. Concept of heterodyning with offset-locked lasers

A typical LDV comprises the optical setup of aMach–Zehnder
interferometer with a broadband acquisition of the light phase
difference [2], shown in figure 1(a). Generally in interferomet-
ers, a portion of a laser source (reference beam) is interfered
with another portion of usually the same laser source (meas-
urement beam), which contains phase modulations represent-
ing the measured quantity.

At the photodetectors (PD1-2), the measurement beam
(power Pm and mean frequency νm) and the reference beam
(power Pr and frequency νr) interfere and generate the photo-
current signal:

i(t) = 2χS
√
PmPr cos [2π (νm − νr) t+∆φ(t)]

= î cos [2πνc t+∆φ(t)]
(1)

with the interference efficiency χ, the photodetector sensitiv-
ity S, and the photocurrent amplitude î. The differential-phase
modulation ∆φ(t) contains both deterministic and stochastic
phase modulations. A LDVs relies on deterministic phase
modulation caused by the temporal modulation of the optical
path difference due to the laser-Doppler effect. From this, the
phase derivative φ̇vib(t) is proportional to the sample velocity
ṡ(t) (in direction of the measurement beam) with [3]:

φ̇vib(t)
2π

=
2ṡ(t)
λ

(2)

with the wavelength λ and the velocity c of light. In hetero-
dyne LDVs, the frequency difference νc = |νm − νr| is non-
zero, which is denominated as heterodyne carrier frequency
[3]. This frequency shift is conventionally introduced by an
acoustooptic device (Bragg cell).

Only some degree of statistical similarity between the tem-
poral phases of the interfering beams is required to gener-
ate an interference signal [28]. Thus, interference also occurs
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Figure 1. (a) Schematic setup of a heterodyne LDV of Mach–Zehnder type using a single laser in comparison with (b) the proposed LDV
with offset-locked lasers by an optoelectronic phase-locked loop. LO is local oscillator, BS is non-polarizing beam splitter, PBS is polarizing
beam splitter, QWP is quarter-wave plate under 45deg, HWP is half-wave plate under 45deg, M is mirror, and PD is photodetector.

between different laser sources [29]. However, a significant
degree of mutual temporal coherence must exist to provide
an exploitable heterodyne carrier for interferometry. Coup-
ling the interfering lasers in an optoelectronic phase-lock loop
(OPLL), shown in figure 1(b), can achieve this mutual coher-
ence. Therefore, a photodetector (PD3) detects the phase (and
frequency) difference (‘beat’) between the free-running mas-
ter and the slave laser. The phase difference is compared by
a mixer to the desired heterodyne carrier frequency νc gener-
ated by a signal generator (local oscillator). A negative feed-
back to the tunable slave laser controls the slave laser out-
put to the offset frequency νc. In lock state, the phase lock
reduces differential-phase noise within its bandwidth [30]. For
interferometry, the master laser emits the reference beam and
the slave laser the measurement beam. One could argue that
the phase difference for the OPLL can also be measured at
the interferometer photodetectors (PD1+2). However, this
would have the disadvantages that (1) a lock would be only
possible with good reflection at the sample, (2) any fluctu-
ations of the surface reflectivity and the returning wavefront
(spatial coherence) during measurement would impair the sta-
bility of the lock, and (3) the low-frequency bandwidthmust be
sacrificed for control and is not available for vibration meas-
urements. The latter is of minor interest for our scope.

2.2. Controller modeling for optoelectronic phase-locked
loop

For the expression of the residual differential-phase noise, the
nonlinear differential equation of the OPLL can be linearized
in the operating point (νM − νS = νLO = νc) for small phase
fluctuations (see figure 2). This derivation can be found in
standard textbooks [30]. The phase of the slave laser φS in the
operating point is locked to the sum phase of the master laser
and the local oscillatorφM +φLO. The phase noise of the slave
laser is modeled with an additive output disturbance φfr

S . Thus,
the controller equation in Laplace domain is [30]

φS(s)≈ H(s) [φM(s)+φLO(s)]+ [1−H(s)] φfr
S (s) (3)

Figure 2. Circuit diagram of the linearized OPLL operation.

with the transfer function H(s) = GOL(s)/ [1+GOL(s)] and
the open-loop transfer function GOL(s). The open-loop trans-
fer function includes all intra-loop components and delays:
The complete gain Kd from phase detection (in the photode-
tector (PD3) and mixer), the loop filter with its transfer func-
tion F(s), and the slave laser as controlled oscillator with the
integrating transfer function KS/s. The phase-noise contribu-
tion of the local oscillator is neglected for simplicity, since it
is low compared to semiconductor lasers.

From (3) it can be directly concluded that high gains of
the open loop suppress the phase fluctuations φfr

S of the free-
running slave laser within the loop bandwidth. Instead, the
locked phase of the slave laser φS follows the phase of the
master laser φM and the local oscillator φM. This transfer of
the coherence properties of the master laser to the slave laser
by the OPLL (within the loop bandwidth) is also denominated
‘coherence cloning’ [17].

2.3. Noise-equivalent vibration-amplitude resolution

Resolution and sensitivity of LDVs are sometimes used in
misguiding ways. The sensitivity of a LDV is strictly defined
from the linear relation of the Doppler effect in (2). Whereas
the resolution of a LDV defines the smallest variation of the
measurand (vibration amplitude) the LDV can detect. The
resolution for vibration amplitudes is usually expressed by
the noise-equivalent vibration amplitude ŝ′ne at 1Hz resolution
bandwidth (RBW) (in m/

√
Hz) [3]
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ŝ′ne( fvib) =
λ

2
√
2π

√
SNR′( fvib)

(4)

with the signal-to-noise ratio SNR′ at 1Hz RBW at the vibra-
tion frequency fvib.

The typical noise sources in LDV measurement can be
found in various textbooks [3]. It is beneficial to design an
LDV that shot noise is dominant. These shot-noise-limited
LDV measurement provides noise-equivalent vibration amp-
litudes down to femtometer/

√
Hz [3]. The SNR′ at 1Hz RBW,

governed by power spectral densities (PSD) of shot noise Si,SN
and differential-phase noise Si,PN, is

SNR′( fvib)≈
î2/2

Si,PN(νc ± fvib)+ Si,SN
. (5)

For simplicity, we assume that the significant intensity
noise of semiconductor lasers is ideally suppressed by bal-
anced photodetection.

3. Model for heterodyning via offset-locked lasers

3.1. Photocurrent noise from differential-phase noise

The followingmodel approximates the resulting photocurrent-
PSD (at PD1/2 in figure 1(b)) from differential-phase noise of
two laser sources. The beams of the two lasers interfere on
photodetector PD3 with an optical path difference OPDPD3 in
respect to emission. Within the interferometer, the laser beams
interfere with OPDPD12 on the photodetectors PD1 and PD2.
Thus, the time difference between these interferences results
in the interferometer delay TLDV = (OPDPD12 −OPDPD3)/c.
If the optical path differences are equal (TLDV = 0), the inter-
ferometer signal without laser-Doppler shift resembles the
controlled beat signal. As the beam paths can differ in real
setups, a loss in mutual coherence with increasing interfero-
meter delay TLDV occurs.

The following model relates these crucial characteristics
of heterodyning via offset-locked lasers. For simplicity, the
deterministic phase variations φvib from the Doppler effect
are omitted which superimpose on the stochastic phase fluc-
tuations. Thus, the photocurrent signal from (1) at the photo-
detectors PD1 and PD2 is

i(t,TLDV) = îcos [2πνc (t+TLDV)+∆φSM(t,TLDV)] (6)

with the accumulated differential-phase fluctuation during the
time interval [t; t+TLDV]:

∆φSM(t,TLDV) = φS(t+TLDV)−φM(t) (7)

due to the interferometer delay TLDV. Assuming ergodic noise
processes, the autocorrelation function Ri,PN of the photocur-
rent signal i(t,TLDV) in (6), solely from phase noise (PN), with
lag τ is

Ri,PN(τ,TLDV) = lim
T→∞

1
2 T

Tˆ

−T

i(t+ τ,TLDV) i
∗ (t,TLDV)dt

= ⟨i(t+ τ,TLDV) i
∗ (t,TLDV)⟩t

=
î2

2
cos(2πνcτ) ⟨exp [ jΦ(t,TLDV, τ)]⟩t (8)

with the accumulated phase difference

Φ(t,TLDV, τ) = ∆φSM(t+ τ,TLDV)−∆φSM(t,TLDV) . (9)

The emissions of both lasers result from a large number
of independent spontaneous-emission events within the time
interval [t; t+TLDV] [17]. Due to the central limit theorem [31],
the accumulated phase difference Φ is assumed to follow a
Gaussian statistics [32] with zero mean and the variance σ2

Φ.
From this, the last term in (8) can be expressed with some cal-
culation effort [32] yielding

⟨exp [ jΦ(t,TLDV, τ)]⟩t = exp

[
−σ2

Φ(TLDV, τ)

2

]
. (10)

Exploiting the Wiener–Khintchine theorem [32], the
photocurrent-PSD can be calculated from the Fourier
transform of the photocurrent-autocorrelation function (8)
with (10)

Si,PN( f,TLDV) =

∞̂

−∞

Ri,PN(τ,TLDV)exp(−j2πfτ) dτ

=
î2

2

∞̂

−∞

exp

[
−σ2

Φ (TLDV, τ)

2

]
cos(2πνcτ)exp [−j2π fτ ] dτ

(11)

which is symmetric around the hetrodyne-carrier frequency νc.
Note that due the laser Doppler effect, the frequency
difference to the heterodyne carrier | f−νc| corresponds
to the vibration frequency f vib of a harmonic sample
motion.

The conversion of differential-phase noise into
photocurrent-PSD allows to spectrally compare phase-noise
contribution in (5) against the other noise sources (e.g. shot
noise, thermal noise, quantization noise) in a convenient way.
Further, the photocurrent-PSD is directly accessible in exper-
iment with a spectrum analyzer.

3.2. Modeling the variance of the differential-phase noise of
two-laser interferometers

The variance σ2
Φ of the accumulated phase difference Φ can

be expressed with the underlying phase-noise processes from
the two lasers by using (9) and (7). These noise processes
are also represented by their autocorrelation function and the
cross-correlation function describing the interdepence gen-
erated by the OPLL. Thus, the variance, considering zero
mean, is

4
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σ2
Φ(TLDV, τ) =

⟨
Φ2 (t,TLDV, τ)

⟩
t

= 2
[⟨

φ2
M(t)

⟩
t
−⟨φM(t+ τ)φM(t)⟩t

]
+ 2

[⟨
φ2

S(t)
⟩
t
−⟨φS(t+ τ)φS(t)⟩t

]
− 4⟨φS(t+TLDV)φM(t)⟩t
+ 2 ⟨φM(t+ τ)φS(t+TLDV)⟩t
+ 2 ⟨φS(t+ τ +TLDV)φM(t)⟩t

= 2 [Rφ,MM(0)−Rφ,MM(τ)]

+ 2 [Rφ,SS(0)−Rφ,SS(τ)]

− 2 [2Rφ,SM(TLDV)−Rφ,SM(TLDV − τ)

−Rφ,SM(TLDV + τ)] .

(12)

Here, Rφ,MM is the phase-autocorrelation function of the
master laser φM and correspondingly Rφ,SS for the slave
laser. Moreover, the variance σ2

Φ depends on the phase-cross-
correlation function Rφ,SM between master and slave laser.

According to Wiener–Khintchine theorem [32], the
phase-autocorrelation function Rφ,SS (τ) and the phase-PSD
Sφ,SS ( f) form a Fourier pair. The analogous applies for the
master laser. The phase-cross-correlation function Rφ,SM also
forms a Fourier pair with the (complex) phase-cross-PSD
Sφ,SM. Furthermore, it holds [32] that Sφ ( f) = f−2 Sν ( f) since
frequency fundamentally is the derivation of phase. With these
Fourier pairs and the LDV setup depicted in figure 1(b) (free-
running master laser and locked slave laser), the variance from
(12) yields

σ2
Φ (TLDV, τ) = 2

∞̂

−∞

Sfrφ,MM ( f) [1− cos(2πfτ)] df

+ 2

∞̂

−∞

Slockφ,SS ( f) [1− cos(2πfτ)] df

− 4

∞̂

−∞

Slockφ,SM ( f)exp(j2πf TLDV)

×
[
1− exp(−j2πfτ)+ exp(j2πfτ)

2

]
df

= 4

∞̂

−∞

Sfrν,MM ( f)
sin2 (πfτ)

f 2
df

+ 4

∞̂

−∞

Slockν,SS ( f)
sin2 (πfτ)

f 2
df

− 8

∞̂

−∞

Slockν,SM ( f)exp(j2πf TLDV)
sin2 (πfτ)

f 2
df

(13)

with the frequency-PSD Slockν,SS of the slave laser in lock and
the frequency-cross-PSD Slockν,SM between slave andmaster laser
in lock. We further assume white frequency-PSD for both
lasers (2πSfrν,M =∆νM), which is generated by spontaneous
emission with the laser linewidth ∆νM [32]. This laser fre-
quency noise is equivalent to a random-walk process for the
laser phase.

4. Theoretical model validation and discussion

4.1. Validation for common interferometric configurations

Before expressing the cross correlation from the phase coup-
ling in the OPLL, the model is validated for well-known spe-
cial cases. For the special case of the independent laser sources
(OPLL out-of-lock), the cross correlation vanishes and the
photocurrent-PSD in (11) with (13) converges to a Lorentz
function with the summed linewidth (∆νM +∆νS)

Sno locki ( f)≈ î2

2
2π (∆νM +∆νS)

[π (∆νM +∆νS)]
2
+ 4π2(f− νc)

2 (14)

which is consistent with the literature [32]. Due to the assumed
(wide-sense) stationarity, the frequency difference νc in this
special case remains stable despite no lock. However, in reality
one has to deal with an unstable difference frequency or drift.

For the case of ideally offset-locked lasers (or a single laser
source with ideal frequency shifting), relation (13) converges
to the well-known experiment of delayed self-heterodynemix-
ing [17] (since Slockν,SS ≈ Sfrν,MM and Slockν,SM ≈ Sfrν,MM). In this
experiment, the photocurrent-PSD results in a distinct carrier
at νc for zero delay TLDV and a characteristic shape of the noise
level dependent on the interferometer delay. For large interfer-
ometer delays, the photocurrent-PSD converges to the uncor-
related or unlocked special case expressed by (14).

4.2. Differential-phase variance for heterodyning via
offset-locked lasers and discussion

The OPLL correlates the laser phases and, thus, the cross cor-
relation of the laser phases is dependent on the OPLL transfer
function H( f ) in steady state (see section 2.2). From control
theory [33], it follows from (3) that the phase-cross-PSD Slockφ,SM
results from the multiplication of the OPLL transfer function
and the (input) phase-PSD of the master laser Sfrφ,MM.

Further, the (output) phase-PSD of the locked slave laser
from the complete transfer function (see (3)) is

Slockφ,SS( f)≈ Sfrφ,MM( f) |H( f)|
2
+ Sfrφ,SS( f) |1−H( f)|2 . (15)

Due to the linearized OPLL operation in (3), the filtered Gaus-
sian phase-noise processes remain Gaussian [31]. With these
relations, the variance of the phase difference of (13) becomes

σ2
Φ (TLDV, τ)≈ 2π∆νM τ 2

∞̂

−∞

[
1− 2 H( f)exp(j2πfTLDV)

+ |H( f)|2
] sin2 (πfτ)

π2f 2τ 2
df (16)

+ 2π∆νS τ
2

∞̂

−∞

|1−H( f)|2 sin2 (πfτ)
π2f 2τ 2

df.

Relation (13) can be solved analytically for the special
case of a 1st-order OPLL without intra-loop delay (GOL(s) =
2πfL/s) and zero interferometer delay, yielding

5
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Figure 3. Simulated photocurrent-PSD Si,PN (red) of the interference of a phase-locked lasers with a linewidth of ∆νM =∆νS = 500 kHz
by a 1st-order OPLL with open-loop bandwidth fL = 3MHz (at 0 dB gain) and phase margin of 30 deg. The interference is shown for
interferometer delays TLDV of (a) 30 ns, (b) 300ns, and (c) 2 µs. The Lorentz function (dotted-blue) for the free-running case and the case of
ideal coupling with unlimited bandwidth (green) are plotted as reference. The spectral power is normalized to the total interference-signal
power.

σ2
Φ (TLDV = 0, τ = 0) = π (∆νM +∆νS) f

−1
L . (17)

This is in accordance with the model predictions of other
groups [17, 27]. However, our model is not limited to this sim-
plification of the OPLL transfer function.

From relation (13), we state the following recommenda-
tions for the generation of a predominant heterodyne carrier
for laser-Doppler vibrometry with a high suppression of the
differential-phase noise:

(a) The loop bandwidth fL must be larger than the summed
laser linewidth (∆νM +∆νS) for proper suppression of the
frequency or phase noise. Primarily, stability of the OPLL
defines this relation and is in accordance to [17, 27].

(b) The interferometer delay TLDV must be as low as pos-
sible. A predominant interference signal is achieved, if the
delay exp(j2πfTLDV) remains small within the loop band-
width fL. We propose that 2πfLTLDV < 1, which is equi-
valent to the coherence time of a single laser source. For
a loop bandwidth of 3MHz this requires an interferometer
delay of TLDV < 53ns corresponding to an optical path dif-
ference of OPD< 16m. This relation further shows that
higher loop bandwidths require more effort in equalizing
the beam paths of the interferometer setup.

5. Model validation with numerical simulation and
experiment

5.1. Results from the numerical simulation

For the comparison to the real experiment, we conducted a
numerical simulation of the resulting photocurrent-PSD in
(11) with a differential-phase variance from (16) generated
by a 1st-order-loop OPLL (F(s)= const.) with an open-loop

bandwidth (at 0 dB gain) of fL = 1 MHz and a phase margin
of 30deg (due to intra-loop delays).

The simulation results in figure 3 show that, for
minor delays, the differential-phase noise and, thus, the
photocurrent-PSD is strongly damped by the OPLL within
the loop bandwidth fL around the carrier νc (red curve in
figure 3(a)), in comparison to the out-of-lock case, which
forms the Lorentz function (blue), see (14). Outside the loop
bandwidth, the photocurrent-PSD approximately follows the
Lorentz function of the out-of-lock case. The low phase mar-
gin generates noise peaking at the frequency distance νc ± fL
and harmonics. With rising interferometer delay TLDV, the
photocurrent-PSD roughly follows the behavior of a delayed-
self-heterodyne-mixing experiment (dotted-green), which res-
ults an increase of the noise level within the loop bandwidth
with increasing interferometer delay. With a further increase
of the interferometer delay (figure 3(c)), the heterodyne carrier
collapses towards the out-of-lock case (blue).

The heterodyne-carrier strength is decisive for the phase
modulation from the Doppler effect. Since the stated require-
ments in section 4.2 can usually be met for laboratory setups,
the heterodyne-carrier collapse for the simulated case is less
than 1 dB (figure 3(a)).

5.2. Experimental model validation

Our LDV with offset-locked visible semiconductor lasers
is able to generate a heterodyne carrier up to fre-
quencies ≤ 1.4 GHz and measure vibration frequencies
< 700 MHz [26, 34]. Both is mainly limited by the band-
width of commercial photodetectors with a single photo-
sensitive element. Commercial balanced photodetectors with
two photosensitive elements are restricted to even smaller
bandwidths.
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Figure 4. (a) Experimental power spectrum (upper sideband) of the photocurrent with our LDV setup with two offset-locked semiconductor
lasers. The vibration measurement was conducted on an SAW excited at 34.01 MHz with a heterodyne carrier at 500 MHz (red square). The
noise floor (yellow) was estimated by a moving median, for which a Lorentz function with 1 MHz width was fitted. (b) Zoom to the power
spectrum near the heterodyne carrier showing noise peaking.

Figure 5. (a) Noise-equivalent vibration amplitude ŝ′ne ( fvib) limited by phase noise at several (summed) laser linewidths. Shot-noise limit
are given for Pr = Pm = 1mW (black-line) and Pm = 1µW (Pr > Pm) (black-dashed). (b) Transition frequency to shot-noise-limited
detection fSNlim in dependence on the summed linewidth (∆νM +∆νS) of the offset-locked lasers for powers of the interfering beam
(for χ= 1 and S = 0.5A/W, and λ= 632nm).

In previous experiments, we showed the capability of
unambiguous vibration reconstruction in amplitude and phase
exemplary with vibration measurements on a SAW filter
excited at 34.01 MHz [34]. Intensity and phase noise of the
semiconductor lasers limit the vibration amplitude resolution
(figure 4(a)). However, the achieved signal-to-noise ratio of
more than 100 dB at 1 Hz RBW for vibration frequencies
higher than 50 MHz already provides noise-equivalent vibra-
tion amplitudes less than 1 pm/

√
Hz (see (4)), which is suit-

able for RF-MEMS testing.
The measured photocurrent-PSD from our experiment

(figure 4(b)) validates the predicted decay with the Lorentz
function of the summed laser linewidths < 1 MHz from the
numerical simulations. Furthermore, the experiments show the
spectral noise peaking at the loop bandwidth and harmonics
due to low phase margin of the OPLL.

The path difference in the experiment is∼1.5m, which res-
ults in an interferometer delay of ∼5 ns. Regarding the loop
bandwidth of ∼3 MHz, the stated requirements for a predom-
inant carrier are met (see section 4.2). The differential-phase
noise within the loop bandwidth is damped to ∼69 dBc (at
1 Hz RBW), which is less than in the numerical simulation
(76 dBc). This might arise from neglected noise processes in
our model.

5.3. Transition to shot-noise-limited LDV measurement

In interferometry, typically shot-noise-limited measurement
is aspired to achieve highest vibration-amplitude resolution.
However, for heterodyning with offset-locked lasers, the
photocurrent-PSD is dominated by the differential-phase noise
at vibration frequencies up to the range of the loop bandwidth.
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Outside the loop bandwidth, the photocurrent-PSD follows
the decay of the Lorentz function. Thus, the noise-equivalent
vibration amplitude from (4) also decreases with higher vibra-
tion frequencies shown in figure 5(a). Therefore, a transition
frequency fSNlim might exist within the electronic bandwidth
where shot noise dominates the signal-to-noise ratio in (5) over
the phase-noise contribution (estimated with (14)):

Si,SN > Si,PN(νc ± fvib)≈ Sno locki ( fvib)

2qeS (Pm +Pr)> 2χ2S2PmPr
2π (∆νM +∆νS)

[π (∆νM +∆νS)]
2
+ 4π2 f 2vib

(18)

with the elementary charge qe and photocurrent amplitude î
from (1). From this inequation, the shot-noise-limited detec-
tion can theoretically be performed for vibration frequencies:

fvib > fSNlim ≈
[
χ2S
2πqe

PmPr

Pm +Pr
(∆νM +∆νS)

]1/2

. (19)

Figures 5(a) and (b) show that with narrow laser linewidths
the transition frequency fSNlim to shot-noise-limited detection
decreases. Furthermore, the Lorentz function from phase noise
is dependent on the interference signal, whereas the shot noise
scales with the detected laser power. With increasing power
of the interfering beams, the signal and phase noise experi-
ence a higher (coherent) gain than the shot noise, requiring
even narrower laser linewidths for shot-noise-limited detec-
tion. For a shot-noise-limited detection at vibration frequen-
cies above 1 GHz and 1 mW power each (on the detect-
ors), the summed linewidth of the offset-locked lasers must
be less than 4 kHz. Thus, the broad laser linewidths of semi-
conductor lasers inhibit shot-noise-limited detection at several
gigahertz.

For surfaces with low reflectivity (Pm ≪ Pr), the transition
frequency fSNlim approximately becomes independent from the
power of the reference beam Pr (the same holds for s′ne [3]).
Thus, the transition frequency is decreased for lower measure-
ment power Pm, which goes along with a worsened vibration-
amplitude resolution.

6. Conclusion and outlook

We presented a comprehensive model for estimating the noise-
equivalent vibration-amplitude resolution of a laser-Doppler
vibrometer employing heterodyning with two offset-locked
lasers. Therefore, the model of the differential-phase noise
includes the laser linewidths, the OPLL transfer function, and
the interferometer delays.

The model predicts a worse vibration-amplitude resolution
for frequencies up to the OPLL bandwidth compared to con-
ventional, shot-noise-limited vibrometers. However, outside
the loop bandwidth, the noise-equivalent vibration amplitude
decreases and can achieve shot-noise-limited resolution. From
our model, we derive the transition frequency of the phase-
noise-limited to shot-noise-limited detection. Moreover, the

model helps to compare the contribution of all usual noise
sources of LDVs with the differential-phase noise of the pro-
posed heterodyning technique. Experimental data from our
realized LDV setup with offset-locked semiconductor lasers
validated the model predictions including the spectral noise
peaking.

Furthermore, the model allows to estimate the collapse of
the heterodyne-carrier when the mutual coherence vanishes
due to optical path differences within the interferometer setup.
We give design rules for the maximum path difference for a
neglectable carrier collapse. Thus, our model helps to derive
general specifications for the lasers, the OPLL, and the inter-
ferometer setup with the proposed heterodyning technique for
laser-Doppler-vibrometery

The future goal is to extend the measurement bandwidth
of our LDV setup with offset-locked semiconductor lasers
into the gigahertz regime using high-frequency single pho-
todetectors. In addition, the experimental validation of the
coherence collapse in the experiment is the subject of further
investigations.
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