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Abstract
Using synchrotron light sources, such as the National Synchrotron Light Source II at Brookhaven
National Laboratory, scientists in fields as diverse as physics, biology, and materials science, identify
the atomic structure, chemical composition, or other important properties of varied specimens.
x-ray spectroscopy from light sources is particularly valuable for materials research with vast
information available about reference spectra in the scientific literature. However, as the technique
is applicable to many science domains, searching for information about select x-ray spectroscopy
spectra is impeded by the sheer number of publications. Moreover, useful information about the
context of an experiment or figures presented in papers can be buried among the details, which
takes time to assess. This work presents a scientific literature mining system that supports data
acquisition, information extraction, and user interaction for referencing x-ray spectra
identification and spectral interpretation. The goal is to provide efficient access to useful spectral
data to researchers who may spend only a few days at a synchrotron light source. With this system,
users browse a classification tree for papers arranged according to x-ray spectroscopic methods,
chemical elements, and x-ray absorption spectroscopy edges. Relevant figures are extracted with
sentences from the paper that explain them, known as ‘figure explanatory text.’ Notably, this system
focuses on semantic aspects (logical analysis) to find figure explanatory text using deep
contextualized word embeddings techniques and contains an interface to obtain labeled data from
domain experts that is used to evaluate and improve the model.

1. Introduction

Text mining is the process of automatically extracting meaningful information from large volumes of
unstructured text data, e.g. information that can be directly presented to users or put into structured formats
for populating databases. The National Synchrotron Light Source II (NSLS-II) [1] at Brookhaven National
Laboratory (BNL) offers spectroscopy capabilities amongst other techniques that enable scientific discoveries
in e.g. clean and affordable energy, high-temperature superconductivity, and macromolecular
crystallography. Users from academia and industry come to a beamline at NSLS-II with samples for
characterization of chemical bonding and electron energy band structure with the guidance of beamline
scientists. During the short period of time users spend at the beamline for their experiments (typically
several 4 h sessions over 48 h), they compare their sample spectra to those of well-characterized reference
samples and adjust their measurement parameters. In addition, users often need to look up additional figures
of spectra published in the scientific literature, this is usually conducted manually. While reference spectra
are known prior to an experiment, a new sample characterized at the beamline often displays characteristics
that users did not anticipate and for which finding comparable spectra in the literature provides additional
insights. NSLS-II users have complex information needs that include finding figures in the scientific
literature representing the characteristics of chemical elements and compounds measured by techniques
similar to the ones used in a particular experiment. These needs cannot be answered by popular search
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engines such as Google Scholar or Web of Science that can retrieve thousands of papers for a single
query—most irrelevant to the specific needs of these users. Furthermore, the specific details of the
characterization technique used, the different frequency bands of a measurement, the energies, and
numerous other details that make the sample and experiment comparable are buried in the text of a relevant
paper. The difficulties for users to find pertinent information in the literature are compounded by two facts:
(a) x-ray spectroscopy is a technique widely used for many different purposes in multiple disciplines, and
(b) older scientific literature can still be relevant to the experiment at hand. As a result, finding comparable
spectra in the vast literature at users’ disposal to collect evidence and develop methods for experiments at the
beamline is inefficient and haphazard.

This article describes a pilot system for scientific literature mining that uses deep learning techniques
adapted to natural language processing (NLP) and provides direction for answering users’ complex
information needs. The system targets x-ray absorption spectroscopy (XAS) techniques as XAS is one of the
most commonly performed x-ray experiments at NSLS-II. XAS is widely used for investigating structures of
samples from various angles in many scientific disciplines, including chemistry, materials science, physics,
biology, and biomedicine. When searching through published papers, experimenters first look for XAS
spectra and textual information in the paper that explains the figure. While search systems that specialize in
scientific literature mining, such as Semantic Scholar1, present users with figures and captions extracted from
papers, the captions typically lack enough information for users to compare with their experimental results
[2, 3]. There is a growing need for a service where practitioners can find XAS spectra and relevant text from
articles during the short period of time they spend at the beamline. Our pilot Text Mining system aims to
address this need. This paper makes the following contributions:

• We present a curated, pre-processed collection of articles relevant to XAS techniques and make it available
to facility users.

• We developed a portal and user interface that allows users to perform deep searches through these papers
and extract figures of spectra.

• Users can also browse through the classified collection by transition metals and XAS edges.
• We present users with ‘figure explanatory text’—additional details from the text of the paper relevant to
figures, a new feature in scientific literature mining. Results are these sentences in the text of the paper that
provide details about figures in addition to captions.

• We trained a model to find relevant information to XAS spectra in articles based on semantic analysis of
texts that goes beyond literal comparison and measures sentence similarities by meaning to obtain these
results.

• We integrate domain expertise in the trainedmodel at several levels, (a) to guide the original data acquisition,
(b) to provide informal feedback on the usability of the interface, and (c) next

• Most importantly, we incorporated into our user-facing system a mechanism for domain experts to rank
results. The collected label data will improve accuracy of the resulting sentences related to the figures, when
its size is sufficient.

• As there is no direct way to compare with other search engines since our system adds new features
(the figure-explanatory text), we compare the method to random results.

Our research hypothesis is that (a) there is a lot of useful details that can explain a spectra contained in
the text of a paper but do not appear in a caption; and (b) that text mining for this purpose must focus on
the semantic aspects of language rather than keyword comparison and sentence similarity. This has been
done before in materials characterization.

The text mining system deployed at NSLS-II includes a classification system for XAS-related publications
and a text extraction model for explaining figures using NLP techniques. Both are deployed in a user-friendly
search interface. Our system builds a data collection, extracts pertinent information from the scientific
publications related to XAS, and presents it to users in a web portal. XAS spectra (figures) contained in
relevant papers are extracted and presented with captions and snippets of text from the paper that are
relevant to each figure. One of the obstacles in using machine learning techniques for science is the absence
of labeled data for model evaluation. Our system affords users the ability to quickly rate the relevance of each
text segment extracted by the model to the displayed figure. This helps with the production of labeled data
and model fine-tuning. The system supports expandability, adaptability, and data integration for the
development of future applications to other topics in scientific literature mining. This article is divided into
the following sections: section 2 presents an overview of the system’s architecture, and section 3 details the

1 www.semanticscholar.org
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Figure 1. Architecture design of the text mining system.

deep learning methods used to extract explanatory text from each article, the datasets, and the feedback
mechanisms.

2. Overview and related work

2.1. System architecture
The scientific literature mining system is composed of three major parts: article database construction, NLP
model creation, and a web user interface (figure 1). The article database is built by collecting articles and
supplementary materials such as figures from major publishers and open-source digital repositories
(described in section 3). Text preprocessing includes extracting values using the metadata provided by
publishers. Heterogeneous formats are unified using an XML parser and a PDF parsing tool [4] that provides
JSON outputs. While parsing articles in semi-structured formats (XML; HTML) generates consistent
outputs, parsing PDF articles is much more complicated. Moreover, PDF parsing results are not consistent or
reliable [5]. Until reliable PDF parsing results are obtainable, we depend on XML/HTML articles for article
collection. Unlike other PDF articles, PDF articles from IOP (Institute of Physics) have additional metadata
files that can be used for searching. Thus, we include IOP PDF articles in the article search, but not in XAS
figure analysis. With the structured JSON corpus, NLP models are designed for the desired purpose. Our
system adopts several deep learning methods that recently have made significant progress in big data analysis
and NLP [6, 7] and exploits existing domain-specific text mining tools, such as ChemDataExtractor [8, 9].
For the XAS corpus, users interact with developed NLP models via a web interface in two ways: they can find
figures using the article classification and text from the article explaining these figures, hereafter noted as
‘figure explanatory text.’ We also have deployed Elasticsearch [10] to improve search functionality and
performance over the entire collection with filtering that allows users to display figures and explanatory text
without browsing the classification. The NLP models are shown in figure 1 in the XAS Experiments box and
described in section 3.

2.2. Related work for XAS data andmaterials informatics
Out of many methods for materials design and discovery, XAS is a popular technique for materials
characterization, and spectra yielded by XAS experiments provide the fingerprint of the specific chemical
environment for elements including the local atomic structure, electronic properties, and coordination
environment information [11]. When analyzing XAS images, if a library of representative reference spectra is
available, researchers can perform spectra comparison analyses that help identify an unknown and gain
in-depth structural insights [12]. However, it is challenging to acquire reliable reference spectra. XAS
experiments are conducted at synchrotron radiation facilities, and the experimental data is stored at facility
proprietary databases with various retention policies and usually not open to the public. Although many
efforts are ongoing to create an open access XAS data from facilities [13] and standardize hydrogenous XAS
data formats across facilities [14], open reference databases such as the electron energy-loss spectroscopy
(EELS) database [15] still contain limited volume of spectra (e.g. only 17 number of K-edge spectra in EELS),

3



Mach. Learn.: Sci. Technol. 2 (2021) 045007 G Park and L Pouchard

and more agreements on unifying data formats are needed to create a central framework for an international
XAS database [16]. To enlarge the size of XAS reference data, the researchers [17, 18] created the computed
reference XAS spectra based on theoretical calculations, called XASdb, that contains more than 800k K-edge
XANES for over 40k materials. XAS experiments are expensive in terms of time and labor, and thus the
previous experimental data is invaluable. Notwithstanding the main resource of XAS information is
publications, no significant progress has been made in extracting XAS information from literature as it is an
arduous task. To the best of our knowledge, our proposed work is the first attempt to mine literature for XAS
information, which is supplied via a user-friendly search interface. Unlike the works that analyzed XAS
images themselves for spectra similarity measures [18], materials parameter prediction [19], structural
characterization [20], our work focuses on XAS information residing in textual data in the literature.

In recent years, materials informatics has been rapidly expedited along with the advance in
high-throughput screening and big data analysis, and literature mining has been receiving more attention
than ever in materials science and chemistry [21, 22]. Jensen et al [23] extracted Zeolite synthetic
information from literature and trained a random forest regression model to predict Zeolite trends.
Tshitoyan et al [24] has adopted a simple context-free word embedding method to identify relations between
materials science literature. Kim et al [25] developed an automated pipeline to process materials synthesis
parameters in scientific papers and applied machine leaning algorithms to predict parameters for titania
nanotubes via hydrothermal methods. Kononova et al [26] generated a database for solid-state synthesis
recipes extracted from literature using heuristic and neural network models. While the previous works
adopted simple word representation methods and somewhat focused on syntactic patterns of texts, the
proposed work will leverage contextual information of text to perform deeper semantic analysis in order to
build a model to identify text segments that explain XAS figures.

2.3. Related work for figure explanatory text extraction
There have been previous research attempts to extract information relevant to figures from the scientific
literature. A weight propagation approach [27] calculated word and sentence weights by an iterative weight
update chain process of positional distance between sentences and word importance to rank figure-related
sentences. Bhatia and Mitra [3] created a list of cue words for figures by manual inspection and used a
traditional count-based method for similarity measure between caption and sentences to find information
related to figures. A figure summarization system [2, 28] selected figure-relevant sentences by analyzing word
similarity between sentences and figure captions, the relation to articles’ thematic terms, and locational
information of a sentence. The previous works have mainly focused on superficial characteristics to identify
figure explanatory text, and a shallow semantic analysis has been conducted, such as sentence similarity
based on the co-occurring words. To improve the machine’s ability to distinguish sentences, extracting figure
explanatory text in a paper requires deeper text understanding that goes beyond structural and literal
patterns as presented in earlier work. Instead, our method will focus more on the process of semantic aspects
of natural language. In our earlier work [29], we constructed an ontology to find figure-descriptive concepts
in scientific papers. Although the ontological semantics-based approach performs well on capturing
concepts for figure descriptions (e.g. SHOW-INFORMATION concept: ‘show,’ ‘illustrate,’ ‘demonstrate;’
GRAPHICAL-REPRESENTATION concept: ‘shape,’ ‘color,’ ‘line’), the scope of the model is limited and does not take
into account the entire article. Thus, it is not suitable for finding figure explanatory text from the entire body
text because it is impractical to human engineer concepts to the extent of covering the corpus in the ontology.

Transfer learning has become a dominant paradigm in deep-learning-based NLP as it substantially
enhances performance [30]. In general, a large amount of a labeled training dataset is required to create an
effective deep learning model. However, domain-specific labeled data are scarce, resulting in a lack of
knowledge for a model to learn. Transfer learning alleviates this problem by learning universal linguistic
knowledge from unlabeled text data in an unsupervised way. This is called ‘pre-training.’ Subsequently, the
knowledge is delivered to a model for downstream supervised tasks that can rely on a relatively small amount
of labeled data. Models using transfer learning have proven successful at capturing more linguistic properties
than models trained on small amounts of labeled data from scratch [31, 32]. With regard to pre-trained
models, pre-training a language model [33] has shown better performance than other pre-training tasks,
such as autoencoding or translation [34, 35]. The Bidirectional Encoder Representations from Transformers
(BERT) is the most popular technique for transfer learning via pre-trained language models, and a number
of pre-trained BERT models for general or special purpose are available [36]. BERT generates word
embeddings by language modeling. BERT analyses the context of a word in a bidirectional way rather than
unidirectionally (e.g. left to right and right to left). BERT achieves bidirectional language modeling by
adapting encoder in the Transformer architecture [37]. Encoder is an input processor in a
sequence-to-sequence model for language understanding. The bidirectional language models based on
Transformer encoder have outperformed standard unidirectional language modeling methods in reading
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Figure 2. Classification tree for XAS articles.

comprehension tasks, including classification, question answering, and named entity recognition
[36, 38–40]. Recently, a figure summarization task in a biomedical domain has adopted a domain-specific
BERT model, called ‘BioBERT,’ and achieved improved results compared to rule-based and literal
feature-based approaches [41].

3. Figure and text extraction for XAS with semantic methods

3.1. Classification of articles related to XAS
For XAS classification, articles are classified by XAS techniques, chemical elements, and types of XAS edges,
and the classification result is presented as a tree structure (figure 2). The XAS technique is the top level of the
tree, which are the two main XAS techniques, extended x-ray absorption fine structure (EXAFS) and x-ray
absorption near edge structure (XANES). Chemical elements (e.g. transition metals) are the second level of
the tree. We currently include 30 transition metals because these compounds are crucial to both fundamental
studies and a wide range of technological applications. The last level of the tree presents three XAS K-, L-,
and M-edges. The expression of those three features in scientific articles is relatively well standardized in the
following way: the name of an element followed by a type of edge and the XAS technique used (e.g. Ti K-edge
EXAFS, Au L2 edge XANES). We have established simple heuristic rules for capturing those three features
from text with domain experts and applied the rules to figure captions for the classification. The details of the
implementation and performance evaluation of the classification can be found in [42]. The XAS
classification tree provides researchers with a filtered list of search results by XAS-specific features. Selecting
an article in these results display XAS spectra images, figure captions, and figure explanatory text.

3.2. Extracting figure explanatory text for XAS with semantic methods and obtaining labeled data
To make search results more informative, the system provides text information that describes figures in
addition to figure captions. Figure captions usually have a short description or a brief introductory comment
and do not contain sufficient information to explain figures to readers or allow them to decide if a figure is
useful for understanding their experimental results. Full information about figures resides in body text, and
figure explanatory text from body text should be supplied to improve users’ understanding of figures.
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Figure 3. The process of figure explanatory text extraction for XAS figures.

Finding text to explain a specific XAS spectrum requires considerable domain knowledge. The knowledge
can be embedded into a model if a large collection of labeled datasets exists. The absence of labeled data and
practical difficulties in such data acquisition have led us to come up with a solution to train a model without
labeled data. This method produces meaningful preliminary outcomes that can be improved by requesting
user feedback. We built a model to find the most similar sentences to figure captions based on the
assumption that sentences with high semantic similarity to captions would contain meaningful information
about the figures.

For the task of text recognition of figure explanatory text centered on semantics, this project adopted the
BERT deep learning-based language representation technique. In particular, we used SciBERT, a pre-trained
model on one million full text scientific articles [43], and Sentence-BERT, a BERT fine-tuning method for
sentence embeddings [44]. To make a model learn domain-specific knowledge, we further pre-trained the
model on our collection of XAS articles using Sentence-BERT (figure 3).

To measure similarities, sentences are transformed into vector representations. Sentence-BERT uses a
Siamese neural network (twin BERT), where each BERT model takes a sentence and generates a sentence
embedding (pooling, e.g. a mean of output word embeddings) then compares the two sentence embeddings
using a pair of similar sentence datasets (e.g. Natural Language Inference (NLI) corpus). Sentence-BERT
updates model weights considering semantic similarity at a sentence level, and the performance showed it
was superior to sentence representation approaches based on simple combinations of embeddings at a word
level. We trained a Sentence-BERT model on the Stanford NLI (SNLI) dataset [45], Multi-Genre NLI
(MultiNLI) dataset [46], and Semantic Textual Similarity dataset [47]. This is illustrated in figure 3 by the
box labeled, ‘Semantically similar pairs of sentences.’ The trained Sentence-BERT model is deployed to
calculate similarity scores between figure captions and sentences in body text. Before the top N sentences are
selected as figure explanatory sentences by similarity scores, sentences are first filtered by NLI results to
account for textual entailment relations. NLI is a classification task to determine whether a hypothesis is true
(entailment label), false (contradiction label), or undetermined (neutral label) given a premise. We set a
caption as premise and selected entailed sentences for each figure using a softmax classifier on
Sentence-BERT trained on SNLI and MultiNLI.

Figure explanatory sentences selected by the model are presented along with XAS figures on the web
interface, and users can rate the relevance of the sentences. The rating system aims to evaluate the model’s
accuracy and obtain a human-labeled dataset that can be used to fine tune the model.

3.3. Datasets
The selection of publications has been determined by domain experts in chemistry and materials science,
which includes Elsevier, Springer Nature, Royal Society of Chemistry (RSC), American Association for the
Advancement of Science (AAAS/Science), PubMed Central (PMC). Article scraping has been conducted
under the publishers’ text and data mining agreements. To respect these agreements, the articles in our
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Table 1. The number of articles and XAS figures for publishers.

Data source Number of articles Number of XAS spectra

Elsevier 29167 8336
RSC 7922 2913
Springer Nature 2021 499
PMC 1408 252
AAAS 147 15
Total 40665 12015

collection and results are only available when logged into the BNL domain. While these publishers are
providing bulk download access at no additional cost through the BNL library licenses, the American
Chemical Society (ACS), a major publisher in chemistry and materials science of interest to users, has chosen
to charge additional fees for text mining purposes. As a result of these prohibitive fees, ACS articles are not
included in this collection. The data sources provide proprietary RESTful (Representational State Transfer)
APIs to download articles. Objects such as figures are also downloaded if publishers provide object files.

We have collated 40665 XAS articles using four keywords: ‘XAFS’ (x-ray absorption fine structure) and
‘EXAFS’, ‘XANES’ (aka ‘NEXAFS’ (near edge x-ray absorption fine structure)) that are two regimes in XAFS
[48]. Our scraper first searches and downloads all journals and manuscripts available for each source, and
the article parser discards unnecessary content type articles. For instance, in case of Elsevier, articles about
handbook series and reference works are excluded. The article parser unifies heterogeneous article formats
collected across the data sources and generates JSON files that contains ‘uid’, ‘publisher’, ‘article type’, ‘title’,
‘year’, ‘author’, ‘keywords’, ‘abstract’, ‘body_text’, and ‘figures’. Some aritlces can appear in multiple sources
(e.g. PMC repository contains articles from other publishers such as Elsevier, Springer, RSC), and uids
(unique identifiers) that are mostly DOIs are used to remove duplicates. The date range of the collected
articles is from 1997 to 2020. Table 1 shows the number of articles and XAS figures. The XAS corpus is used
to domain tune a SciBERT model and create sentence embeddings for similarity measurement.

3.4. Results
The web portal provides two services for a figure search: (a) XAS classification tree and (b) article search. As
discussed in section 3.1, XAS classification tree displays classified articles by XAS technique (top level), 30
transition metals (second level), and types of edges (third level) in a tree structure. Article search supports a
conventional, faceted search, where users can search specific areas of articles (e.g. title, abstract, body text, or
figure caption) with the additional option to only display articles containing XAS spectrum images. The
difference between search functionality in the XAS classification service and the article search service is that
search is limited to titles and captions in the XAS classification, while users can search any part of articles in
article search. When a user needs to find XAS spectra by XAS features, such as XAS method and edge, the
classification tree is a better choice. The article search interface can be used if a user needs to retrieve articles
by specific key terms and phrases. Both services provide a link to display a XAS information web page that
contains a XAS image and its caption and figure explanatory text explaining the spectrum and extracted
using the deep learning model results. Figures 4 and 5 show an example of a XAS information web page with
the interaction buttons for feedback. Figure 6 depicts an example of search results with articles having XAS
spectra in the article search interface. In the example, the figure and text are from the original paper [49], and
our contribution is the list of explanatory sentences from the paper for users to rate. In its development
phase, the system also includes a way to collect labeled data to improve the model by providing selected users
with a method to report feedback on the explanatory power of the figure explanatory text.

3.5. Evaluation and discussion
We have conducted an evaluation on the model performance for figure explanatory text extraction using
ratings from domain experts. For each figure, the service provides the five most similar sentences to the
caption as determined by the model and five other sentences randomly chosen from the article’s body text.
During the sentence selection, sentences containing obvious clues such as ‘Fig. X…’, ‘in figure Y’ were
excluded. The selected ten sentences were randomly shuffled before displayed to users. The rationale behind
mixing model selections and random selections and shuffling sentences is that users may be biased in their
responses if all sentences are regarded as relevant (e.g. acquiescence bias or dissent bias) which is based on
the assumption that some of random choices will be highly irrelevant to figures and sentences are in regular
order (question order bias). With mixing and shuffling, the model performance can be compared with some
baseline (randomly chosen sentences).
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Figure 4. XAS spectra after the article selection in figure 2. Reproduced from [49]. CC BY 4.0.

Figure 5. XAS explanatory text displayed after the article selection in figure 2. Reproduced from [49]. CC BY 4.0.

Users search for XAS spectra of interest using either the XAS classification tree or the article search and
rate if a sentence is explanatory or not to the figure. Thus far, we have collected feedback from domain experts
from several NSLS-II beamlines, e.g. inner-shell spectroscopy (ISS) and x-ray fluorescence microprobe
(XFM), as well as the Center for Functional Nanomaterials (CFN), a Department of Energy Nanoscale
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Figure 6. Article search results for articles with XAS figures. Reproduced from [49]. CC BY 4.0.

Table 2. Accuracy and F1 score of whether selected sentences by the trained model and random sentences are relevant to figures or not.

ACC (%) F1-Score

Sentence by model 50.32 0.6695
Random sentence 17.42 0.2967

Science Research Center located at BNL. We have collected 31 sets of feedback on figure explanatory text for
figures from each facility, and the total labeled sentences were 930 sentences (465 sentences chosen
by the model and 465 random sentences from body text) for 93 figures. Table 2 displays the evaluation
results.

Both the model selections and random sentences were set as ‘relevant’ (predicted labels) for comparative
evaluation, and the values were compared with the user decisions (true labels). The model’s selection showed
much higher relevance to figures than random choice. The result explains that 50% of sentences by the model
were explanatory to the XAS spectra, whereas only 17% of the random sentences were explanatory. This
result is in line with the findings of a recent study by Saini et al [41], where the model using BERT achieved
much higher precisions compared to random sentences for biomedical figure summary datasets. Some of the
disagreement between human and machine decisions can be due to the lack of context for given sentences.
The domain experts mentioned that they were unable to make a clear judgement for some of the sentences
unless more context was provided, including acronyms and abbreviation interpretations, which led them to
decide that such sentences were not explanatory. Another factor can be that we adopted the binary rating
scale for simplicity. However, this might not properly reflect users’ decision that may reside in the range scale
(e.g. 1–5). Additionally, when selecting figure explanatory sentences, we excluded sentences directly referring
to figures. These sentences contain obvious clues (e.g. ‘Fig. X describes’ or ‘as shown in figure Y’), it is a
trivial task to find them, and it is reasonable to assume that they are highly associated with the corresponding
figure. In fact, the clues referring to figures (e.g. figure X) contribute more to figure explanatory information
than semantic similarity and textual entailment features [41]. When the model evaluation phase is finished,
these sentences with obvious clues will be presented on the web portal. It is possible that finding the five best
explanatory sentences, besides the obvious ones, may result in presenting less than ten explanatory sentences.
In a human-annotated dataset of figure summary for biomedical journals [50], sentences referring to figures
amount to 38% of summaries. After removing these sentences, the average number of sentences
summarizing figures decreases from 7.5 sentences to less than five sentences. As an initial phase of model
training, we have focused on simplifying the user feedback interface to obtain as many labeled samples as
possible. We will continue to improve model results as we collect more labeled data from users.
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4. Conclusion and future work

Scientific literature is a vast source of knowledge that remains relatively unexplored with automated
approaches. The literature contains massive amounts of unstructured data and presents numerous
opportunities for systematically extracting valuable knowledge. We have described a system for mining
information about experimental spectra from scientific papers that performs article scraping, model
creation, and information delivery. The system is designed for materials science and chemistry disciplines
from experiments that are the most commonly performed at the scientific user facilities at BNL (NSLS-II and
CFN). The system’s primary purpose is to provide scientists at those facilities with supplementary
information for experiment preparation, comparison, and evaluation. The system application to XAS
experiments has supplied domain scientists with the needed functionality to retrieve relevant x-ray spectra
information during their time at the beamlines.

We plan to continue improving the information delivery based on users’ feedback. Many users at BNL
have positively commented on our pilot system and made suggestions to further improve its usability. The
rating feature will be refined by adding a more precise rating scale. An additional feature of the future system
will be to extend the classification and model to the full periodic table, covering a broader materials space
and further facilitating the application of data-driven methods in spectral interpretation. One interesting
topic can be a XAS trend analysis on which the beamline scientists at NSLSII showed interests. This can be
achieved when we obtain sufficient training data and domain expertise, and we will consider cooperation
with domain experts to design and build a predictive model. The system supports expandability, adaptability,
and data integration for the development of future applications to other topics in scientific literature mining,
for instance, synthesis recipe prediction, a challenging task in materials science due to its complexity and
copious density of pathways.
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