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Abstract
We provide a robust defence to adversarial attacks on discriminative algorithms. Neural networks
are naturally vulnerable to small, tailored perturbations in the input data that lead to wrong
predictions. On the contrary, generative models attempt to learn the distribution underlying a
dataset, making them inherently more robust to small perturbations. We use Boltzmann machines
for discrimination purposes as attack-resistant classifiers, and compare them against standard
state-of-the-art adversarial defences. We find improvements ranging from 5% to 72% against
attacks with Boltzmann machines on the MNIST dataset. We furthermore complement the
training with quantum-enhanced sampling from the D-Wave 2000Q annealer, finding results
comparable with classical techniques and with marginal improvements in some cases. These results
underline the relevance of probabilistic methods in constructing neural networks and highlight a
novel scenario of practical relevance where quantum computers, even with limited hardware
capabilities, could provide advantages over classical computers.

1. Introduction

The robustness of machine learning models against adversarial attacks is currently an open question. Indeed,
it is easy to make neural networks misclassify images by applying perturbations to just one single pixel [1], or
even perturbations that are imperceptible to human observers. Such a perturbation is found by maximizing
the network’s prediction error [2, 3], therefore showing adversarial examples which rely on the inherent
uncertainty that neural networks have about their predictions [4]. These ideas lead to real-world attempts at
fooling state-of-the-art computer vision models [5] and enabling malware to bypass detection [6, 7].

Right now there exist a great plethora of adversarial attacks on neural-network discriminative algorithms.
The most common are white-box, meaning that they have access to the neural network parameters after
training [2, 3, 8, 9]. In contrast, black-box attacks just query the classifier to construct adversarial
examples [10, 11]. These latter attacks are more difficult to create but potentially more efficient to a wide
range of classifiers, not just deep neural networks. However, it has been shown that substitute models can be
trained on black-box queries to a target model, and adversarial examples built from white-box attacks to the
substitute model are also effective in the target [12]. It is hotly debated whether there is a type of machine
learning model, or any data processing technique, that is most adept at defending against adversarial
examples. Indeed, right now defences are often broken soon after their publication [13–16], and part of the
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community’s proposal is encouraging a faster iteration cycle between attacks and defences via
competitions [17].

Bayesian methods and generative probabilistic graphical models (PGMs) could potentially be more
robust, since their training is not necessarily related to backpropagation and first-order gradient descent.
Gaussian processes, for instance, achieved a remarkable performance against attacks [18, 19]. In a similar
way, generative models, which learn the full joint probability distribution of instances and labels instead of
an input–output function, are thought to be more resistant to attacks based on small perturbations. The fact
that the full data manifold is approximated in generative models was the inspiration behind generative
adversarial networks (GANs) [20], that were originally designed such that a generator would approximate
the data manifold to fool a discriminator. Our motivation stems from this observation and we ask the
question whether generative probabilistic models can have an improved robustness to adversarial attacks
when compared against feedforward neural networks.

In this work we benchmark the robustness of generative PGMs against recent state-of-the-art attacks on
discriminative neural networks, and assess the performance of state-of-the-art defences on these
attacks. We compare the results previously known for feedforward deep classifiers against classical and
quantum-enhanced restricted Boltzmann machines (RBMs) in white-box attack schemes. Our findings show
that both classical and quantum-enhanced Boltzmann machines far outperform the current competition,
with improvements ranging from 4.62% to 72.41%. Moreover, quantum-enhanced Boltzmann machines
give marginal improvements over their classical counterparts in some instances, which is an encouraging
result given the young state of quantum hardware platforms, and illustrates a practical application of interest
of noisy, intermediate-scale quantum technologies more direct than demonstrations of quantum
superiority [21, 22].

This paper is organized as follows: in section 2 we introduce the concept of adversarial attacks and review
the relevant recent work in this area. We proceed analogously in section 3 for the training of RBMs. Then, in
section 4 we describe the particular architectures, attacks and defences we consider, and evaluate them in
section 5. We conclude in section 6 with a discussion and pointing to directions of future work.

2. Adversarial examples

Formally, an adversarial attack is aimed at a classifier f : X 7→ Y , where X is typically a subspace of Rd, and Y
is a discrete space corresponding to labels. The goal of the attack is to create an example x∗ in the vicinity of a
valid training point x such that ‖x∗ − x‖ is small and f(x∗) 6= f(x). If f(x∗) does not have any restriction other
than f(x∗) 6= f(x) , the attack is said to be non-targeted. In contrast, in a targeted attack the adversary aims to
specify the label of the adversarial example, that is, f(x∗) = y∗ for a specific choice of y∗. The difference to the
actual examples should be small as measured by the Lp norm, where p is typically 0, 1, 2, or∞. For a more
complete taxonomy, see [10, 17, 23].

As an illustration of a standard attack, let us consider the fast gradient sign method (FGSM) [3]. This
attack is interesting since it approximates the minimization in the infinity norm bound, ‖x∗ − x‖∞, in a
single step, which means that it can scale easily to large datasets. FGSM is an example of a white-box attack,
where the model parameters are known to the adversary. Adversarial examples are created by

x∗ = x+ ϵ · sign(∇xLθ(x,y)), (1)

where∇xLθ(x,y) is the gradient of the loss function Lθ of the machine learning model parametrized by θ in
x, whose true label is y. In its simplest formulation, FGSM does not transfer well to other models than the
one it was trained on because of the fact that all the information needed to prepare the adversarial examples
is very specific to the model used. On the other hand, black-box schemes in turn either transfer attacks from
an undefended model to other models or query an unknown model to gain information about its decision
boundary. In both cases, the agnosticity about the target model make black-box attacks more difficult to craft
but potentially more ‘dangerous’ in terms of their reach.

Adversarial examples in linear models can be explained as a result of high-dimensional dot products. In
such models, the output when a perturbed image is input will be the sum of the dot product of the weights
with the unperturbed input and the dot product of the weights with the perturbation. If each weight vector
has average magnitudem and the input is n-dimensional, the activation in the classifier will grow by ϵmn
(where ϵ is the magnitude of the perturbation). For low-dimensional problems this does not result in a large
difference in classification between the original and perturbed data, as long as the activation does not exceed
the precision of the features. However, if the input has a large dimension n, even weak perturbations can
cause large errors in the classifier [3].

There are other hypotheses that suggest that adversarial examples also arise in neural networks despite
their non-linear nature, but there is very little convincing evidence for them. In fact, many commonly used
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neural network architectures such as long short-term memory networks [24], maxout networks [25], and
rectified linear units [26] intentionally behave linearly in order to reduce computational complexity,
increasing its vulnerability to adversarial examples. However, this does not preclude non-linear architectures
of neural networks such as sigmoid networks to suffer from similar problems. Many of these types of
networks work mostly within a linear regime to better optimize their results, thus also leaving them open to
adversarial examples as well.

While the theoretical underpinning of deep neural networks is improving, the robustness guarantees of
the defence mechanisms were primarily supported by empirical observations, occasionally masking implicit
assumptions. In turn, this leads to an arms race of devising defences, which are very soon bypassed by more
elaborate attacks [13].

Certain models are naturally immune to adversarial examples: kernel methods, for instance, provide an
example of models with this type of immunity [3, 27]. Immunity does not come for free, since kernel
methods are not competitive at all with deep neural networks in terms of performance on clean datasets.
This seems to suggest that performance and robustness against attacks are two important features of machine
learning algorithms that are at odds, and that when developing an application based on neural networks one
must choose between making it perform well or making it secure. This idea was formally expressed and
proved in [28], where it is shown that robustness to adversarial attacks can be achieved by employing models
of higher complexity, provided that there are no bounds on the access to new datapoints so the model
underlying the data can be learned with high fidelity. The general case of a learning scheme is, however,
markedly different, as the learner is typically provided with a dataset of fixed size. In the case of fixed
datasets, the use of more complex models leads to overfitting, which is itself a source of weakness to
adversarial attacks, and models with high capacity that fail to be as robust as models with a lower capacity are
necessarily overfitting.

Methods other than neural networks may provide an advantage in this case. Bayesian inference methods
have been shown to identify deviations in the uncertainty about predictions between adversarial and clean
examples. This was demonstrated with Gaussian processes [18, 19], and in fact, statistical tests alone can
already indicate whether samples were drawn from the same distribution as the original data [29].
Furthermore, Gaussian processes have a direct correspondence between deep and wide neural networks [30],
allowing for a potentially high accuracy on clean examples, addressing the main shortcoming of kernel
methods.

It still remains unclear whether other PGMs, and in particular deep variants, are more robust against
adversarial examples. Many of these models are quintessentially generative, including the well-known family
of Boltzmann machines. In backpropagated architectures, generative models are not necessarily robust
against adversarial perturbations [3], but generative probabilistic models are yet to be benchmarked.

3. Minimizing free energy

While PGMs can still use some variant of gradient descent for training, the error is not backpropagated in
the sense of feedforward neural networks. In fact, training involves a so-called negative phase (also known as
sleep cycle or thermal equilibration) that is global in the sense that it possibly factors in everything the
network has previously seen, adding some stochastic variations, and it also involves global, long-range
connections. Therefore, we rightfully expect that PGMs are robust against attacks enabled by the kind of
local manipulations associated to backpropagation.

Looking at it from a different angle, backpropagation with stochastic gradient descent aims at obtaining a
good local optimum, whereas the minimization of free energy, which is the goal when training energy-based
PGMs, gives an average over all local optima and the global optima. While an attack can easily nudge
backpropagation to a different local optima, the free energy already considers all local optima, and hence its
expected robustness towards perturbations.

In this work we focus on a particular type of PGMs, known as RBMs. The training of RBMs is
computationally efficient with heuristics such as contrastive divergence (CD) and persistent contrastive
divergence (PCD). Formally, the function to minimize when training RBMs is the negative log-likelihood,

Lθ (T ) =− 1

|T |
∑
x(i)∈T

log
(
pθ(x

(i))
)
, (2)

where T is the training set and θ are the parameters of the model. Intuitively, one intends to maximize the
product of the probabilities of the instances in the training set, which should appear frequently (i.e. with
higher probability) since they represent ‘good’ configurations of the visible units. In fact, the ideal function
to minimize is the Kullback–Leibler (KL) divergence between the probability distribution that the RBM
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learns, pθ(x), and the real probability distribution over the instances p(x). Discarding the term that does not
depend of the model parameters from the KL divergence and assuming an approximately equal probability
for good configurations to appear, equation (2) is recovered.

The parameter update rule is computed by calculating the derivatives of equation (2) with respect to θ.
For simplicity, let us choose a Boltzmann distribution in a system with hidden neurons, namely
pθ(x) = Z−1

θ

∑
h exp[−Eθ(x,h)] where the sum over all possible configurations of the units defines the

partition function, Zθ =
∑
x,h exp[−Eθ(x,h)]. Moreover, let us define the free energy of a configuration of

visible units Fθ(x) by

e−Fθ(x) =
∑
h

e−Eθ(x,h). (3)

Using this, the loss function can be rewritten as

Lθ (T ) = log
∑
x

e−Fθ(x) +
1

|T |
∑
x(i)∈T

Fθ(x
(i)). (4)

The second sum is over the training set, while the first one is over all possible neuron configurations. This is
the term whose computation is intractable classically—for a model with N binary neurons, the total number
of possible configurations is 2N. Now, computing the gradient of equation (4), we observe two different
terms:

∂Lθ

∂θ
(T ) =

1

|T |
∑
x(i)∈T

∂Fθ(x(i))

∂θ
−
∑
x

[
pθ(x)

∂Fθ(x)

∂θ

]
. (5)

Here we identify the positive phase as the term coming from the evaluations on the training set, and the
negative phase as that coming from evaluations on all possible configurations of visible units. The simplest
energy function associated to an RBM is given by

Eθ(x,h) =−
∑
i

xibi −
∑
j

hjcj −
∑
ij

wijxihj, (6)

where θ is now {wij,bi, cj}ij. The free energy can be thus expressed as

Fθ(x) =−
∑
i

xibi −
∑
j

log
(
1+ ecj+

∑
i wijxi

)
. (7)

Picking any derivative, we can see a more explicit formulation of the positive and negative phases. For
instance, if we take the visible biases, bi, with equation (5) we obtain

∂L
∂bi

(T ) =
1

|T |
∑
x(k)∈T

(−x(k)i )−
∑
x

pθ(x)(−xi)

=−(〈xi〉data −〈xi〉model). (8)

The positive phase, 〈·〉data, is easy to compute since it only involves averages over the training set, but the
negative phase, 〈·〉model, is not possible to calculate explicitly since it requires knowledge of the overall
distribution pθ(x), or analogously of the partition function Zθ.

3.1. Classical heuristics
To evaluate the gradient correctly one needs to be able to satisfactorily approximate the negative phase,
〈·〉model. A way of obtaining samples from the model distribution is via Markov chain Monte Carlo Gibbs
sampling [31]: starting from a random configuration of the visible neurons, one iterates sampling the hidden
and visible neurons from the corresponding conditional distributions until the stationary state is reached.
This proper estimation is prohibitively expensive due to the large amount of iterations required to reach the
stationary state, but some simple heuristics work decently in practice.

CD is one of such simple heuristics [32]. Instead of iterating infinitely over the layers of the RBM to find
〈·〉model, when using CD-k one performs k iterations of a batch of n chains that are initialized in training
datapoints, and computes the expectation as averages over those n chains. This is an extremely simplified way
of doing Gibbs sampling without a burn-in time, and instead of starting from random initialization, one
starts from a clamped set of visible nodes. Choosing to start from training data in the negative phase has two
benefits: (i) the resultant gradient will produce a model that does not drift too far away from the ground
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truth, and (ii) there is no need to wait for the Markov chain to mix in order to draw samples of reasonable
quality.

A more reliable variant of CD is called PCD [33], where instead of initializing the chains for every average
to be computed, the initial seeds for a sampling process are the final state of the chains in the previous
process. This may reduce the impact of burn-in since a Markov chain is constantly maintained. However, one
has to carefully balance between the mixing rate and weight updates [34].

While seemingly useful in practice, one must bear in mind that by using these heuristics one may lose
visibility of discovering samples that follow more closely the Boltzmann distribution. Moreover, these
sampling heuristics obviate that, especially in the early stages of training a Boltzmann machine, the fact that
the weights are initialized randomly makes the proper characterization of the low-energy sector an
NP-complete problem [35, 36].

3.2. Quantum-enhanced sampling
A powerful realization that has arisen with the recent advent of analog quantum computers is that many
algorithms which had an inspiration in the dynamics of physical processes and that simulated or
approximated those physical processes can now be readily implemented in analog computers, without
approximations. In the context of the NP-complete problem of computing the negative phase of a Boltzmann
machine, many state-of-the-art methods have inspiration from physics, such as simulated annealing [37] or
parallel tempering [38]. Now it is possible not just to simulate these dynamics, but to prepare a physical
system in the particular desired state and measure or sample it directly in order to compute 〈·〉model. It is well
known that more accurate approximations of the negative phase give rise to improvements in terms of model
quality and training time [33, 36]. Thus, it is reasonable to expect that the direct access to model samples
from measuring a physical system results in higher-quality models that, from the perspective of adversarial
attacks, are more robust than models that are trained using classical heuristics. Alternatively, one can
reasonably expect to match the robustness of models trained using classical heuristics in fewer training cycles
by using analog sampling methods.

In the early training stage of a Boltzmann machine, the Markov chains used in many heuristics for
approximating the log-likelihood gradient may behave as expected because the weights are usually initialized
as small values, which means that the Markov chains just need to approximate samples drawn from
distributions close to thermal noise. At later stages, however, it becomes harder to keep the chains near their
stationary distributions [39]. It is now possible, however, to prepare systems in the stationary distribution
directly, instead of approximating it. The D-Wave quantum annealer is a physical device that has a working
mechanism similar to simulated annealing [40]. In addition to using the thermal fluctuations inherent to any
physical system, quantum annealing (QA) further explores the search space by exploiting quantum
fluctuations. Studies have shown that large-scale quantum annealers such as those exemplified by the
D-Wave quantum computers can offer significant speedups for certain problem classes [41].

Reference [42] conducted extensive experiments that compare the sampling performance of QA against
CD. For energy functions with high barriers QA is more effective in exploring complex search spaces, which
leads to a more accurate calculation of gradients. Computational efficiency aside, CD and PCDmay not yield
high quality models that are competitive with backpropagated architectures in terms of prediction accuracy,
despite the fact that they might be more robust to attacks. This has inspired further heuristics such as
Boltzmann-Encoded Adversarial Machines [43], where a GAN-like setting is combined with an RBM
architecture. Nevertheless, CD and PCD are just approximations of thermal sampling training schemes,
which can be performed exactly by hardware-based sampling to yield intrinsically high-quality Boltzmann
machines. In particular, quantum-enhanced sampling on contemporary quantum annealers has already
shown notable advantages against CD and PCD training [44, 45].

When working with QA one must make a distinction between two different distributions. The first one is
the actual Boltzmann distribution with energy function defined in equation (6). The second one is the
quantum annealer sampling distribution. In theory, once the binary units are replaced by qubits as in QA,
the energy function (6) is substituted by the Hamiltonian [46]

Hθ(σ
z
x,σ

z
h) =

∑
x

bxσ
z
x +

∑
h

cxσ
z
h +

∑
x,h

wxhσ
z
xσ

z
h, (9)

where σz
i represents a spin on a lattice site i that takes a value in {+1,−1}. Technically, these spins can be in a

superposition, which means that they are equivalent to qubits. Equation (6) will represent the diagonal
elements of the 2N × 2N Hamiltonian matrix described by equation (9), andN is the total amount of neurons
of the Boltzmann machine. The partition function then becomes the trace of e−Hθ , i.e. Zθ = Tr[e−Hθ ].

Unlike classical Boltzmann machines where approximations have to be made to circumvent the
evaluation of the partition function, in a quantum annealer one can prepare physical samples quantum
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Figure 1. Embedding of a 16× 16 RBM on a D-Wave Chimera graph of 4× 4 unit cells. This illustrates the sparse connectivity
of the hardware architecture and explains how multiple physical qubits form a logical binary variable: the coloured edges
connecting the physical qubits represent a logical binary variable. The number of physical qubits need for a logical one is called
chain length. The longer the chain, the higher the chance of a failed calculation. The grey couplings are not used in the embedding.

mechanically, without the need of any explicit calculation. Instead, the samples drawn from the annealer
directly follow the desired Boltzmann distribution.

Despite its sampling capacity, qubits on the D-Wave quantum computer are sparsely connected, which
means that not any two qubits can be connected (or coupled) by a w. In the current generation of the
D-Wave chip, namely D-Wave 2000Q, each qubit is connected to a maximum of six qubits. In order to
couple qubits that are far apart one needs to resort to embeddings. An embedding requires building virtual
qubits by chaining up multiple physical qubits with strong ferromagnetic couplings. Shorter chains are
favoured against longer ones, since in general, the longer the chain, the more likely it will break, which would
distort the result of the sampling. In figure 1 we illustrate the embedding of a 16× 16 RBM on a 4× 4
D-Wave Chimera graph, where each unit in the RBM is composed of four connected qubits on the quantum
chip, as shown by the coloured chains. In this work, we use the heuristicminor-embedding method to map
the graphical structure of the RBM architectures employed to the D-Wave Chimera structure [47].

Another important issue one needs to address when performing QA is the so-called temperature effect.
There are two factors to the temperature effect. First, the programmable parameters on the D-Wave chip are
normally constrained within a specific range. When an RBM is being trained, one needs to scale the model to
make sure it fits within the parameter range on the chip. Scaling the energy function of equation (6)
can be considered as changing the temperature of the problem. Second, the chip runs at a very low
temperature—around the milli-Kelvin level—which implies that when the Hamiltonian of equation (9) is
solved on the D-Wave quantum annealer, it is actually solved with a scaling factor of T�1. The combination
of these two factors will ultimately determine the temperature at which the samples are returned.

4. Experimental setup

We outline now the different procedures for attacking and defending classifier algorithms, and detail the
parameter choices for the classical and quantum RBMs.

The general attack-defence procedure in neural networks is as follows: first, each of the defences is
applied to the original dataset, producing ‘defended’ training and test datasets. Then, each ‘defended’
training dataset is employed to finetune a ResNet18 convolutional neural network (CNN), and each
‘defended’ test set is used to build datasets of adversarial images using each of the attacks. The attack datasets
are 1:1 with the test datasets, so every image in each defended dataset has an adversarial version in each of the
attack datasets. Finally, the robustness to adversarial attacks is measured as the percentage of test adversarial
images that are misclassified by the CNN.

The choice of attacks and defences were chosen to reflect methods that are commonly used and that
proved strong in previous benchmarks [17]. While the defences make use of no knowledge about the
classifier they will defend (i.e. they are black-box), we consider white-box attacks where the adversary has
access to the classifier’s architecture and parameters. Black-box attacks, which only have access to queries of
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the model, are in principle more ‘dangerous’ in that they can easily apply to a wide variety of classifiers. Prior
work has proven, however, that it is possible for an attacker to train a model on black-box queries of the
target, and use this white-box substitute model to build attacks that are effective in the target model [12].
Thus, considering just white-box attacks is realistic and sufficient. Finally, all the attacks are non-targeted: the
focus is put in creating a misclassification, rather than forcing a particular label to be predicted.

As for the proposal of this work (recall, replacing the CNN classifier by an RBM generative model that is
later repurposed into a classifier), the defence consists of simply training the RBM on the original dataset.
The set of adversarial attacks are built from the original dataset as well.

4.1. Attacks
4.1.1. FGSM
FGSM is a standard attack for generating adversarial images. The method has been described in detail in the
Related Work section.

4.1.2. Carlini and Wagner
Carlini and Wagner proposed gradient-based attacks that have been found to be among the most effective
when using small perturbations [9]. It re-frames generating adversarial examples as an optimization
problem. Clearly, this is a difficult problem to solve and multiple techniques are employed to simplify the
optimization. Firstly, a binary search algorithm is employed to find a suitable coefficient for the optimization
terms, and after that, the optimization terms are converted to arctanh space so that efficient, state-of-the-art
optimization solvers can be utilized.

4.1.3. Deepfool
This method uses a different insight to derive efficient attacks [5]. It characterizes robustness as the distance
between a data point and the decision surface. The aim of the adversary is to minimize the perturbation in
the L2 norm while misleading the classifier. DeepFool represents the faces of a polyhedron with the decision
boundary planes from the classifier to describe the output space. The attack then finds the minimal
perturbation that changes the classifier’s decision within the polyhedron.

4.2. Baseline defences
4.2.1. Adversarial training
The most popular defence is plain adversarial training, in the spirit of GANs [2]. In contrast with the use of
GANs for generative purposes, in the case of adversarial training it is the discriminator, and not the
generator, that which one is interested in improving its performance. This method injects adversarial
examples from the attacks during the training phase, so the discriminator is trained either on a mix of both
clean and adversarial examples, or on only the latter. However, since the adversarial examples are generated
with a specific type of attack, the discriminator remains vulnerable to other types of attacks.

Adversarial effects can also be efficiently mitigated through randomization, effectively ending up to a
form of data augmentation [48]. Techniques commonly used include random resizing and random padding.
The rationale behind these defences is that iterative attacks could overfit specific network parameters, hence
low-level image transformations can destroy the structure of adversarial perturbations.

This defence is of a nature different than the remaining, and thus is implemented in a different way.
Instead of applying the defence to the training dataset and training the CNN in it, in adversarial training the
CNN is trained directly in the union of the original clean dataset and the result of the application of the
attack to the original clean dataset.

4.2.2. Feature squeezing
Feature squeezing [49] is a computationally inexpensive yet powerful state-of-the-art method for defending
against adversarial attacks. This method reduces the colour bit depth of each pixel in the images used for
training. When representing images, colour bit depths are often employed to display images that are very
close to their natural counterpart. However, the features that are created as a result of this colour bit depth
are often not necessary for recognizing what an image is representing. Therefore, reducing the colour bit
depth can in theory also reduce the opportunities for an attack to find an adversarial image without
sacrificing classifier accuracy.

4.2.3. Spatial smoothing
Local spatial smoothing [49], which is related to feature squeezing, is a method consisting of reducing image
noise. It can be thought of as a sliding window that centres around each pixel in the image and replaces the
pixel with the median value of each of the neighbouring pixels. This creates a ‘blur’ over the image and helps
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mitigate the effects of adversarial perturbations (especially when applied to salt-and-pepper noise), while
maintaining the features that make correct classification possible.

4.2.4. Sampling-based defences
The method we propose, and furthermore we show effective for defending against adversarial attacks in the
next section, is abandoning the concept of training a discriminative neural network and instead training a
generative model on the joint dataset of inputs and corresponding targets. This is, instead of parametrizing a
function fθ(x) by a neural network architecture and using backpropagation to minimize some notion of
distance between the prediction, fθ(x), and the corresponding true label, y, we propose learning the joint
distribution of datapoints and corresponding labels, pθ(x,y)—provided as the Boltzmann distribution of
some parametrized energy function—, by optimizing the negative log-likelihood given in equation (2) where
the input x is given as the concatenation of a datapoint x and its corresponding label y. Once the model is
trained, the label assigned to a datapoint is that which minimizes the free energy of equation (7) when the
neurons encoding the datapoint are fixed. In the case of a small possible choice of labels, this
can be determined by direct computation of the free energy of all the neuron configurations
xℓ = (x, ℓ) ∀ℓ= 1, . . . , |Y| that correspond to the concatenation of the datapoint and a valid label, and
choosing the label for which the free energy is lowest, this is,

y(x) = argmin
ℓ

F(xℓ) s.t. xℓ = (x, ℓ). (10)

In more complicated cases, one can resort to sampling the label from the conditional distribution pθ(y|x) via
Markov Chain Monte Carlo methods.

In the particular case of this work we focus on RBMmodels, where the computation of the positive phase
of the gradient update is easy. We implement them using the ebm-torch package [50], setting the number of
hidden neurons to 40, the learning rate to 0.01, and using the Adam algorithm for updating the parameters
in the graph. No dropout or other regularization methods are used.

We use two different techniques for estimating the negative phase. On one hand we do a classical
training, using PCD to obtain the approximations of 〈·〉model. We choose a small batch size of 10 and long
iteration chains (k= 50). On the other, we compute it directly from the physical sampling of a thermal
quantum state of a set of qubits in the D-Wave 2000Q processor. In this case we use a larger batch size of 1000
for computing the positive phases, which is a more natural choice for the hardware. In light of the
temperature effect discussed in section 3.2, we rescale the coefficients manually to have a tight control over
the temperature at which the annealing is done. We request 500 samples from the chip, which are classically
postprocessed by the D-Wave server-side software stack. Each quantum sample is obtained with a 20 µs
annealing time. To mitigate the intrinsic control errors that might exist on the quantum chip, we randomly
choose five spin reversal transformations, which means that the Hamiltonian remains unchanged if, along
with the random flipping of spins, the signs of bias and coupling terms are flipped accordingly. Since we can
quickly reach a reasonably good model with heuristic methods, we bootstrap the quantum-enhanced RBMs
with a partially trained classical RBM pre-trained over 100 epochs and leave the heavy lifting to the quantum
annealer at a later training stage.

5. Evaluation

The Modified National Institute of Standards and Technology (MNIST) dataset provides a simple and robust
baseline that is useful to understand some limitations of defence mechanisms [51]. While arguably it should
not be the only benchmark [13], we rely on it exclusively because this is the only commonly used image
dataset that can easily be transformed to a current quantum processing unit. A larger image resolution or
additional colour channels would require an extensive transformation pipeline or the addition of
convolutional layers before the RBM, which could introduce confounding effects in the evaluation.

Tables 1 and 2 summarize the results. We used two versions of MNIST: the original one, containing
28× 28 greyscale images, and a rescaled one, containing 7× 7 binary images. The latter transformation was
necessary to embed the RBM in the quantum annealer, as the original version would require a significantly
higher number of qubits and connectivity than what is available with contemporary technology.

The columns of the tables refer to the defences. The RBM is the classical version trained with PCD,
whereas the QRBM in table 2 is the version trained using the D-Wave quantum annealer. The attacks are all
implemented using the foolbox library [52].

RBMs prove significantly more robust against attacks even when classical sampling heuristics are used
during training. This underlies the importance of architectures that have an internal equilibration step, as
opposed to purely greedy backpropagation of errors. This benefit of using the RBM can be tracked back to
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Table 1. Accuracy of defences after attacks on the original MNIST test dataset (10 000 28× 28 greyscale images of handwritten digits).

Adv. training (%) Feat. squeezing (%) Spatial smoothing (%) RBM (%)

FGSM 13.39 20.24 18.54 81.18
DeepFool 12.80 19.10 19.70 83.36
CarliniWagner 72.00 78.54 45.80 83.16

Note: The values in bold highlight the best-performing defence for each attack.

Table 2. Accuracy of defences after attacks on the MNIST test dataset downscaled to 7× 7 and binarized. This transformation is
necessary for training the RBM on the quantum annealer.

Adv. training (%) Feat. squeezing (%) Spatial smoothing (%) RBM (%) QRBM (%)

FGSM 19.36 28.03 14.74 87.15 84.49
DeepFool 21.03 26.64 13.66 84.50 85.18
CarliniWagner 48.24 77.15 22.00 85.71 82.92

Note: The values in bold highlight the best-performing defence for each attack.

the generative nature of the model. Instead of learning a ‘simple’ class-conditional density like discriminative
models, the RBM seeks to approximate the entire data distribution. While this is a more difficult problem
that may result in a lower performance on an unperturbed dataset, it also reduces the overfitting of the
model, making it more capable of generalizing to adversarial images. Referring back to [28], this result is an
extension of the upper bound of the loss function for more complex models. Clearly, complex models drawn
from a rich class of hypotheses must have loss functions smaller than simpler models, given (and this is an
important point) that enough training data is provided. While the CNNs on which the baseline defences
were established are much more complex than an RBM, their performance against adversarial examples
demonstrates that they overfit to the training and test data.

Importantly, quantum-enhanced sampling is on par with the classical RBM results and beats
backpropagation-based architectures. While it only outperforms classical PCD in only one attack and by a
small margin, given the current immature state of quantum technologies, this is already a remarkable result.
Furthermore, it highlights an important aspect of the use of quantum technologies in machine learning
which is more directly applicable and easier to measure than the speedup claims based in computational
complexity arguments [53].

6. Conclusions and discussion

We have shown that using generative PGMs as discriminators produces models that are much more robust to
adversarial attacks than standard discriminators based on deep neural networks. RBMs trained on the
MNIST dataset are notably more robust to misclassification of crafted images designed to fool the
classification than standard CNNs, even when defensive pre-processings of the datasets are applied in order
to protect the training pipeline. Moreover, using quantum-enhanced estimations of the log-likelihood
gradient of the RBM resulted in comparable improvements, having one instance, the DeepFool attack, where
the quantum-enhanced RBM was more robust than its classical counterpart.

The source of the robustness of generative PGMs to adversarial attacks can be ascribed to the overfitting
to training (and available test) data that discriminative models present when trained on finite datasets.
However, given that the primary goal of the generative model is not the classification accuracy but the
efficient approximation of the data manifold, its utility is lower than the achievable with discriminative
models. This is an expression of the no-free-lunch results of [28] applied to training on finite datasets.

Further support of the claim that the non-discriminative learning procedure of PGMs is a major factor in
the robustness of the model can be found in [54]. It is observed that human learning relies mostly on a
highly structured learning mechanism and unsupervised learning rather than supervised. Since humans are
much better than current machine learning techniques at defending against adversarial examples, mimicking
how we learn may be the best way to design robust defences. Moreover, graphical models in general are
structured in a much more nuanced way than neural networks. The structure of most graphical models
encodes some prior knowledge about the nature of the system it is modelling, something that seems to be
also present in the human brain. The similarities of graphical models to the way humans learn not only
points to a reason why RBMs may be more robust to adversarial examples than neural networks, but also
suggests that other, more structured graphical models may be even more effective.

From the quantum perspective, quantum computers are often touted for a significant speedup expressed
in terms of computational complexity or runtime in some specific setting. However, the current mismatch
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between theoretical requirements for provable speedups and experimental feasibility motivates the
exploration of alternative metrics by which quantum computing may provide advantages [55]. Here we shift
the attention from a speedup to a qualitative difference that quantum computers could offer in training
energy-based PGMs. It is known that the quality of the trained model increases and the number of training
epochs decreases with better approximations of the negative phase of the gradient (a simple example is
shown in [36]). In the context of robustness to adversarial attacks, it is thus expected that the improvements
in training enabled by the direct access to samples drawn from the model distribution (via directly
measuring the qubits in the D-Wave quantum annealer) provides more robust models using fewer
computational resources. The results that we present do not yet allow to make a strong claim regarding an
advantage, but they signal to promising a research direction where quantum advantages may be easier to
achieve in the current era of noisy, intermediate-scale quantum computers.

Although we are encouraged by the robustness of Boltzmann machines trained with QA to adversarial
attacks demonstrated at this stage (which is, recall, comparable to those of models trained using classical
heuristics), the size of the available quantum chips is not yet scalable to industry-standard datasets. This is
not only due to the number of qubits, but also to their sparse connectivity. In fact, the sparse connectivity
requires that, currently, most models of interest must be embedded in the chip’s architecture by using
additional qubits. Available embedding heuristics are designed to preserve the ground state, but access to the
low-energy excited states is also needed when training Boltzmann machines. An important direction of
subsequent research, that does not necessarily require experimental advances, is thus understanding the
relations between the energy spectra of the original problem and its embedding in the chip.

In future work, we plan to extend the current analysis beyond RBMs. By using a richer class of
models—like fully connected Boltzmann machines—one can expect that its larger expressibility allows to
improve the performance of classification while maintaining the adversarial robustness. However, even
simple modifications like lateral connections being introduced into the hidden layer require hardware
sampling—or alternative approximations—to be used also when computing the positive phase. Even if one
can extend the range of Boltzmann machines that can be trained, the number of qubits needs a dramatic
increase for performing an end-to-end training in the quantum processing units. As [45] pointed out,
classical preprocessing is recommended. A natural way to extend this work is to include convolutional layers
and attach an RBM to the final layer.

We considered just white-box attacks since these can also be built when one only has black-box access to
the target model [12]. The application of the attacks to classical RBMs is straightforward. For the quantum
RBM, in contrast, white-box access (i.e. the access not to the parameters that are input to the annealer, but
those characterizing the Boltzmann distribution of the samples) requires extensive calls to the quantum
annealer, which is prohibitive at the moment, particularly if we factor in the tuning requirements of both the
hardware and the Boltzmann machines. Nevertheless, as the software stack improves and the cost of access
drops, we expect that the white-box scenario will eventually become viable.

Other than the D-Wave quantum annealer, there are currently further choices of analog sampling
platforms. For example, degenerate optical parametric oscillators can simulate an Ising model, with the
desired belief that they do not suffer from sparse connectivity [56]. Furthermore, fully classical
application-specific integrated circuits are being tested for digital annealing [57]. It is interesting to see if the
robustness achieved with the D-Wave quantum annealer applies to other hardware technologies, which
would indicate that the improvements are indeed consequence of the use of PGMs in classification, rather
than of some other feature of QA.
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