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Bayesian Network Learning with the PC Algorithm: An
Improved and Correct Variation
Michail Tsagris

Department of Computer Science, University of Crete, Herakleion, Greece

ABSTRACT
PC is a prototypical constraint-based algorithm for learning
Bayesian networks, a special case of directed acyclic graphs.
An existing variant of it, in the R package pcalg, was developed
to make the skeleton phase order independent. In return, it has
notably increased execution time. In this paper, we clarify that
the PC algorithm the skeleton phase of PC is indeed order
independent. The modification we propose outperforms
pcalg’s variant of the PC in terms of returning correct networks
of better quality as is less prone to errors and in some cases it
is a lot more computationally cheaper. In addition, we show
that pcalg’s variant does not return valid acyclic graphs.

Introduction

Learning causal relationships in datasets with many variables (or features) is of
high importance in many scientific fields. Bayesian networks (BN) have been
applied for this purpose in many settings. In clinical set ups for example, BNs can
be used for disease diagnostic purposes (Bucci, Sandrucci, and Vicario 2011;
Suchánek, Marecki, and Bucki 2014; Zagorecki, Orzechowski, and Holownia
2013). In biology, they can be used to discover interaction networks (Isci et al.
2013) or analyze gene expression data (Friedman et al. 2000). Other applications
include psychology (Glymour 2001), teaching purposes (Conati, Gertner, and
Vanlehn 2002), data mining (Heckerman 1997), environmental modeling
(Aguilera et al. 2011) and criminology (Baumgartner, Ferrari, and Palermo
2008) to name a few. Finance, and insurance are linked with operational risk
management (or modeling), which is another area where BNs have been used
(Cowell, Verrall, and Yoon 2007).

BNs are probabilistic graphical models representing causal relationships
between variables. Network visualization is offered and intuitively (and causally
in the case of BNs) one can interpret relationships among variables. Two main
classes of algorithms for BN learning are constraint-based and score-based
methods. Constraint-based learning algorithms, such as PC (Spirtes and
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Glymour 1991; Spirtes, Glymour, and Scheines 2000) and FCI (Spirtes,
Glymour, and Scheines 2000) employ conditional independence (CI) tests to
discover the structure of the network, and then orient the edges by repetitively
applying orientation rules. Score-based methods on the other hand (Chickering
2002; Cooper and Herskovits 1992; Heckerman, Geiger, and Chickering 1995)
assign a score on the whole network and perform a search in the space of BNs to
identify a high-scoring network. Furthermore, hybrid algorithms exist, such as
MMHC (Tsamardinos, Brown, and Aliferis 2006) which first performs CI tests
and then uses a scoring method on the reduced space.

In this work, we focus on the PC1 algorithm for BN learning and a modifica-
tion of it called PC-stable (SPC) (Colombo and Maathuis 2014). SPC is a
popular modification of the skeleton phase of the PC, available in the R package
pcalg (Kalisch et al. 2012), which was suggested as a means of making the
skeleton of the original PC order independent. As analyzed later in this work,
the original PC is already order independent and hence this variation did not
make any improvement and is computationally more expensive. What is more
is that it does not always produce a valid partially oriented DAG (PDAG).

The aforementioned observations encouraged us to revisit the original PC
algorithm (Spirtes, Glymour, and Scheines 2000). We have re-implemented,
in the R package MXM (Lagani et al. 2017), the original PC algorithm and
modified its orientation rules2 to ensure the validity of the returned graph
and finally attempted to resolve some conflicts which occur.

Extensive simulation studies depict that our modification of the PC algo-
rithm, termed MPC hereafter, leads to better results in comparison to SPC. The
comparison takes place using a variety of CI tests for continuous, categorical,
and mixed data and the results show that MPC leads not only to better results,
but also, unlike SPC, returns a valid PDAG. In terms of computational cost, the
implementation of the skeleton phase of the MPC (which is the same as PC) is
much cheaper than SPC. For categorical data for example, it is more than two
orders of magnitude faster. Time efficiency, validity of the output graph, and
less errors in conjunction with its functionalities (works with many types of
data) make MPC a more practical than PC-stable, algorithm to use.

Section 2 contains brief information about BNs and CI tests. Section 3
summarizes the two algorithms, along with some algorithmic details and our
modifications in the orientation rules. Finally in Section 4, extensive experi-
ments are presented and Section 5 concludes the paper.

Preliminaries

Directed Acyclic Graphs

A graphical model or probabilistic graphical model is a probabilistic model
for which a graph expresses the conditional (in)dependencies between
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random variables. A directed graph is a graphical model where arrows
indicate a direction. When no cycles are allowed, for example
V1 ! V2 ! V3, the graph is termed directed acyclic graph (DAG).

The variables are denoted by nodes or vertices in the graph. The parents of
a node Vi are the nodes whose direction (arrows) points toward Vi, and
respectively, the node Vi is the child of these nodes. For example in Figure 2
(a), the nodes X, Z and W are the parents of the node Y and the node Y is the
child of the nodes X, Z and W.

Bayesian Networks

A BN Pearl (1988); Spirtes, Glymour, and Scheines (2000) B ¼ hG; Pi con-
sists of a directed acyclic graph G over vertices (variables) V and a joint
probability distribution P. P is linked to G through the Markov condition,
which states that each variable is conditionally independent of its non-
descendants given its parents. By using this condition, the joint distribution
P can be factorized as

PðV1; . . . ;VnÞ ¼
Yd

i¼1
P VijPaðViÞð Þ

where d is the total number of variables in G and Pa(Vi) denotes the parent
set of Vi in G. If all conditional independencies in P are entailed by the
Markov condition in G, the BN is called faithful.

Causal sufficiency, i.e. no latent confounders between the measured vari-
ables in V, is a necessary assumption made by PC. A causal BN is a BN where
edges are interpreted causally. Specifically, an edge X ! Y exists if X is a
direct cause of Y in the context of the variables V. For every directed edge,
Vi ! Vj, Vi denotes the parent and Vj the child. A collider is a triplet
ðVi;Vk;VjÞ where Vi ! Vk  Vj. If there is no edge between Vi and Vj the
node Vk is called unshielded collider. This translates to independence
between Vi and Vj condition on Vk if G and P are faithful to each other
(Spirtes, Glymour, and Scheines, 2000).

Typically, multiple BNs encode the same set of CIs.3 Such BNs are called
Markov equivalent, and the set of all Markov equivalent BNs forms a Markov
equivalence class. This class can be represented by a complete partially
directed acyclic graph (CPDAG), which in addition to directed edges also
contains undirected edges. Undirected edges may be oriented either way in
some BNs in the Markov equivalence class (although not all combinations
are possible), while directed and missing edges are shared among all equiva-
lent networks.
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Constrained-based Algorithms for Learning the Structure of a BN

Constrained-based algorithms (e.g. PC and MMHC) infer a BN by applying CI
tests between pairs of variables. These tests can be information based (BIC),
ad-hoc (Bayes factor) or statistical, i.e. they produce a p-value in order to make
a decision to remove or not an edge between two nodes. In this paper, we
focus on the PC algorithm and use statistical CI tests.

Conditional Independence Tests

Let X and Y be two random variables, and Z be a (possibly empty) set of
random variables. Statistically speaking, X and Y are conditionally indepen-
dent given Z X??YjZð Þ, if PðX;Y ZÞ ¼ PðXj jZÞ � PðYjZÞ holds for all values
of X, Y and Z. Equivalently, CI of X and Y given Z implies
PðX Y;ZÞ ¼ PðXj jZÞ and PðY X;ZÞ ¼ PðYj jZÞ. Such statements can be tested
using CI tests.

Pearson Correlation
An example of commonly employed CI test is the partial correlation test
Baba, Shibata, and Sibuya (2004) for continuous variables assuming linear
relationships among the variables. The test statistic for the partial Pearson
correlation is given by

Tpearson ¼ 1
2
log

1þ rX;Yjz
1� rX;YjZ

����
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� Zj j � 3

p
; (1)

where n is the sample size, Zj j the number of conditioning variables in the set
Z and rX;Yjz is tha partial Pearson correlation of X and Y conditioning on Z.

Spearman Correlation
In the case of Spearman correlation, the test statistic (1) becomes

Tspearman ¼ 1
2
log

1þ rX;Yjz
1� rX;YjZ

����
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� Zj j � 3

p

1:029563
:

Asymptotically, both test statistics follow the standard normal distribution
under the zero correlation assumption. In the R package MXM though, they
are calibrated against a t distribution with n� Zj j � 3 degrees of freedom,
whose performance is better for small sample sizes.

Robust Pearson Correlation
In Shevlyakov and Smirnov (2011) many ways of obtaining robust correla-
tions were presented. We have chosen one way to robustify (1). We calculate
the residuals of 2 MM regression models (Yohai 1987), one for each variable
X or Y being the response variable
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e1 ¼ Y � ðα1 þ β1X þ Zb1Þ and e2 ¼ X � ðα1 þ β1Y þ Zb2Þ
The conditional Pearson correlation is given via the correlation of these
residuals. P-values are obtained as before using the Pearson’s test statistic (1).

G2 Test of Independence
The G2 (and the χ2) test of independence Agresti (2002)

G2 ¼ 2
X

k

X

i;j

Oijjk log
Oijjk
Eijjk

is used for categorical variables. The Oijjk are the observed frequencies of the
i� th and j� th values of X and Y respectively in the k� th set of values of
Z and the Eijjk are their corresponding expected frequencies. Under the CI
assumption, the G2 test statistic follows the χ2 distribution with ð Xj j �
1Þð Xj j � 1Þð Zj j � 1Þ degrees of freedom.

Permutation Based P-Values
All four aforementioned test statistics produce asymptotic p-values. A second
method of obtaining p-values for either test statistic is via permutations. In
the continuous variables for example, the idea is to distort the pairs multiple
times and each time calculate the relevant test statistic (based on Pearson or
Spearman). The p-value is then computed as the proportion of times the
values of the permuted test statistics exceed the value of the test statistic in
the original data. In the categorical variables, the scheme is more complicated
and care must be taken. In the R package MXM, the choice of this scheme is
offered by selecting the number of permutations to be performed.

Distance Correlation
For continuous variables, the relationships may not be linear. For this reason,
we have also included the (partial) distance correlation (Szekely and Rizzo
et al. 2014; Székely, Rizzo, and Bakirov 2007)

dcorðX;YÞ ¼ dcovðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dvarðYÞp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dvarðYÞp ;

where dcovðX;YÞ is the distance covariance between X and Y and dvarð:Þ
denotes the distance variance. The p-value for zero correlation is calculated
via permutations.

Symmetric Conditional Independence Tests for Mixed Data
In the case of mixed data, e.g. continuous, binary, ordinal, we used the
symmetric test suggested by Tsagris et al. (2017). In order to check whether
X??YjZð Þ holds true, one should perform two likelihood ratio tests, for
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Y,f ðZ;XÞ assessing Y??XjZð Þ and for X,f ðZ;YÞ assessing X??YjZð Þ.
Regression models however are not symmetric. Y can be binary for example
requiring a logistic regression and X can be Gaussian, requiring a linear
model. The two resulting p-values are then combined in a meta-analytic way
which handles the inherited correlation between the two tests.

A faster alternative method is to perform one regression model only,
which was shown to be asymptotically equivalent to performing both models
(Tsagris et al. 2017). In that case, (Tsagris et al. 2017) proposed a priority rule
for implementing a regression model. For example, when the pairs consist of
a continuous and a nominal, ordinal, etc., variable, the faster model that
should be applied is the linear one. In case of a nominal-ordinal pair, the
multinomial logistic regression model should be fitted as is faster than the
ordinal logistic regression model.

The family of symmetric CI tests includes repeated measurements and
clustered data (data from family members for example). These types of data
are handled by generalized linear mixed models or by generalized estimating
equations (Demidenko 2013). This means, that our implementation of PC
constructs PDAGs for many types of data.

PC, SPC and MPC Algorithms

The skeleton phase of both the PC and SPC algorithms begins with all
pairwise unconditional associations and removes the edge between pairs,
which are not statistically significantly related. Subsequently, CI tests are
performed with the cardinality of the conditioning set (denoted by k)
increasing by one at a time. At every step, the conditioning set consists of
subsets of the neighbors of each variable. This process is continued until no
edge can be removed.

A main difference between the PC and SPC algorithm is that in the SPC,
the edge between any two variables for which the association is found to be
statistically not significant, is not removed. For the specific value of k, all tests
are performed and non-significant edges are deleted when increasing the
value of k. Secondly, PC examines the pairs in an ordered fashion, whereas
SPC goes through all variables that have at least k neighbors; thus, it per-
forms more tests. The pseudocode of the skeleton phases of the PC and the
SPC algorithm is given in Algorithms 1and 2, respectively.

We emphasize that the modification in the skeleton phase of the SPC
algorithm is the same as the one proposed by Abellán, Gómez-Olmedo, and
Moral et al. (2006) and Cano, Gómez-Olmedo, and Moral (2008). Cano,
Gómez-Olmedo, and Moral (2008) mentions that the order of the tests
performed in the original PC algorithm, even at the same cardinality step,
are not order independent. According to Colombo and Maathuis (2014), the
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order independence problem in constructing the skeleton of the BN is
resolved by using the SPC.

There has been a misunderstanding for many years now. The skeleton
phase of the original PC is independent of the order at which the variables
are present in the dataset and this is the first time this clarification is given.
(Spirtes, Glymour, and Scheines 2000, pg. 90) mention three heuristics to
speed up the algorithm and perform fewer CI tests. The first heuristic is the
so called lexicographic order; do all tests in the order of the variables. A
reordering of the columns (variables) in the dataset will lead to a change in
the order of the CI tests are performed. This was the motivation behind
Colombo and Maathuis (2014) who developed an order independent skele-
ton phase of the PC algorithm. Based on this, they proposed their modifica-
tion which makes the skeleton of the PC order independent, but at the cost of
performing twice as many tests as the PC does with the third heuristic. The
second heuristic accounts for this order dependence and performs the CI
tests on the pairs of variables that are least dependent. The conditioning
subsets (S) are chosen in a lexicographic order though. It is evident, that the
order of the variable still affects the outcome.

Finally, the third heuristic is to perform the CI tests on pairs of variables
that are least dependent conditional on those subsets that are most depen-
dent on either variable of the pair.4 It becomes evident that the order of
appearance of the variables in the data does not matter when one uses the
third heuristic. The sequence of the tests is based on the strength of associa-
tion of the pairs of variables and the order of appearance makes no differ-
ence. No experiment is necessary to show that the first two heuristics are
order dependent, whereas the third one is order-independent. Hence, we can
state that the skeleton phase of the (original) PC algorithm is order-
independent.

Algorithm 1 Skeleton phase of the PC algorithm

1: Input: Dataset on a set of n variables V

2: Let k ¼ 0

3: Repeat

4: Repeat

5: Select an ordered pair of variables Vi and Vj that are adjacent in G, such
that adjðG; ViÞn Vj

� ��� �� � k, and a subset S with adjðG; ViÞn Vj
� ��� �� ¼ k,

and if Vi??VjjS
� �

delete edge Vi � Vj from G and
record sepsetðVi; VjÞ ¼ sepsetðVj; ViÞ ¼ S.

6: Until all ordered pairs of adjacent variables Vi and Vj with
adjðG; ViÞn Vj

� ��� �� � k and all subsets S with adjðG; ViÞn Vj
� ��� �� ¼ k have

been tested for CI.
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7: k = k + 1

8: Until for each ordered pair of adjacent variables Vi and
Vj, adjðG; ViÞn Vj

� ��� �� � k.

9: Return G, sepset.

Algorithm 2 Skeleton phase of the SPC algorithm

1: Input: Dataset on a set of n variables V

2: Let k ¼ 0

3: Repeat

4: For all variables Vi in G do

5: Let aðViÞ ¼ adjðG; ViÞ
6: End for

7: Repeat

8: Select an ordered pair of variables Vi and Vj that are adjacent in G,
such that aðG; ViÞn Vj

� ��� �� � k, and a subset S with aðG; ViÞn Vj
� ��� �� ¼ k,

and if Vi??VjjS
� �

delete edge Vi � Vj from G and
record sepsetðVi; VjÞ ¼ sepsetðVj; ViÞ ¼ S.

9: Until all ordered pairs of adjacent variables Vi and Vj with
aðG; ViÞn Vj

� ��� �� � k and all subsets S with aðG; ViÞn Vj
� ��� �� ¼ k have

been tested for CI.

10: k = k + 1

11: Until for each ordered pair of adjacent variables Vi and
Vj, aðG; ViÞn Vj

� ��� �� � k.

12: Return G, sepset.

Implementation Details of the PC Algorithm

There are a few implementation details that can make a difference in the
number of tests performed, the order of pairs and in the quality of the
constructed network.

(1) The first and most important feature is that we have utilized the often
neglected third heuristic in our implementation in the R package
MXM.

(2) This heuristic relies on the correct ordering of the pairs of variables.
When the p-values are very small below a threshold value, 10�16 for
example, R rounds them to 0. When it comes to ordering 2 or more
p-values, R R Core Team (2016) orders 2 or more 0 values at random.
This case is not at all rare, especially with the G2 test. This problem is
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also common in feature selection algorithms, which use an ordering of
the p-values in order to select the most statistically significant variable.
The answer to this problem is the use of the logarithm of the p-values.
This of course is not the case for the SPC since it does not rely on any
p-value ordering heuristic.

(3) When it comes to permutation based CI tests, equal (logged) p-value is
a very frequent phenomenon. For this reason, we order the p-values
first and then, for the equal p-values, we order their test statistic value
divided by the degrees of freedom of the test. For the partial correla-
tion test, this division is not different from taking the test statistic, as at
each step of the algorithm the number of conditioning variables is the
same. For the G2 test though this makes a difference, as the degrees of
freedom are usually different.

(4) The CI tests return a p-value and using a significance level α
((Colombo and Maathuis (2014) suggest values of 0.01 or less), a
decision on the edge removal is made. In all of our experiments, we
have chosen α ¼ 0:01. The α (type I error) denotes the probability of
falsely assuming that two variables are not independent when in fact
they are. In general, there is a trade-off between the type I error and
the type II error (not detecting dependence when in fact there is one,
termed β). But, with large samples, the power of the CI test (1 - β) is
high. Thus, it is advisable to have a low significance level. This way,
false positive added edges remain bounded at the 1%5 of the total
number of edges, in other words, statistical errors can be kept at very
low levels if a large sample size is available.

Orientation Rules of the PC Algorithm

The orientation phase of the PC is to apply the following four rules as
dictated by Spirtes, Glymour, and Scheines (2000) and Colombo and
Maathuis (2014).

Rule 0. For every triplet of variables ðVi;Vj;VkÞ such that Vi and Vj and Vj

and Vk are adjacent in G, but Vi and Vk are not, orient Vi � Vj �
Vk as Vi ! Vj  Vk if Vj‚ sepsetðVi; VkÞ .

Rule 1 . Orient Vj � Vk as Vj ! Vk if there is a directed edge Vi ! Vj such
that Vi and Vk are not adjacent in G.

Rule 2. OrientVi � Vk as Vi ! Vk is there is a directed pathVi ! Vj ! Vk.
Rule 3. Orient Vi � Vj as Vi ! Vj whenever there are two directed paths

Vi � Vk ! Vj and Vi � Vl ! Vj, such that Vk and Vl are not
adjacent in G.

Rule 0 is to be applied first. Then, according to Spirtes, Glymour, and
Scheines (2000) the order of the other three rules is independent, as in the
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sample limit (sample size going to infinity) and under no statistical errors,
the output will be a Markov equivalence DAG. In the finite sample size case,
though statistical errors exist and can lead to the wrong skeleton. Application
of the third heuristic requires some attention and conflicts within the rules
almost always appear. Cycles prevention is another issue not heavily
addressed in SPC. In the next sub-section, we try to address some of these
issues and point out some algorithmic and CI tests related details.

Modification of the PC Rules

The modification of the orientation rules that gives rise to the MPC algo-
rithm. More formally, MPC consists of the PC skeleton phase and the
modifications in the rules, presented below.

(1) 1. As mentioned in the Preliminaries Section, a DAG and hence a BN
does not allow cycles. Unfortunately, the four aforementioned rules do
not include cycles prevention in their protocol. When it comes to
applying one rule, we check if cycles are created. If the answer is yes,
the rule is canceled and the edge is left un-oriented. None of the
aforementioned variations of the PC Abellán, Gómez-Olmedo, and
Moral et al. (2006); Cano, Gómez-Olmedo, and Moral (2008);
Colombo and Maathuis (2014) addresses this issue. Figure 1 shows an

Figure 1. An example where pcalg produced a partially oriented cyclic directed graph.
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example where SPC produces a cycle,6 namely X1 ! X9 ! X8 ! X1.
The difference in the skeleton between MPC and SPC is the edge
connecting the nodes X1 and X8.

(2) 2. Unfaithful colliders often emerge. For example, let pairs X - Y, W -
Y and Z - Y. The first triplet X ! Y  Z holds true (X??ZjY), the
second one Z ! Y  W (X??WjY) holds true as well, but at the
same time, the triplet X ! Y  W that has been created does not
hold true (X??WjY). In this case, similarly to Isozaki (2014) the
MPC disorients X - Y and W - Y (see Figure 2).

(3) 3. Colliders can be created when applying Rule 1. If that is the case, the
rule is canceled for that particular node. Figure 3 gives such an
example. In (a), Rule 1 would turn Y - Z into Y ! Z and W - Z
into W ! Z. This would create a collider, Z for Y and W. We will
direct one edge only (the first seen). Suppose we turned Y - Z into Y
! Z. Then, Z - W is not allowed to be turned into Z ! W because
W would become a collider. In this case, Z - W would remain as is. In
(b) orienting Y � Z and W � Z would create a new collider as well. In
this case, both edges will be left un-oriented.

Figure 2. (a) Y is a collider for X and Z, for W and Z, but falsely considered as collider for X and
W. (b) After discovering the mistake, the edges X ! Y and W ! Y loose their arrow.

Figure 3. Rule 1 would turn Y - Z into Y ! Z and W - Z into W ! Z in both cases.
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The four orientation rules do not include many conflict resolution strate-
gies. Similarly, to the SPC, we treated the triplets in a lexicographical order.
The difference is that we do not overwrite the directions, but perform them
in a first-come-first-serve fashion. We should note that conflict-resolution
strategies still remain an open area of research.

To sum up, SPC relies on a modified skeleton phase of the original PC.
MPC on the other hand has left the skeleton phase of the original PC the same
and changed the application of the orientation rules toward two directions: a)
preventing cycles and b) preventing the creation of non existing colliders.

Experimental Validation and Comparisons

We conducted extensive experiments on simulated data in order to investi-
gate the quality of estimation of the MPC and SPC. Both algorithms were
mainly compared on synthetic BNs with either continuous, categorical or
mixed data.

Data Generation

Let X be a variable in G and PaðXÞ be the parents of X in G.
In case PaðXÞ is empty, X is sampled from the standard normal distribu-

tion. If PaðXÞ is not empty, then X ¼ f ðPaðXÞÞ ¼ β0 þ
P
i
βiPaiðXÞ þ �X,

where f ðPaðXÞÞ is a linear function depending on X in this case, but in
general it can by any function. The following procedure is used to generate
data for X.

(1) Generate samples for each variable in PaðXÞ recursively, until samples
for each variable are available.

(2) Sample the coefficients β of f ðPaðXÞÞ uniformly at random from
½�1;�0:1� [½ 0:1; 1�.

(3) Generate �X,Nð0; 1Þ.
(4) Compute X using f ðPaðXÞÞ.

In order to generate ordinal variables (for the mixed data case scenario),
we first generated a continuous variable as previously described, and then
discretized it into 2–4 categories appropriately (retaining the ordinal
scale). Each category contains at least 15% of the observations, while
the remaining ones are randomly allocated to all categories. This is
identical to having a latent continuous variable (the one generated), but
observing its discretized proxy variable with some noise added. Note
that, as the discretization is random, any normality of the input contin-
uous variable is not preserved. Finally, ordinal variables in the parent sets
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are not treated as nominal variables, but simply as continuous ones and
thus only one coefficient is used for them for the purpose of data
generation.

After completing the dataset set generation we shuffle the columns of the
matrix (change the order of the variables) and hence the same columns and
rows of the adjacency matrix representing the BN. This makes the estimation
procedure more difficult, because the order in which Rule 0 is applied is
lexicographical and the order with which we have generated the data would
benefit from the application of this rule.

Many evaluation criteria were employed in order to accurately evaluate the
performance of the two algorithms. For the skeleton phase, we compared the
computational efficiency and the number of tests performed by both algo-
rithms, along with the Hamming distance (HD). The HD between two
strings of equal length is the number of positions at which the corresponding
symbols are different. In our case, the two strings (one for the estimated
skeleton and one for the true skeleton of the BN) are binary, indicating the
presence or absence of an edge between two pairs.

The quality of the learned BNs was assessed using the structural Hamming
distance (SHD) Tsamardinos, Brown, and Aliferis (2006) of the estimated
PDAG from the true PDAG. This is defined as the number of operations
required to make the estimated graph equal to the true graph. The true
PDAG is simply the Markov equivalence graph of the true BN; that is some
edges have been un-oriented as their direction cannot be statistically decided.
The transform from the DAG to the PDAG is carried out using Chickering’s
algorithm Chickering (1995). The number of times the estimated network is
a valid PDAG (no cycles are present) is another crucial measure reported.

Hamming Distance of the Skeleton

Figure 4 clearly demonstrates that the HD of the MPC skeleton is similar to
the HD of SPC for all combinations of sample size and number of variables.

Computational Time and Number of Tests Performed during the Skeleton
Phase

We evaluated the MPC and SPC algorithm in terms of computational time
and number of CI tests performed. For the continuous data case, the
generated BNs contained a various number of nodes,
p ¼ ð50; 100; 150; 200; 300; 500; 700; 1000Þ, with 3 and 5 neighbors on aver-
age. For each case, we created 30 random BNs, and simulated Gaussian data
with various sample sizes, n ¼ ð100; 200; 500; 1000; 2000; 5000Þ. In total,
this amounts to 2880 datasets.
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As for the categorical data, we simulated datasets with different sample
size from the INSURANCE network Binder et al. (1997) which contains 27
variables only (and 52 edges). The SPC algorithm for continuous data has
been implemented in C++, whereas for categorical data has been implemen-
ted in R. On the contrary, our PC algorithm implementation, for both
continuous and categorical data, is in C++. Henceforth, the time compar-
isons with categorical data are not fair and this is why we chose to simulate
from a BN with few variables and vary the sample size.

SPC performs more tests, thus reporting only the time would not result in
a fair comparison. For this reason, for each algorithm we report the total time
required divided by the number of tests carried out. Figure 5 presents the
ratios of the normalized times required by MPC and SPC with both

Figure 4. Differences in the average HDs between MPC (MXM R package) and SPC (pcalg R
package) are presented for a range of sample sizes.
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continuous and categorical data. Overall, we can see that the skeleton of the
MPC is much more computationally efficient than SPC.

Structural Hamming Distance of the PDAGs with Continuous Data

The generated BNs contained a various number of nodes,
p ¼ ð50; 100; 150; 200; 300; 500; 700; 1000Þ, with 3 and 5 neighbors on average.
For each case we created 30 random BNs, and simulated Gaussian data with
various sample sizes, n ¼ ð100; 200; 500; 1000; 2000; 5000Þ. Figure 6 clearly

Figure 5. For each algorithm, MPC and SPC, we have calculated the normalized computational
cost required to construct the skeleton. That is the total time divided by the number of tests
executed. The ratio of the normalized times between MPC and SPC appears in these two graphs
for BNs with continuous data and (a) 3 and (b) 5 neighbors on average. The bottom graph
contains the same information with categorical data obtained from a real BN.
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demonstrates that almost always the SHD of the MPC is lower than the SHD of
SPC for all combinations of sample size and number of variables.

Structural Hamming Distance of the PDAGs with Mixed Data

The simulated data now consist of continuous, binary and ordinal data with
the analogy being, on average, 50%; 25%; 25% respectively. In our experi-
ments, we used the same number of variables as Tsagris et al. (2017), p ¼
ð50; 100Þ but larger sample sizes, n ¼ ð100; 200; 500; 1000; 2000Þ. The average
number of neighbors is the same as before (3 and 5). A similar, to the
continuous data case, conclusion is drawn here as well. MPC almost always
produces PDAGs with SHD lower than SPC (see Figure 7).

Figure 6. Differences in the average SHDs between MPC (SHD(MPC) - SHD(SPC)) are presented
for a range of sample sizes. Negative values are in favor of MPC.
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Proportion of Times SPC Returns an Acyclic Graph

SPC does not check for cycles during performance of the orientation
rules. BNs are acyclic graphs, hence if this condition is not satisfied, the
final graph is not a BN. Figure 8 depicts the issue which becomes more
evident as the sample size increases. Even with 1000 variables, SPC will
return an acyclic graph with a high probability when the sample size is
small. But, as the sample size increases, even with 50 variables, this
probability decays.

Realistic Bayesian Networks

As a final comparison, we used the HAILFINDER (Jensen and Jensen 1996)
and the ALARM (Beinlich et al. 1989) BNs, which consists of 56 nodes & 66
edges and 37 nodes & 46 edges respectively. The R package bnlearn Scutari
(2010) contains 20,000 categorical instantiations from these networks. Even
though these datasets consist of both nominal and ordinal variables but we
treated them as nominal.

We randomly permuted the variables of the data 30 times and each time
we applied the four algorithms and calculated the SHD and the implementa-
tion time. Table 1 presents this information. The SHD produced by MMHC
varies a lot, whereas the PC related algorithms exhibit very small variances.

For the HAILFINDER network, on average all PC-related algorithms have
an SHD equal to 38–39. However, the SPC produces an acyclic graph only in
50% of the times. In addition, SPC is more than 1200 times slower than
MPC. For the ALARM network, the image is similar. SPC produces a slightly
less SHD on average, but it returns as acyclic graph in 73.33% of the times.

Figure 7. Mixed data scenario. The average SHD differences between MPC and SPC (SHD(MPC) -
SHD(SPC)) are presented for a range of sample sizes. Negative values are in favor of MPC.
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We remind the reader that in Figure 7, the percentage of times SPC produces
a DAG decays as the number of variables increases and the minimum
number of variables we consider is 50.

Conclusions

In this paper, we showed that the skeleton phase of the original PC algorithm
is indeed order independent. Extensive simulation studies showed that the
returned skeleton of the MPC (which is the same as the skeleton phase of the

Figure 8. Percentage of times there were no cycles in the estimated PDAG when using the SPC.
The lines correspond to different number of variables as the sample size increases. MPC does not
appear because it always returns acyclic graphs.
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original PC) and of the SPC have very small differences, which vanish as the
sample size increases, yet the former performs half the test the latter per-
forms and is computationally more efficient. When proper modifications are
applied on the orientation rules a valid PDAG (no cycles) must be returned.
This essential acyclicity property is not checked by the package pcalg Kalisch
et al. (2012), even though this package is quite popular and has been used by
other researchers (Harris and Drton 2013)

The comparisons between MPC and SPC (Colombo and Maathuis 2014)
showed that, with continuous data, the first leads to PDAGs whose SHD is
lower when dealing with continuous data. The same was with mixed data,
continuous, binary and ordinal, but due to the increased computational cost
required we did not try high dimensional settings. Despite the difference in
the SHD being smaller, SPC produces partially oriented graphs, which are
not acyclic; hence, they violate a basic and necessary condition of BNs. The
BNs examined here contained continuous, categorical and ordinal data for
which Pearson correlation, G2-test and appropriate regression models respec-
tively were used.

MXM also provides many functionalities to assess the skeleton of the
BN. Confidence on the discovered edges can be calculated either theore-
tically (Triantafillou, Tsamardinos, and Roumpelaki 2014) or numerically
via bootstrap and a lower limit in the confidence, as proposed by Scutari
and Nagarajan (2013). Estimation of the false discovery rate (Tsamardinos
and Brown 2008) and construction of ROC curves are some of the utility
functions.

Our main future research direction is to focus on conflict resolution
strategies. This is a key aspect of the MPC rules, which can lead to further
improvements in the estimated PDAG. More types of data will be handled,
making MPC practical and generic. In addition, we plan to examine further
the coupling of the MMPC Tsamardinos, Brown, and Aliferis (2006) with the
MPC rules. Another direction is to substitute the scoring search with rules
that are order independent and produce PDAGs of similar or better quality
than MMHC (Tsamardinos, Brown, and Aliferis 2006).

Table 1. Summary statistics regarding SHD and computational cost (in seconds) of the 2
algorithms applied to 30 random permutations of the variables of the data generated from
the HAILFINDER and ALARM networks.

SPC MPC

SHD: (Minimum, Maximum)
HAILFINDER (38, 39) (38, 40)
ALARM (57, 57) (60, 60)

Computational cost: (Minimum, Maximum)
HAILFINDER (206.42, 431.67) (0.20, 0.27)
ALARM (188.02, 204.84) (0.18, 0.22)
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Notes

1. PC stands for Peter and Clark, named after Peter Spirtes and Clark Glymour, the
names of the two researchers who invented it.

2. We will drop the word “orientation” hereafter and simply refer to them as rules or PC rules.
3. Two DAGs are called Markov equivalent if and only if they have the same skeletons

and the same v-structures Verma and Pearl (1990).
4. In our implementation of the PC we have used this heuristic.
5. This is the worst case scenario upper bound which is never reached. The construction

of the skeleton using the PC algorithm ensures this.
6. We highlight that SPC does not always produce acyclic graphs and we show this in the

experimentation Section. This was a rare example, yet not impossible to happen. The R
code used to generate these Figures is in the Appendix.
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Appendix

R code used to generate Figure 1.
library(MXM)
library(pcalg)
set.seed(489)
n <- 100 ## sample size
p <- 10 ## number of variables (or nodes)
A <- MXM::rdag2(n, p = p, nei = 4) ## generate data and store the
## true adjacency matrix
id <- c(7, 8, 3, 2, 6, 1, 9, 10, 4, 5)
dat <- A$x[, id] ## re-order the data
g1 <- MXM::pc.skel(dat, method = “pearson”, alpha = 0.01) ## skeleton
g1 <- MXM::pc.or(g1)$G ## orientation rules
a1 <- pcalg::pc(suffStat = list(C = cor(dat), n = n), indepTest =
gaussCItest, p = p, alpha = 0.01) ## skeleton and orientation phase
g2 <- a1@graph
g2 <- pcalg::wgtMatrix(g2, transpose = FALSE)
MXM::plotnetwork(2 * A$G)
MXM::plotnetwork(g1)
k1 <- which(g2 = = 1 & t(g2) = = 0)
k2 <- which(g2 = = 0 & t(g2) = = 1)
g2[k1] <- 2
g2[k2] <- 3
colnames(g2) <- rownames(g2) <- colnames(g1)
MXM::plotnetwork(g2)
plot(a1) ## in pcalg’s format

APPLIED ARTIFICIAL INTELLIGENCE 123


	Abstract
	Introduction
	Preliminaries
	Directed Acyclic Graphs
	Bayesian Networks
	Constrained-based Algorithms for Learning the Structure of a BN
	Conditional Independence Tests
	Pearson Correlation
	Spearman Correlation
	Robust Pearson Correlation
	G2 Test of Independence
	Permutation Based P-Values
	Distance Correlation
	Symmetric Conditional Independence Tests for Mixed Data


	PC, SPC and MPC Algorithms
	Implementation Details of the PC Algorithm
	Orientation Rules of the PC Algorithm
	Modification of the PC Rules

	Experimental Validation and Comparisons
	Data Generation
	Hamming Distance of the Skeleton
	Computational Time and Number of Tests Performed during the Skeleton Phase
	Structural Hamming Distance of the PDAGs with Continuous Data
	Structural Hamming Distance of the PDAGs with Mixed Data
	Proportion of Times SPC Returns an Acyclic Graph
	Realistic Bayesian Networks

	Conclusions
	Notes
	Acknowledgments
	Funding
	References
	Appendix

