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Abstract

We consider Tuba'’s representation of the pure braid group, Ps, defined by the map v : Ps —
GL (V), where V is an algebraically closed field. We then specialize the indeterminates used in
defining the representation to non- zero complex numbers. Our objective is to find necessary and
sufficient conditions that guarantee the irreducibility of Tuba’s representations of the pure braid
group P with dimensions d =2 and d = 3.
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1 Introduction

Emil Artin, in 1920’s, pointed out that the braids with n strings form the nth braid group, denoted by
B,. There exists an obvious surjective group homomorphism 7 : B, — S,. The kernel of 7 is
referred to as the pure braid group P, with n generators. In 2001, I.Tuba and H.Wenzl defined a
representation of Bs, namely p : Bs — GL (V'), which is simple on the dimensional vector space V
over an algebraically closed field F. The generators of Bs (o1and o2) have lower and upper triangular
forms respectively. Tuba and Wenzl gave a complete classification of simple representations of the
braid group Bs, for dimensions d < 5 (see [1]). This was done by assuming a certain triangular form
of the matrices of the generators of Bs. The matrix coefficients of the generators o1 and o2 are
determined by the eigenvalues i, A2, A3 and possibly some scalar, up to certain renormalization.
The representation of Bz with dimension d = 2 is irreducible if and only if =A% + X\ Ao — A3 # 0.
For dimension d = 3 , the representation is irreducible if and only if (A7, + AxAn) (A% + AeAm) #
0, where k#m #n € {1,2,3}.

Albeverio has found a class of representations of B3 in every dimension n, which depends on
n parameters [2]. The author in that work uses a deformation of pascal’s triangle connected with g-
shifted factorials to obtain the representations, and this generalizes the work of Tuba and Wenzl who

*Corresponding author: E-mail: mna@bau.edu.lb


www.sciencedomain.org

British Journal of Mathematics and Computer Science 4(16), 2381-2402, 2014

classified all simple representations of Bs for dimensions d < 5 [1] . This is also a generalization
of the results of Humphries, who constructed the representations of the braid group Bs in arbitrary
dimension using the classical pascal triangle [3]. Le Bruyn in [4] proved that all the components of
n—dimensional simple representations of Bs are densely parametrized by rational quiver varieties
and the explicit parametrizations are given for n < 12. Then Le Bruyn in [5] extended all this by
establishing such parametrizations for all finite dimensions n, which also generalizes the work of
Tuba and WenzI.

In our work, we mainly consider the irreducibility criteria of Tuba’s representation of the normal
subgroup of the braid group with n strings, namely the pure braid group Ps, with dimensions 2 and
3 (see [1]). Our main results are Theorem 5.1 and Theorem 6.1, which determine necessary and
sufficient conditions for the irreducibility of Tuba’s representations of P; with dimensions 2 and 3
respectively.

2 Preliminaries

Definition 2.1. [6] The braid group on n strings, B, , is the abstract group with presentation B,, =
{0‘1, ey Op—1; 0i0i+10; = 0;+10i0;+1 for i = 1,2, .n—2 ,0i0j = 005 if ‘Z —]| > 1}.

The generators o1, ..., 0,,—1 are called the standard generators of B,,.
Definition 2.2. [6] The pure braid group,P,,, is defined as the kernel of the homomorphism B,, —
Sp, defined by o; — (4,7 4+ 1), 1 <7 < n — 1. It has the following generators:

Aij =0j-105-2... Ui+10'i20';+11 e O'flgo'j

Definition 2.3. A representationis a map v : G — GL(V), where G is a group and GL(V) is the
group of n x n invertible matrices over the algebraically closed field V.

Definition 2.4. A representation v : G — GL(V) is said to be irreducible if it has no non trivial
proper invariant subspaces.

3 Tuba’s Representation of B3

Imre Tuba and Hans Wenzl gave a complete classification of all simple resentations of B3 with
dimensions d < 5 by assuming a certain triangular form for the invertible d x d matrices A and
B of the generators of Bs that satisfy ABA = BAB. In particular, they proved that a simple d—
dimensional representation ¢ : Bs — GL(V) is determined, up to isomorphism, by the eigenvalues
A1,...,Aq ofthe images of the generators o, and o2. For more details, see [1].

Below,we write the explicit matrices in the cases d = 2 and d = 3.

Proposition 3.1. [1,p0.499] Tuba’s representation of Bs is defined as follows:

For d =2
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(MM (e 0
a1 0 X)) 72 X M)
For d =3

PYRED YD VY Sl ED PR P A3 0 0
g1 — 0 AQ /\2 s g9 — —)\2 )\2 0 .

0 0 A3 DY VD FO VI PRED V)
Here M1, A2 and )\s are indeterminates.

We then specialize the indeterminates to non- zero complex numbers. Hence, we have the
following proposition.

Proposition 3.2. [1,p0.503] Tuba’s representation of Bs is irreducible if and only if
(i) =2} + M d2 — A3 #£ 0 for dimension d = 2,

(i) (A7, 4+ AeAn) (A7 4 AkAm) # O for dimension d = 3.

Here k#m #n € {1,2,3}.

4 Tuba’s Representation of P;

Let P; be the pure braid group on three strings. Applying Tuba’s representation on the normal
subgroup of the braid group, namely the pure braid group, we get the following representations of
dimensions d =2 and d = 3.

Definition 4.1. Tuba’s representation of the pure braid group Ps is defined as follows.

For dimension d = 2

A2 A2+ A A2 0
Ap = 5 Az =
0 A2 A — M A

A2+ 02+ A A2+ A
Az = )

22 - A1 )2

and

For dimension d = 3
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A Qr+22)(A34+A12a) (A1 4+ A2) (A2 + A3)

A2
A= o A3 A2 (A2 + As) ;
0 0 A3
A3 0 0
Ass = —A2 ()\2 + )\3) )\3 0
—(A1+A2)(A3+A1A
(A1 4+ X2) (A2 + A3) W 2
and
K _L_ Az3(A1+A2)(A2+A3)
X2 A1A3 A1
Ays = —>\1(>\2+Asig)\2+>\3+>\1) 7/\7]2” W ()\2 + )\3)
A (A14+22)(Aa4A3) (A1+22) (A3+A123) 22
A3 A2 2

Here the constants K, L and M are given by
K =X 2+ A3) + A1 (A2 + A3) + X2 (A3 + dads + A3),

L=X3(A1+X2) A2+ A3+ A1) ()\% + /\1/\3),

and

M =223 + 22 (A2 + A3) + A1 (D2 + As)°.

5 Irreducibility of Tuba’s Representation of the Pure Braid
Group P; with Dimension d =2

We find a sulfficient condition for the irreducibility of the complex specialization of Tuba’s representation
of the pure braid group Ps; with dimension d = 2.

Theorem 5.1. Tuba’s representation ¢ : Ps — GL2(C) is irreducible if and only if A1 # —\2 and
)\% — A1 + )\% # 0.

Proof. We show that if \1 # —X2 and A2 — Ao+ A2 #£ 0 then ¢ is irreducible. We consider two

cases of whether ornot A\; and X\, are equal.

e Assume that \; # Xs.
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The images of the generators of P; under ¢ have distinct eigenvalues. Let us diagonalize the
matrix A12 by an invertible matrix I given by

—A
1 Al—;\Q
I = .
0 1

I A1 =

So, we get

Suppose, to get contradiction, that this representation is reducible. That is, there exists a non
trivial proper invariant subspace S of dimension 1.

The subspace S has to be one of the following subspaces (e1) or (e2) .
Case 1.5 = (e1). Since e; € S, it follows that
A2 (A3+A7)
—A1+A2
(I7"Agsl) er = € S. This implies that (A1 + X2) = 0,
—A2 (A1 + A2)

a contradiction.

Case 2 S = (e2) . Since ez € S, it follows that

A1 (A4+23)

(A1—22)?
(171A23]) ey = €S.
AI(A§+)\§)
(A1—A2)
This implies that (A\f +A3) = 0. Thatis, A1 = —X; or A1 = 1\, (1£iv/3), which lead to a

contradiction. Therefore, there is no non-trivial proper invariant subspace in the case A1 # As.

o Assume that A1 = A\2. Then,

A2 2)2 A2 0
A = s Agz =
0 2 —222 2

3\2 2)2

and

A13 -
-2\ —)\?
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Suppose, to get contradiction, that this representation is reducible. That is, there exists a proper
non trivial invariant subspace S of dimension 1.

The subspace S has to be one of the following subspaces (e1), (e2) or < e1 + aex > , where
a e C.

3%
Case 3 S = (e1). Since e1 € S, it follows that Aize; = € S, a contradiction.
-2
223
Case 4 S = (e2). Since e2 € S, it follows that Aize; = € S, a contradiction.
-2
AT+ 207
Case 55 = (e1 + aez). Since (e1 + aez) € S, it follows that Aiz(e1 + aes) = €s,
a?

a contradiction.

We now show that if \; = —X2 or A7 — A1 X2 + A3 = 0 then the representation is reducible.

Assume that \; = —)>. Then

A2 0 A2 0
() ()
0 A2 0 A2
A2 0
0 A2

In this case, we have complete reducibility.

and

Assume that A — A1 X2 + A2 = 0, then the reducibility follows directly from that on the braid group,
Bs (see [6]).
O
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6 Irreducibility of Tuba’s Representation of the Pure Braid
Group P; with Dimension d =3

As for dimension d = 2, we find a sufficient condition that guarantees the irreducibility of Tuba’s
representation of P3; with dimension 3.

Proposition 6.1. Tuba’s representation ¢ : Ps — G Ls(C) is irreducible if \; # —X; and (A}, + AeAn) (A7 4 AeAm) #
Oforalli#j andm #n#k € {1,2,3}.

Proof. We consider two cases of whether or not \; # \; for all i # j.

e Suppose that \; # \; foralliand j.

Let us diagonalize the matrix A2 by an invertible matrix T given by

A5+A1 23 __—MiAz—dodz
1 A2 (=r1+Xr2) (A1—=A3)(—A2+A3)
T =
— o
0 1 A2—A3
0 0

So, we get

Moo 0
(T7'ALT)=[0 A o0].
0 0 A3

Suppose, to get contradiction, that this representation P; — G L3 (C) is reducible. That is, there
exists a proper non- zero invariant subspace, S, of dimension 1 or dimension 2.

Assume that the dimension of S'is 1.
The subspace S has to be one of the following subspaces: (e1) , (e2) or (es) .

Case 6 S = (e1) . Since e; € S, it follows that

A1A2A3(A2+A3)+AT (A3 +A23+A3)
(A1=A3)(A1—=A2)

(T7AT) e1 = A2 (A14As) A2 +As) €8S.
—Az+A2

()\1 + )\2) ()\2 + Ag)
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This implies that (A1 + X2) (A2 + A3) = 0, a contradiction.

Case 7 S = (e2) . Since ez € S, it follows that

—(A1+As)A2+A3) (M1 As+A3) (A2 As+A3)
(A1=22)2(A1—A3) A2

(T_1A23T) €g = Y S S

(A1A3+A3) A1+23) A1 +A2)
A2(=A1+A2)

This implies that (A1 Az + A3) = 0 or (A1 + A3) (A1 + X2) = 0, a contradiction.

A3 +AZAF+AT (A3 + 2223423 )+ A3 A1 (A3 +A2A3+23)
(A1=22)(A2—A3) :

Here, y =

Case 8 S = (e3) . Since e3 € 9, it follows that

(A2A3+27) (A1 A3+23) (A1 +22)
A2=23)(A1=A3)Z(A\1—X2)\1

(T7' A1sT) e3 = | o) uerntrans | €S
(A1=2A3)(A2—X3)?

z

This implies that (A2As + A7) (A2A1 + A3) = 0 or (A1 + A2) = 0, a contradiction.

A2 +A3A3+AZ (A3 4+ A2 23 +23 )+ A2 A1 (A3 + A2 A3 +A3)
(A1 =23)(A2—=2A3) :

Here, z =
Assume that the dimension of S'is 2.
The subspace S has to be one of the following subspaces (e1, e2) , (e1,e3) or (e2,e3).

Case 9.5 = (e1,ez) . Since (aer + Bez) € S forevery o, 3, it follows that (7' A23T) (cer + Bez) =

(A2A3+27) (A2 A1 4+23) A1 +A3) A2 +A3)

—B (R2—A3) (A1 —A2)2Az +az
(As+22) (A1 +A8)A:
a-=3 §27;33 2 — Bt € S.
Ar+A2) (A1 A3) (A24+21A
a (A + A2) ()\2+>\3)+,3< 1 2))?2(11-)\131&5 123)

This Implles that ()\1 + )\2) ()\1+/\3) (A% + )\1/\3) = 0 and (Al + )\2) ()\2 + /\3) = O, a contradiction.
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A1A2A3(A2+A3)+AT (A3 + A2 A3 423 )+ A2 xs (A3 + A2 A3 +A3)

Here, z = (A1=22)(A1—23)

and

A A3 +AZAZ+AZ (A3 +2223+23 )+ A3 A1 (A3 +A2x3+A3)

t= (i—A2)(x2—A3)

Case 10 S = (e1, es) . Since (aer + Bes) € Sforevery o, B, it follows that (7' A2sT) (aver + Bes) =

6(Agx3+A%>(A1A2+A§)<x1+x2><xg+x3> n
(A2=2A3)(A1—A2)(A1—A3)?

aQstA)QatAs)da ﬁ(>‘1+>‘2)(>‘1+>‘3)(/\§+>‘1>‘2)>‘2 €s.
A2—A3 (=X3+21)(A2—=X3)2

a (A1 4+ A2) (A2 + A3) + Or

This implies that ()\3 + )\2)()\1 + )\3))\2 =0 and ()\1 + )\2)()\1 + )\3)()\32 + )\1)\2))\2 =0,a
contradiction. The constants are given by

_ (A1x2xs(A2+23) A2 (A3+a2 23423 )+ A2 A3 (A3 + A2 x3+A3))
= (A1 =22)(A¢1—A3)

and

_ 32 aA)?as0atrg) | (AMAs+A)(a4e)
r=Ar+ (A1=23)(A2—2A3) + (A2—2A3) :

Case 11 S = (ez, e3) . Since (aez + Bes) € S, forevery a, 3, it follows that (77" A2sT) (cez + Bes) =

_ (M As+A3) (A1 +A3) (A2 Az +AT) (A2 +A3)
Bf -« (R2—23)(A1—A2)2Az

(/\1+/\2)(%1+/\3)(>\§+/\1/\2)/\2

_ S.
B (=A3+21)(A2—A3)? ah €

(A1+22) (A4 23) (A3 +A123)
pr+a A2(—A1+A2)

This |mplles that (A2)\3 + )\%) (A1)\2 + )\%) (A1 + )\2) ()\2 + )\3) =0

and
()\1)\3 + )\%) (A1 + )\3) ()\2)\3 =+ )\%)()\2 + )\3) = 0.
Here, the constants are given by

A As+A3AZ+AT (A3 + A2 23 +23 ) +As A1 (A3 + A2 A3 +A3)

h= (1—A2)(h2—A3)
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and

f= (A2As+AD) (A1 A2 +A3) A1 +A2) (A2 +23)
- (A2=23)(A1—=2A2)(A1—X3)? )

Therefore, there is no non trivial invariant subspace of dimensions 1 and 2. This implies that, the
representation is irreducible for \; # \; for all distinct integers 4, j, k € {1,2, 3}.

e Suppose that \; = \; for some i and ;.

Case 12 \; = )\3. Then

\2 ()\2+A1;(2>\§+>\%) (2 + A1)
Ap = 0 )\3 X2 (A2 + A1) )
0 0 A
2
AT 0 0
Ags = —X2 (A2 + 1) )\3 0
2 2
AP RTESTEIE R
and
2 2
2A?+4>\2)\§§2)\1>\§+>\g <>\2+A1>(2A1;§A2)()\2+A1) (A2 +)\1)2
Az = | —(a+ A1) 2+ 2X\) _ O3 AD) T HA2 M +A3)) “A2(A2 + A1)
A2
2 2
(o + 20)? St X3

Suppose that there exists a non trivial invariant subspace S, in which (ae1+Be2+~ves) € S, «,8,v #
0. It follows that

2 2
ari + ﬂ% +9 A2+ M)?

Asz(aer + Bex +ves) = BA3 4+ 2 (A2 + A1) €s (6.1)

VAT

and
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a?

N (cer + Bea+ves3) = | BA2 | €5 (6.2)

VAT

Let us subtract equation (6.2) from equation (6.1). Then Az (ae; +Bes+ves) — A3 (cer + Bea +es) =

Biwﬂli(;%m +y A2+ A)?
B3 =)+ Ao+ A1) [ €5 (6.3)
0
For simplicity, we let u = 822200 4o (3, 131 and w = B — A7) + 722 (Aa + A1)

Again, we have

2 (A2+21)(A3+23)
)\1'U4 —+ )\72711

A12(€1u + egw) = W)‘g es (6.4)

and

A2y

A(eru + eqw) =

€s. (6.5)

2w

0

Now, we subtract equation (6.5) from equation (6.4) to get

(A2 4+ A1) (A3 + A7)
A2

e1(u(A = \3) +w ) € S.

Here, we consider the following two cases.
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2 2
1 (A2 = 23) + w222OE) L g then e € 5. So ez € § and es € . This implies that the

invariant subspace S is the whole space, that is S = C?.

2 2 2 2
2. Ifu(A3 —A2) + ww =0, then u(\? — \2) = —ww . This implies that

—~A2 (A2 + A1)? (2A2) = 0, a contradiction.

Therefore, there is no non trivial proper invariant subspace in the case A1 = \s.

Case 13 \; = X\2. Then

2/\1 (/\1 + )\3) 2)\1 ()\1 + )\5)

A
A = 0 A A1 (A1 + As) )
0 0 A2
2
A5 0 0
Azz = =21 (A1 + As) A 0

21 ()\1 —+ Ag) —2)\1 ()\1 —+ Ag) Al

and
3A2 44X A + 22 w 23 (A1 + A3)
Ay = | RRaButde) a2 —ad A — A A (A )
24Ca+s) 2X1 (A1 + As) A2

Suppose that there exists an invariant subspace S, then ae; + Bes + ves € S, a, 8,7 # 0. It follows
that Ai2(aer + Bea + ves) € S and Aas(aer + fez + ves) € S. Let us take the case where A1z (e +

Bea + ’}/63) € S. Thatis
A + 2821 (A1 + A3) + 2921 (A1 + As)

Ara(aer + fea + ves) = BAT + YA (A1 + A3) es
7A3

and
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a3

A(cer + Bea +ves) = | BA2 | € S. (6.7)

A3

Subtracting equation (6.7) from equation (6.6), we get :

eit + e2q € S, where t = a(A3 — A3) + 28A1 (A1 + A3) + 29 1 (A + A3) and ¢ = B(AT — \3) +

7)\1 ()\1 + )\3)

Then
ANt4+2X0 (A1 4+ X3) ¢
A12(61t + egq) = 22 es (6.8)
19
0
and
At
N(eit+eq) = | A2q| €6. (6.9)
0

Let us subtract equation (6.9) from equation (6.8). Then we have the following equation

A12(€1t + ezq)— )\%(elt + 62(]) = 2e1\1 ()\1 + )\3)2 (ﬁ()\l — )\3) =+ ’y) e s.

Let us consider the following two cases:
1. 18201 (A1 4 A3)® (B(A1 — A3) +7) # 0, then the invariant subpace S will be the whole space.

2. 1201 (A1 + A3)? (B(M1 — A3) + ) = 0, this implies that 5 (A1 — A3) = —yA1.
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On the other hand, we have A23(ae; + Bezx + ves) € S. Then
a3
Azs(aer + Bea + yes) = —a (A1 + )\3) + ﬁ)\%) €S (6.10)

2021 (M1 4 A3) — 28A1 (A1 + A3) + A3
and

aM’
A3 (cer + Bea +ves) = | B3 €s. (6.11)
A3
Now, after subtracting equation (6.11) from equation (6.10), we have

ean +esp € S.

Here the constants n and p are given by

n=—al (A1 + A3) + B(A] — A3),

p=2aM\ ()\1 + )\3) — 28X\ ()\1 + )\3) + 7()\% — )\;23)

Then
0
An
Azs(ean + esp) = es (6.12)
—2\1 ()\1 =+ )\3) n + )\?p
and
0
A (ean+esp)= | Mn | €5. (6.13)
Ap
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We subtract equation (6.13) from equation (6.12). We then have that es(—2X; (A1 + A3)n) € S.
Now, we consider the following two cases

1. If =2X1 (A1 +A3)n # 0, thenes € S. So ez € S, and e; € S. This implies that the invariant
subspace S will be the whole space, that is S = C3.

2. If =2\ (/\1 + )\3) n = 0, then ﬂ()\l — )\3) = al).

Under direct computations, we get « = —~. Let us substitute « = —~ in the following vector
ea(n) +es(p). It follows that es[y(A\f 4+ A3)] € S. Thenes € S, ez € S, and e; € S and so the invariant
subspace S is the whole space, that is S = C3.

Case 14 )\ = )\3. Then

(2 +A1)> 222 (A2 + A1)

A
Adz=1 23 223 ’
0 0 by
2
& 0 0
_ _9)\2 2
Azz = 2X3 A2 0
2o ()\2 =+ /\1) — ()\2 =+ )\1)2 )\%
and
N2+ Ada); + 32 Ww 221 (A2 4 A1)
Az = —2)\1 (2)\2 —+ )\1) —A% — Ao\ — 2)\% —2)\%
221 (A2 + 1) (A2 + >\1)2 A3

Suppose that there exists an invariant subspace S. Then e; € S or e + ves € S for some
v € C*. Assume that e; € S, it follows that A>ze; € S and Aize; € S. Now, we consider the case
where Asse; € S. Then

A3

Aoze; = —2)3 es (6.14)

2o ()\2 + Al)
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and
—A%
—Mep = 0 €8s. (6.15)
0
Add equation (6.14) and equation (6.15) to get
0
—2)\e2 +2Xa (Ao + A1) ez = —2)\3 €s. (6.16)

2o ()\2 + )\1)

Now, we consider the case where Aisze; € S, thatis

207 4+ 4Xa A1 + 3)32

Aizer = —2\1 (2)\2 + )\1) es (617)

21 ()\2 + )\1)
and

—2X% — 44X — 3)2

(—2)\7 — 4X2\1 — 3)\3)er = 0 €s. (6.18)

Now add equation (6.17) and equation (6.18) to get

— 21 (2)\2 —+ )\1) es + 21 ()\2 + )\1) es = | =2\ (QAQ =+ )\1) c S. (619)

21 ()\2 + Al)
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Let us multiply equation (6.19) by A2 and equation (6.16) by A:. Then, by simple calculations, we get
that (A2 + A1) e2 € S.

On the other hand, we have

0
Agses = 23 €s (6.20)
— (A2 4+ \)?
and
0
—Mea=| =X | e8s. (6.21)
0

By adding the equations (6.20) and (6.21), we get that — (A2 + A1)?e3 € S. Then ez € S. In this
case, the invariant subspace is S = C3.

We now assume that e2 4+ ves € S. Then A3z (e2 + ves) € S, where v # 0. So, we have

Asz (eg + ves) = A3 €S (6.22)

— (A1 + A2)? + o
and

— A§(62 + 63) = —)\3 cS. (623)
—vA2

By adding equation (6.22) and equation (6.23), we have (A7 — A3) v = (A1 + A2)%.
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Let us substitute (A7 — A3) v = (A1 + A2) in the vector (e2 + ves). Thisimplies that (A} — A\3) ea+
()\1 + )\2)2 ez € S.

Then we have
M+ )\2)4
Ais(A =) ez + A1+ A2)%es) = | =AT(AT+4XM1 +3X3) | €S (6.24)

A (1 4+ A2)?

and

AT A e+ A+ X)) es] = | A (M -A3) | es. (6.25)
AT (A1 + A2)?
Adding the equations (6.24) and (6.25), we get the vector (A1 + \2)” e1 — 2\3es € S. Then
AT (A +22)?

A12[()\1 + )\2)2 e — 2)\%62] = —2)\3)\3 es. (626)

Also we have

“A3 (A1 + Ao)?

M= (A +A2)? e + 20 es] = 2202 €s. (6.27)

We add equation (6.26) and equation (6.27) to get that — (A + X2)? [A3 4+ A2]e; € S. This implies
thate, € S, e2 € S and e3 € S. Then the invariant subspace will be the whole space, that is S = C3.
So, there is no non trivial proper invariant subspace in the case A2 = As.

O
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Next, we find a necessary condition that guarantees the irreducibility of Tuba’s representation Ps with

dimension 3.

Proposition 6.2. Tuba’s representation ¢ : Ps — GLs3(C) is reducible if \i = —X; or (A, + AxAn) (A% + Aedm) =
0 forsomei #j or m#n#k € {1,2,3}.

Proof. Suppose \; = —\; for some i # j.

Case 15 \;1 = —)>. Then

A0 0 A3 0 0
Aqp = 0 )\% A2 ()\2 + )\3) s Aoz = — A2 ()\2 +4 A3) )\% 0
A3

0 0 b¥: 0 0
and
n 0 !
Az =] —A2(A2+A3) —[A2Xs + A2 (A2 + A3) — (A2 + A3)?] —A2 (A2 + A3)
0 0 by

Here, n = X2 (A2 + As) + (A2 + A3)® + (A3 + X2As + A3). In this case, there exists an invariant
subspace of dimension 1 and it is generated by e,.

Case 16 A\ = —\3. Then

A2 (A2 + A1) (A2 — A1) 0

Ao = 0 A2 o |,
0 0 A2
A2 0 0

Agz = A2 0

0 —(e+d)De—X1) M
and
(A2 + A1) (A2 — A1) 0

Az = AT 0

0 Med+d)2—XM) A3
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In this case, there exists an invariant subspace of dimension 1 that is generated by e; .

Case 17 A1 = —\3. Then

T (A1 4+ A2) (A2 — A1)

A
App = 0 A3 Az (A2 — A1) ,
0 0 A2
2
Al 0 0
Azz = A2 (A2 — A1) A3 0

M +X) D2 —A) -7 A3

and
A3 -7 A7 -3
Ais=| A(A2— A1) 2X2 — )3 X2 (A2 — A1)
(AT =A3) T A2
242

Here 7 = W Let us consider the following assumptions.

1. Assume that A2 = A\, then A2 = —\3. The invariant subspace is of dimension d = 1 and is

generated by e; (see Case 16).
2. Assume that A2 = A3, then A2 = —X;. The invariant subspace is of dimension d = 1 and is

generated by e, (see Case 15).

3. Assume that A2 # X\ and A2 # X3. Now we can diagonalize A2 by the invertible matrix

given by
0 1 —A§2—A1
A
X - %2+2/\1 0 1
0 0 0
So, we get
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Now, we conjugate A23 and A;3 by the matrix y;, it follows that

A2 —2? 4 )3 0
-1 _ 2
(X " Aa2x) = 0 A7 0
0 0 A2
and
A2 M= A3 0
A0 = | MRt +A) N NP0

0 0 A2

In this case, there exists an invariant subspace of dimension 2 that is generated by < e1,e2 > .
Therefore, this representation is reducible for A\; = —\;.
O

Therefore, we have determined a necessary and sufficient condition for the irreducibility of the
pure braid group Ps for dimension d = 3 . Hence, we have the following theorem.

Theorem 6.1. Tuba’s representation ¢ : Ps — GLs3(C) is irreducible if and only if \; # —X; and
(A + MeAn) (AL 4 XeAm) #0 forall i#jandm#n#k € {1,2,3}.

7 Conclusion

Theorem 5.1 and Theorem 6.1 determine necessary and sufficient conditions for the irreducibility of
the complex specialization of Tuba’s representations of the pure braid group Ps with dimensions 2
and 3.
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