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Abstract
To study the stability of Browder type fixed points, two kinds of usual metrics for set-valued
mappings are discussed. Noting that the set of fixed points for a Browder type set-valued mapping
may be noncompact, a metric is introduced to construct a complete metric space on a kind of these
mappings. Some results for continuity of Browder type fixed points are obtained, and we prove that
each fixed point for each Browder type set-valued mapping is essentially stable.
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1 Introduction
The stability of fixed points is an important problem in nonlinear fields. The stability for many kinds of
fixed points is studied, which has a wide range of applications such as vector equilibrium problems,
Nash equilibrium problems, coincidence points ([1] [2] [3] [4] [5]).

Particularly, by introducing essential stabilities, Fort gave some seminal results for fixed points of
continuous functions (Brouwer type fixed points) in [6]. Unfortunately, it is not necessary that each
continuous function on a compact convex set has an essential fixed point. In hyperconvex metric
spaces, the generic stability of fixed points for upper semi-continuous mappings (Fan-Glicksberg type
fixed points) was shown ([7]). The concept of an essential component of fixed points was introduced
in [8], and the existence of such essential components for each continuous function was proved on a
compact convex set. Essential stabilities were used to analyze many kinds of solutions, such as KKM
points, equilibrium points, maximal elements ([9] [10] [11] [12] [13] [14] [15]).

One of significant feature of the set of solutions for most problems above mentioned is compact,
which plays a key role in the analysis of the existence of essential sets, minimal essential sets and
essential components. A well known fixed point theorem for a set-valued mapping was proved by
Browder in [16] (Browder type fixed points), where the set-valued mapping requires some lower semi-
continuities. Nowadays, we can find many generalizations of this fixed point theorem (e.g., see [17]
[18]). However, for the set of Browder type fixed points of a set-valued mapping on a compact convex
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set may not be compact, and the set-valued image of a point can also be noncompact. To some
extent, this leads to difficulties in the research of stability of this type of fixed points.

In this paper, two kinds of usual topologies for the space of set-valued mappings are discussed,
and some examples are given to show that the metric space, consisting of Browder type set-valued
mappings, can not be complete. We consider a kind of space of Browder type set-valued mappings
on a compact convex set, and prove it is complete, and the solution mapping for fixed points is metric
continuous on a dense subset of the space. In addition, we show that each Browder type fixed point
is essential for each Browder type set-valued mapping.

2 Preliminaries and Motivations

Let X be a compact and convex subset of a metric linear space (E, d). Let S : X → 2X be a set-
valued mapping, where 2X denotes the collection of all subsets of X. Suppose that S(x) is nonempty
and convex for each x ∈ X, and S−1(y) = {x ∈ X : y ∈ S(x)} is open in X for each y ∈ X. Denote
by M all such set-valued mappings S (Browder type set-valued mappings) on X. Then for each
S ∈ M , by the well known fixed point theorem of Browder ([16]), there exists a fixed point x∗ of S;
that is, x∗ ∈ S(x∗). In the whole paper, we call these fixed points as Browder type fixed points. For
each S ∈ M , let F (S) = {x ∈ X : x ∈ S(x)}. Then F defines a set-valued mapping from M to X.
Clearly, for each S ∈ M , we have F (S) 6= ∅. The following example shows that the fixed point set
F (S) for each S ∈ M is not necessary closed, and not compact. In fact, the lack of compactness of
F (S) may results in some difficulties in study of stability of these fixed points.

Example 2.1. Let X = [0, 1] ⊂ R and S ∈M such that

S(x) =


1, x = 0,
[0, 1], x ∈ (0, 1),
0, x = 1.

Obviously, for each x ∈ X, S(x) is convex, closed and nonempty. For the inverse image of S, we
have

S−1(y) =


(0, 1], y = 0,
(0, 1), y ∈ (0, 1),
[0, 1), y = 1.

Then we know that S−1(y) is open in X for each y ∈ X. Hence, S ∈M . Definitly, we can check that
F (S) = (0, 1), which is not compact.

We recall some notions for set-valued mappings ([19] [20]). LetH be a metric space, F : E → 2H

be a set-valued mapping. Then:
(i) F is said to be upper semi-continuous at h ∈ E, iff for each open set U with U ⊃ F (h), there

exists an open neighborhood O(h) of h such that U ⊃ F (h′) for any h′ ∈ O(h).
(ii) F is lower semi-continuous at h ∈ E, iff for each open set U with U ∩ F (h) 6= ∅, there exists

an open neighborhood O(h) of h such that U ∩ F (h′) 6= ∅ for any h′ ∈ O(h).
(iii) F is continuous at h ∈ E, iff it is both upper semi-continuous and lower semi-continuous at

h.
(iv) F is said to be metric upper semi-continuous at h ∈ E, if for each ε > 0 there exists an

open set U with U ⊃ h such that F (h′) ⊂ Bε(F (h)) for all h′ ∈ U , where Bε(F (h)) denotes the
ε-neighborhood of F (h).

(v) F is said to be metric lower semi-continuous at h, if for each ε > 0 there exists an open set
U with U ⊃ h such that F (h) ⊂ Bε(F (h)) for all h ∈ U .
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Remark 2.1. In general, if F is upper semi-continuous at h, then F is metric upper semi-continuous at
h. If F is metric lower semi-continuous at h, then F is lower semi-continuous at h, while the converse
is not true in general. If F (h) is totally bounded, then F is lower semi-continuous at h iff F is metric
lower semi-continuous at h.

If we adopt uniform metric induced by d on M to measure the metric between two elements in
M ; then, for each S ∈ M , naturally, we should require that S(x) is closed for each x ∈ X, and this
constrains our discussion on Mc, where Mc is written as

Mc = {S ∈M : S(x) is closed for each x ∈ X}.

That is, define the metric between any S1 and S2 in Mc as

ρ1(S1, S2) = supx∈Xh(S1(x), S2(x)),

where h(A,B) is the Hausdorff metric induced by d. Then (Mc, ρ1) is a metric space. However, this
subspace of M using the uniform metric is not complete. See the following example.

Example 2.2. Let X = [0, 1] ⊂ R. Let Sn ∈Mc, n = 1, 2, · · · , such that

S1(x) =

{
0, x ∈ [0, 1

2
],

[0, 1
2
], x ∈ ( 1

2
, 1],

and for n = 2, 3, · · ·

Sn(x) =


0, x ∈ [0, 1

2
],

Sn−1(x), x ∈ ( 1
2
, 1− 1

2n
],

[0, 1− 1
2n

], x ∈ (1− 1
2n
, 1].

Clearly, Sn(x) is nonempty, closed and convex for each x ∈ X, n = 1, 2, · · · . For the inverse image
of Sn, we have

S−1
1 (y) =


X, y = 0,
(1− 1

2
, 1], y ∈ (0, 1

2
],

∅, y ∈ ( 1
2
, 1].

and for n = 2, 3, · · ·

S−1
n (y) =


S−1
1 (y), y = [0, 1

2
],

(1− 1
2i
, 1], y ∈ (1− 1

2i−1 , 1− 1
2i
], i = 2, 3, · · · , n

∅, y ∈ ( 1
2n
, 1].

Then S−1(y) is open in X for each y ∈ X. Therefore, Sn ∈Mc, n = 1, 2, · · · .
Define S(x) = ∪∞n=1Sn(x) for each x ∈ X. Let N(x) = [log

1
1−x
2 ], x > 1

2
. It can be checked that

for each x ∈ ( 1
2
, 1) if n ≤ N(x), we have Sn(x) = SN(x)(x), while Sn(x) ⊂ SN(x)(x) if n > N(x), and

S(1) = [0, 1]. Then we obtain that

S(x) =


0, x ∈ [0, 1

2
],

SN(x)(x), x ∈ ( 1
2
, 1),

[0, 1], x = 1.

Then S : X → 2X is convex and closed with nonempty values. Furthermore, we have supx∈Xh(Sn(x),
S(x)) → 0 as n → ∞. However, for the special point y = 1, the set S−1(y) = 0 is not open in X.
Then S 6∈M , certainly, S 6∈Mc. Hence (Mc, ρ1) is not a complete metric space.

Let S1, S2 ∈M . If we measure the metric between S1 and S2 by

ρ2(S1, S2) = supy∈Xh(X\S−1
1 (y), X\S−1

2 (y)).

Then, for each S ∈ M , the requirement X\S−1(y) 6= ∅ for each y ∈ X is natural. This restrains our
discussion on Me, where (Me, ρ2) is written as
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Me = {S ∈M : S−1(y) 6= X, for each y ∈ X}.

Certainly, we have Me 6⊂ Mc and Mc 6⊂ Me. The subspace (Me, ρ2) of M is also not complete,
see the following example.

Example 2.3. Let X = [0, 1] ⊂ R. Let Sn ∈M,n = 1, 2, · · · , such that

Sn(x) =


1, x = 0,
[0, 1], x ∈ (0, 1

n
),

0, x ∈ [ 1
n
, 1].

Easily, we can check that Sn ∈Me, n = 1, 2, · · · . Then

X\S−1
n (y) =


0, y = 0,
0 ∪ [ 1

n
, 1], y ∈ X\{0, 1},

[ 1
n
, 1], y = 1.

Define a set-valued mapping S on X satisfying

S(x) =

{
∅, x = 0,
0, x ∈ X\0.

Then it holds that

X\S−1(y) =

{
0, y = 0,
X, y ∈ X\0.

Clearly, for each y ∈ X, we have h(X\S−1
n (y), X\S−1(y)) → 0. However, S(0) = ∅, that is, S 6∈ M

and S 6∈Me, hence, (Me, ρ2) is also not complete.

Noting the facts in Examples, given a point y0 ∈ X and a nonempty closed subset B in X, we
consider the space

M(y0, B) = {S ∈M : y0 ∈ S(x), ∀x ∈ X;S(x) = y0, ∀x ∈ B},

Obviously, we have that M(y0, B), Mc and Me can not include each other. Note that the set of
fixed points, F (S), may be noncompact for a set-valued mapping S ∈ M(y0, B). For instance, in
Example 2.1, if we set S′(1) = 1 and S′(x) = S(x) for x ∈ X\1. Let y0 = 1 ∈ X and B = {0}, then
y0 ∈ S′(x), ∀x ∈ X and S′ ∈M(y0, B). We can check that F (S′) is equal to (0, 1], and not a compact
set.

Define the metric between any S1 and S2 in M(y0, B) as

ρ(S1, S2) = supy∈X\y0h(X\S
−1
1 (y), X\S−1

2 (y)) + h(S−1
1 (y0), S

−1
2 (y0)).

Let S ∈ M(y0, B), y ∈ X\y0. If S−1(y) = X, then x ∈ S−1(y), ∀x ∈ X, that is, y ∈ S(x), ∀x ∈
X. However, we know that S(x) = y0 6= y, x ∈ B, a contradiction. Consequently, it holds that
X\S−1(y) 6= ∅, hence, the metric ρ on M(y0, B) is well defined. That is, (M(y0, B), ρ) is definitely a
metric space.

Another space that we will consider is M(y0) for a given point y0 ∈ X, where

M(y0) = {S ∈M : y0 ∈ S(x), ∀x ∈ X;S−1(y) 6= X, ∀y ∈ X\y0},

Clearly, (M(y0), ρ) is also a metric space with M(y0, B) ⊂M(y0) for any point y0 ∈ X and nonempty
closed set B ⊂ X. In the next section, we will prove that they are all complete.

Definition 2.1. For each S ∈M(y0), a set e(S) is called an essential fixed point set of S with respect
to M(y0) iff it satisfies the following conditions:

(1) e(S) is nonempty subset of F (S);
(2) for any open set U with U ⊃ e(S), there exists an open neighborhood O(S) in M(y0) such

that U ∩ F (S′) 6= ∅, for any S′ ∈ O(S).
If e(S) is a singleton set {x∗}, x∗ is called an essential fixed point of S with respect to M(y0).
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Remark 2.2. An essential fixed point x∗ of S means that for each Browder type set-valued mapping
near S there is a Browder type fixed point near the point x∗.

For the proof of main results of the paper, we need the following well known result and a generic
continuity result in [21].

Lemma 2.4. Let E,H be two metric spaces. If the set-valued mapping F : E → 2H satisfies that for
each y ∈ H, the set S−1(y) = {x ∈ E : y ∈ S(x)} is open in E, then F is lower semi-continuous on
E.

Lemma 2.5. ([21]) Let P be a complete metric space, Y be a metric space and F : P → 2Y be
metric lower semi-continuous. Then there exists a dense residual set Q ⊂ P such that F is metric
upper semi-continuous at each x ∈ Q.

3 The Continuity of Browder Type Fixed Points
Theorem 3.1. For each given point y0 ∈ X and a nonempty closed subset B ⊂ X, the metric space
(M(y0, B), ρ) is complete.

Proof. Let {Sn}∞n=1 be a Cauchy sequence in M(y0, B). Then for any ε > 0, there exists a number
N such that ρ(Sn, Sm) < ε for any n,m > N . That is,

h(X\S−1
n (y), X\S−1

m (y)) < ε, ∀y ∈ X\y0,

and h(S−1
n (y0), S

−1
m (y0)) < ε. Therefore, {X\S−1

n (y)}∞n=1 and {S−1
n (y0)}∞n=1 are two Cauchy sequences

in K(X), for each y ∈ X, where K(X) denotes all nonempty and compact subsets of X. Since
X is compact, K(X) is complete. Then for each y ∈ X\y0 there is a set A(y) ∈ K(X) such
that h(X\S−1

n (y), A(y)) → 0 (n → ∞). For y0 ∈ X, there is a set A(y0) ∈ K(X) such that
h(S−1

n (y0), A(y0))→ 0. Since S−1
n (y0) = X, n = 1, 2 · · · , we have A(y0) = X.

Define a set-valued mapping S as

S(x) = {y ∈ X\y0 : x 6∈ A(y)} ∪ {y0}, ∀x ∈ X,

next, we need to show that S ∈M(y0, B).
(a) For each x ∈ X, since y0 ∈ S(x), we have S(x) 6= ∅.
(b) Suppose that there exists a point x ∈ B and a point y ∈ X with y 6= y0 such that y ∈ S(x).

Then x 6∈ A(y). Since h(X\S−1
n (y), A(y)) → 0, we have x 6∈ X\S−1

n (y) as n is large enough. That
is, there is a number N ′ such that x ∈ S−1

n (y) for each n > N ′, hence, y ∈ Sn(x). However, we know
that Sn ∈M , it holds that Sn(x) = y0, a contradiction with y ∈ Sn(x). Therefore, S(x) = y0, ∀x ∈ B.

(c) For each y ∈ X\y0, we have

S−1(y) = {x : y ∈ S(x)} = {x ∈ X : x 6∈ A(y)} = X\A(y).

Noting that A(y) ∈ K(X), S−1(y) is open for each y ∈ X\y0. For y = y0, clearly, we have S−1(y0) =
X, then S−1(y0) is also open.

(d) For each x ∈ X, let y1, y2 ∈ S(x) with y1 6= y2. For each λ ∈ [0, 1], let yλ = λy1 + (1− λ)y2.
We show that yλ ∈ S(x), that is, S(x) is convex by the following steps.

(i) If yλ = y0, naturally, yλ ∈ S(x) by the fact that S−1(y0) = X.
(ii) If y1 6= y0 and y2 6= y0, then x 6∈ A(y1) and x 6∈ A(y2). For the case that yλ 6= y0, by way of

contradiction, suppose that x ∈ X\S−1(yλ) = A(yλ). Since h(X\S−1
n (yλ), A(yλ)) → 0, there exists

a point xn ∈ X\S−1
n (yλ) such that xn → x. If y1 ∈ Sn(xn) and y2 ∈ Sn(xn), then yλ ∈ Sn(xn) by the

convexity of Sn(xn), hence, xn ∈ S−1
n (yλ), a contradiction with xn ∈ X\S−1

n (yλ). Therefore, for each
n = 1, 2, · · · , we argue that at least one of the followings holds:

y1 6∈ Sn(xn), or y2 6∈ Sn(xn).
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Then, xn ∈ X\S−1
n (y1) or xn ∈ X\S−1

n (y2), hence, x ∈ A(y1) or x ∈ A(y2) as n gets close to infinity,
a contradiction. Therefore, we have x 6∈ A(yλ), that is, yλ ∈ S(x).

(iii) If y1 6= y0 and y2 = y0, then x 6∈ A(y1). For the case that yλ 6= y0, suppose that x ∈
X\S−1(yλ) = A(yλ). Similar with (ii), there is a point xn ∈ X\S−1

n (yλ) such that xn → x. If y1 ∈
Sn(xn), then yλ ∈ Sn(xn) because y2 = y0 ∈ Sn(xn) and Sn(xn) is convex. Then xn ∈ S−1

n (yλ).
This contradicts to xn ∈ X\S−1

n (yλ). Therefore, we have y1 6∈ Sn(xn), hence, xn ∈ X\S−1
n (y1). This

results in the fact that x ∈ X\S−1(y1) = A(y1) as n tends to infinity, a contradiction. Therefore, we
have yλ ∈ S(x). If y1 = y0 and y2 6= y0, the proof is similar.

Then, S ∈M(y0, B), and the proof is completed.

Theorem 3.2. For each y ∈ X, F−1(y) = {S ∈M(y0, B) : y ∈ F (S)} is an open set in (M(y0, B), ρ)
for each y0 ∈ X and a nonempty closed set B with B ⊂ X.

Proof. For each y ∈ X, we only need to prove that M(y0, B)\F−1(y) is closed in M(y0, B).
(a) For the case satisfying that y = y0, if there is a S ∈M(y0, B) such that S ∈M(y0, B)\F−1(y0),

then S 6∈ F−1(y0), that is, y0 6∈ F (S), hence, y0 6∈ S(y0), a contradiction with S ∈ M(y0, B).
Therefore, M(y0, B)\F−1(y0) is empty, and closed also.

(b) For each y ∈ X\y0. Let Sn ∈ M(y0, B)\F−1(y), n = 1, 2, · · · and Sn → S0 as n → ∞. By
Theorem 3.1, it holds that S0 ∈ M(y0, B). For each n = 1, 2, · · · , since Sn ∈ M(y0, B)\F−1(y), we
have y 6∈ F (Sn), then y 6∈ S−1

n (y), that is, y ∈ X\S−1
n (y). Since h(X\S−1

n (y), X\S−1
0 (y)) → 0 for

each y ∈ X\y0 by the fact that Sn → S0, we have y ∈ X\S−1
0 (y). Hence y 6∈ S−1

0 (y), consequently,
y 6∈ F (S0), that is, S0 ∈ M(y0, B)\F−1(y). Therefore, M(y0, B)\F−1(y) is closed in M(y0, B). The
proof is completed.

Theorem 3.3. (1) For each given point y0 ∈ X, the metric space (M(y0), ρ) is complete. (2) For
each y ∈ X, F−1(y) = {S ∈M(y0) : y ∈ F (S)} is an open set in (M(y0), ρ) for each y0 ∈ X.

Proof. For the part (1), it just follows from the proof of Theorem 3.1 by ignoring the part (b). Noting
that (M(y0), ρ) is complete, similar with Theorem 3.2, the part (2) follows.

Remark 3.1. A problem is whether there is a space (M ′, ρ) which can include (M(y0), ρ) by using
the metric ρ to construct a metric space on M . For a point S ∈ M , we know that S−1(y) is open in
X. Noting that if S−1(y0) is nonempty and closed in X (for a given y0 ∈ X, the metric ρ uses the
Hausdorff metric which generally is defined on nonempty, closed and bounded sets), then S−1(y0) =
X; that is, y0 ∈ S(x), ∀x ∈ X. Thus, to construct a metric space using the metric ρ, M(y0) is maximal
space; that is, there is no (M ′, ρ) such that M(y0) ⊂M ′ ⊂M .

Corollary 3.4. F :M(y0)→ 2X is lower semi-continuous on (M(y0), ρ) for each y0 ∈ X.

Proof. It follows from Lemma 2.4 and Theorem 3.3.

Theorem 3.5. Let y0 ∈ X, B be a nonempty closed subset in X, and S ∈ M(y0, B). For each
x∗ ∈ F (S), x∗ is an essential fixed point of S with respect to M(y0, B).

Proof. For each open set U in X with x∗ ∈ U , it follows that F (S) ∩ U 6= ∅. By Corollary 3.4, F is
lower semi-continuous at each S in M(y0). Then there exists an open set of O(S) ⊂ M(y0) such
that F (S′) ∩ U 6= ∅ for each S′ ∈ O(S). That is, x∗ is an essential fixed point of S with respect to
M(y0).

Remark 3.2. By Theorem 3.5, for any S ∈M(y0), F (S) itself is an essential fixed point set of S with
respect to M(y0); for each e(S) ⊂ F (S), e(S) is also an essential fixed point set of S with respect to
M(y0); and each Browder type fixed point has the ability to resist the perturbation of S in M(y0).
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Theorem 3.6. Let y0 ∈ X. The soluton mapping F : M(y0) → 2X for Browder type fixed points is
metric continuous at almost all S ∈ M(y0). That is, there exists a dense residual set Q ⊂ M(y0)
such that F is metric continuous at each S ∈ Q.

Proof. Since X is compact, for each S ∈M , we have that F (S) with F (S) ⊂ X is relatively compact,
hence, F (S) is totally bounded. Then F is metric lower semi-continuous at each S with S ∈ M(y0)
by Corollary 3.4 and Remark 2.1. From Theorem 3.3, M(y0) is complete. Then, by Lemma 2.5, we
obtain that there exists a dense residual set Q ⊂M(y0) such that F is metric upper semi-continuous
at each S ∈ Q. Thus, F is metric continuous at each S ∈ Q.

4 Conclusions

To measure the metric between two Browder type set-valued mappings, in consideration of completeness,

we show that two kinds of usual metrics have some faults. By using a new metric, we obtain generic

stability results in relation to continuity. These results hold, though the set of Browder type fixed points

may be noncompact.
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