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Abstract 
 

This paper is devoted to study the existence of positive solutions for singular second-order 
periodic boundary value problem with impulse effects. Existence is established via the theory 
of fixed point theorem in cones. 
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1 Introduction 
 
This paper is devoted to study of the existence of positive solutions for the following singular 
periodic boundary value problems with impulsive effects:  
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m M= ,  ( ) ( ) ( ) ( )
k kt t k k t t k kx x t x t x x t x t+ − + −

= =′ ′ ′∆ | = − , ∆ | = − ,  ( ) ( )k kx t x t+ +′ ,  ( ( ) ( )k kx t x t− −′ , ) 

denote the right limit (left limit) of ( ) ( )x t and x t′  at kt t= , ( )f t x,  may be singular at 0x = .  

 
It is well known that there are abundant results about the existence of positive solutions of 
boundary value problems for second order ordinary differential equations. Some works can be 
found in [1 3]−  and references therein. They mainly investigated the case without impulse 

actions. Recently, singular Dirichlet boundary problems of second order impulsive differential 
equations have been studied in [4 6]− . Motivated by the work above, this paper attempts to study 
the existence of positive solutions for periodic boundary value problems. The techniques we 
employ here involve an application of the fixed point theorem in cones to second order boundary 
value problem with impulse action.  
 
Moreover, for the simplicity in the following discussion, we introduce the following hypotheses.  
 

1( )H :
 

There exists an 0 0ε >  such that ( )f t x,  and ( )kI x  are non increasing in 0x ε≤ , 

for each fixed [0 2 ]t π∈ ,   
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Theorem 1. Assume that 1 3( ) ( )H H−  are satisfied. Then problem (1.1) has at least one positive 

solution x .Moreover, there exists a 0θ ∗ >  such that  
 

( ) [0 2 ]x t tθ σ π∗≥ , ∈ , .  
 

2 Preliminary    
 
In order to define the solution of (1.1) we shall consider the following space.  
 

Let 1 2{ }lJ J t t t′ = , , ,L∖ ,  
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With the norm 
[0 2 ]
sup ( ) , max{ }.Then  ( )

PC PC PC PC
t

x x t x x x PC I R
π

′
∈ ,

′= | | = , , ,  

( )PC I R′ ,  are Banach spaces.  

 

Definition 2.1: A function 2( ) ( )x PC J R C J R′ ′∈ , ∩ ,  is a solution of (1 1).  if it satisfies the 
differential equation  
 

( )x Mx f t x t J′′ ′− + = , , ∈  

 

and the function x  satisfies the conditions ( ) ( ) ( ( ))
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=∆ | = − =  and the periodic boundary conditions(0) (2 )x x π= ,   

(0) (2 )x x π′ ′= .  

 
Lemma 2.1: If x  is a solution of the equation  
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then x  is a solution of (1.1), where G(t, s) is the Green's function to the  periodic boundary value 
problem 0, (0) x(2 ), (0) (2 )x Mx x x xπ π′′ ′ ′− + = = =    and  
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here 22 ( 1)mm e πΓ = − .   
 
One can find that   
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For every positive solution of problem (1.1), one has 
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Without loss of generality, we assume 1lim ( ) [ ] {0 1 }k kPCt
x t x t t k l

ξ
ξ +→

| |= , ∈ , , ∈ , , ,L  then by 

(2.2)  
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It follows from 1 1( ) ( ) ( )i iim mI x x I xI− < < ,  that ( ) ( ) 0 ( ) ( ) 0i ii iI x m x I x m xI I− > , + > .  So  
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3 Main Results   
 
Lemma 3.1:Let ( )E E= , �  be a Banach space and let K E⊂  be a cone in E  ,and �  be 

increasing with respect to K .Also, r , R  are constants with 0 r R< < . Suppose that 

( )R rA \ K K: Ω →Ω I ( { }R x E x RΩ = ∈ , < ) is a continuous, compact map and assume 

that the conditions are satisfied:   
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and let R r>  be chosen large enough later.  
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First we show that A  is well defined. To see this, notice that if ( )R rx \ K∈ ΩΩ I  then 

r x R≤ ≤  and ( ) 0 2x t x r tσ σ π≥ ≥ , ≤ ≤ .  Also notice by 1( )H  that   

 
( ( )) ( ) 0 ( )f t x t f t r when x t rσ, ≤ , , ≤ ≤ ,  

and  
 

0 2
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r x R t
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π≤ ≤ ≤ ≤
, ≤ , ≤ ≤ .

 
 

These inequalities with 2( )H  guarantee that ( )R rA \ K K: Ω →Ω I  is well defined.  
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so (3 2).  is satisfied.  
 

On the other hand, from 3( )H , there exist 0 M fε ∞< < −  and H r>  such that  
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Integrate from 0 to2π , using integration by parts in the left side, notice that  
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Consequently, we obtain that  
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We also have  
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Let { }R max R H> , ,  then for any Rx K∈ ∂ΩI  and 0 1µ≤ < , we have Ax xµ ≠ .  Hence 

all the assumptions of Lemma 3 1.  are satisfied, A  has a fixed point x  in 

{ }K x E r x R∈ : ≤|| ||≤ ,I  x(t) rσ≥  [0 2 ]t π∀ ∈ , .  Let rθ ∗ := ,  this complete the proof 

of Theorem 1.  
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