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ABSTRACT 
 

Three substituted monodentate salicylaldimines namely 5-chloro-N-[(2- methoxy) phenyl] 
salicylaldimine [I],  5-chloro-N-[(4-chloro)phenyl]salicylaldimine [II] and 5-chloro-N-[(2-methyl-5-
chloro)phenyl] salicylaldimine [III] were synthesized and characterized by elemental analysis, IR, 
UV, 1H and 13C NMR. Theoretical calculations were also performed on the optimized structures of 
the compounds. The IR, NMR and UV spectra of the compounds were calculated and the results 
compared with the corresponding experimental spectra to augment the structural elucidation. The 
calculated IR, NMR and UV values were in agreement with the experimental results. The total 
antioxidant capacities of the compounds were determined by phosphomolybdenum assay. 
 

 
Keywords: Salicylaldimines; antioxidant; theoretical calculations; substituents. 

 
1. INTRODUCTION 
 
Salicylaldimines are 2-hydroxyl Schiff bases 
formed by the reaction between a primary amine 
and 2-hydroxybenzaldehyde [1]. Schiff bases 

were first reported by Hugo Schiff when reactions 
were carried out between carbonyl compounds 
and primary amines [2,3]. Schiff bases are 
similar to aldehydes or ketones except that the 
C=N is being substituted by C=O. They are 
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compounds that have azomethine group (HC=N). 
They are also called imines or azomethines and 
have the general formula R1H=NR2 where R1 and 
R2 are alkyl or aryl groups [1,4]. The imine group 
is important in explaining the mechanism of 
transamination and racemization reactions in 
living systems [2,4-6].  

 
Schiff bases are among the most widely used 
organic compounds. They play essential roles in 
living systems as well as in coordination 
chemistry. They are of vital roles in living 
systems in combination with enzymes such as 
transaminases and tryptophan synthase [7-9]. 
Literatures revealed that Schiff bases derived 
from 2-hydroxybenzaldehyde and derivatives 
showed extensive range of biological properties. 
Some of the reported biological properties are 
antioxidant, anticonvulsant, antimalarial, 
antipyretic, antiviral, anti-inflammatory, 
antifungal, analgesic and antibacterial properties 
which make them attract attention [6,10-16].  

 
Many Schiff bases have been synthesized for 
their pronounced biological activities. However, 
literatures search revealed that reports on the 
antioxidants activities are limited. Hence this 
study, which investigated the DFT and total 
antioxidant studies of some substituted 
monodentate salicylaldimines. In addition to the 
experimental studies, quantum chemical 
computations were used to augment the 
experimental observations [17,18]. Thus, the 
molecular structures of the compounds were 
modelled and the theoretical calculations were 
carried out on the optimized structures. These 
were employed for the IR, UV-Visible and NMR 
spectra. A consideration of the similarities 
between the theoretical and experimental spectra 
of the compounds could further be utilized for 
structural elucidation.  

 

2. MATERIALS AND METHODS 
 

2.1 Reagents and Instruments 
 
2-anisidine, 4-chloroaniline, 5-chloro-2-
methylaniline, 5-chloro-2-hydroxybenzaldehyde 
were purchased from Merck and used as 
supplied. The solvent DMSO (dimethylsulfoxide) 
and absolute ethanol were of analytical grade 
and were used without further purification. 
Elemental analysis was carried out with Finnigan 
Flash EA 1112 series. The infrared spectra were 
recorded on a Perkin-Elmer 400 FT-IR/FT-FIR. 
The NMR spectra were obtained using a Bruker 
Avance 111 600 in solution with deuterated 

chloroform (CDCl3) and DMSO using 
tetramethylsilane (TMS) as internal standard at 
600 MHz. However, the electronic spectra were 
recorded on Shimadzu UV-2600 series in DMSO. 
Melting points were taken on Stuart Melting point 
apparatus SMP-3 but were not correct. 

 

2.2 Synthesis of the Salicylaldimines 
 

The salicylaldimines were synthesized according 
to literature [15]. 0.015 mole of 5-chloro-2-
hydroxybenzaldehyde in 10 mL absolute ethanol 
was added in drops to 0.015 mole of the 
corresponding amine in 15 mL of the same 
solvent. The resulting solution was stirred for 2 
hours on addition of three drops of methanoic 
acid. The coloured solid precipitates were filtered 
and washed with cold ethanol, recrystallized from 
ethanol and dried in a desiccator over silica gel 
for two days. 
 

2.3 Computational Method 
 

The salicylaldimines were modelled and 
optimized using Gaussian 09 and Spartan ‘14 
computational software packages. Density 
Functional Theory (DFT) was employed for the 
geometry optimization, chemical shifts, electronic 
transitions and frequency calculations of the 
compounds based on preliminary conformational 
search of the molecules with molecular 
mechanics force field. The DFT calculations were 
performed on the most stable conformer in the 
ground state using Becke’s three-parameter 
hybrid functional employing the Lee-Yang-Parr 
correlation functional (B3LYP) method with 6-
31G** basis set [9,19-21]. 
 

2.4 Phosphomolybdate Total 
Antioxidant Capacity Assay 

 

The total antioxidant capacities (TAC) of the 
salicylaldimines were determined by 
phosphomolybdenum assay and ascorbic acid 
was used as the standard. 1.0 mL of reagent (0.6 
M sulphuric acid, 28 µM sodium phosphate and 4 
µM ammonium molybdate) was reacted with a 
fractional part of the solution of the compounds 
(1.0 mL of 1000 µg). The covered tubes were 
incubated at 95 oC in a water bath for 90 minutes 
after which the samples were cooled to room 
temperature and a UV spectrophotometer was 
used to measure the absorbance of the aqueous 
solution of each at 695 nm. The procedure was 
repeated for a blank solution containing 1.0 mL 
of reagent solution. The TAC studies were 
performed three times and the mean was 
expressed as equivalents of ascorbic acid [22]. 
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R1= OCH3, R2= H, R3= H (I); R1= H, R2= Cl, R3= H (II); R1= CH3, R2= H, R3= Cl (III) 

 
Scheme 1. Synthetic route to compounds 1-III. 

   

3. RESULTS AND DISCUSSION   
 

3.1 Characterization of the 
Salicylaldimines 

 
I (5-chloro-N-[(2-methoxy)phenyl]salicylaldimine  
= C14H12ClNO2, Molecular weight: 261.70 g/mol, 
Yield 60.52%, IR (cm-1): 2939-2480 (O−H), 1616 
(C=N), 1592-1466 (C=C), 1254 (C−O). 1H NMR 
(ppm): 13.90 (s, 1H, OH), 8.91 (s, 1H, C=N), 
7.70-6.90 (m, 7H, C−HAr), 3.81 (s, 3H, 
C−Hmethoxy). 13C NMR (ppm): 161.75, 160.12, 
153.26, 136.36, 133.11, 131.63, 129.19, 122.67, 
121.46, 119.68, 119.30, 112.80, 56.31. UV: 286 
(n−π*), 360 (π−π*). Elemental analysis (C, H, 
N)%: Found (Calculated): 64.20(64.25), 
4.59(4.62), 5.35(5.33). 

 
II (5-chloro-N-[(4-chloro)phenyl]salicylaldimine) = 
C13H9Cl2NO, Molecular weight: 266.12 g/mol, 
Yield 83.27%, IR (cm-1): 3073 (O−H), 1610 
(C=N), 1558-1442 (C=C), 1275 (C−O). 1H NMR 
(ppm): 12.70 (s, 1H, OH), 8.90 (s, 1H, C=N), 
7.70-6.90 (m, 5H, C−HAr). 13C NMR (ppm): 
162.85, 159.33, 147.49, 133.48, 131.42, 129.96, 
129.02, 123.78, 123.19, 119.20, 115.68. UV: 262 
(n−π*), 351 (π−π*). Elemental analysis (C, H, 
N)%: Found (Calculated): 58.65(58.67), 
3.40(3.41), 5.24(5.26). 

 
III (5-chloro-N-[(2-methyl-5- chloro)phenyl]      
salicylaldimine) = C14H11Cl2NO, Molecular weight: 
280.15 g/mol, Yield 96.54%, IR (cm-1): 2980-
2450 (O−H), 1618 (C=N), 1557-1479 (C=C), 
1282 (C−O). 1H NMR (ppm): 12.90 (s, 1H, OH), 
8.85 (s, 1H, C=N), 7.76-6.90 (m, 6H, C−HAr), 
2.20 (s, 3H, C−Hmethyl). 13C NMR (ppm): 163.25, 
159.54, 148.59, 133.57, 132.52, 131.67, 131.49, 
127.02, 123.16, 121.21, 119.17, 118.59, 17.73. 
UV: 263 (n−π*), 353 (π−π*). Elemental analysis 
(C, H, N) %: Found (Calculated): 59.99(60.02), 
3.96(3.97), 5.00(5.00).  

 

The salicylaldimines were obtained in good 
yields as solids.  They were stable in air and the 
colours ranged from light – deep yellow. They 
were soluble in most organic solvents but 
insoluble in water.  

 
The IR spectra data of each of the compounds 
confirmed the formation of the azomethine bonds 
ⱱ(−HC=N). All the spectra displayed the 
azomethine absorption bands at 1618-1610 cm-1. 
The spectra exhibited the phenolic stretching 
ⱱ(C−O) vibrations at 1282-1254 cm-1 and the 
hydroxyl (O−H) absorption bands at 3073-2447 
cm-1. The compounds displayed the aromatic 
(C=C) bands in the range 1592-1442 cm-1 [17, 
23-29]. 

 
The 1H NMR spectra of the salicylaldimines 
displayed a singlet signal at δ 13.90-12.70 ppm 
which was attributed to the phenolic –OH protons 
[18, 27, 29-33]. All the salicylaldimines displayed 
a singlet signal at δ 8.91-8.85 ppm assigned to 
the azomethine (−HC=N) protons [15, 27, 30, 31, 
33-36] which further confirmed the formation of 
the salicylaldimines. The aromatic protons 
appeared as multiplets at δ 7.70-6.90 ppm [15, 
30, 31, 35]. A sharp singlet signal assigned to the 
protons of methoxy and methyl groups appeared 
at δ 3.81 and 2.20 ppm in the spectra of 
compounds I and III respectively [11, 35-37]. The 
13C NMR spectra of the compounds were 
consistent with the 1H NMR. The spectra 
displayed the azomethine carbon peaks in the 
range 163.25-161.75 ppm and the aromatic 
carbons around 160.12-112.80 ppm. The spectra 
of compounds I and III displayed the carbons of 
the methoxy and methyl groups at δ 56.31 and 
17.73 ppm respectively [11, 15, 27, 33, 35-37]. 
The UV spectra of the compounds displayed two 
absorption peaks around 286-262 and 351-360 
nm which were attributed to n-π* of the 
azomethines and π-π*of the aromatic rings in the 
compounds.  
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3.2 Computational Studies 
 

3.2.1 Theoretical IR Spectra 
 

The theoretical IR vibrational frequency values of 
the salicylaldimines (Table 1) were in agreement 
with the experimental values. The azomethine 
(−HC=N) absorption bands of the compounds I, II 
and III appeared at 1678, 1697, and 1681 cm-1 

respectively. These bands were experimentally 
observed at 1615, 1610 and 1618 cm-1 

respectively.  The phenolic (C−O) stretching 
vibrations of the compounds appeared around 
1335-1334 cm-1 in the theoretical data while the 
experimental values were observed around 
1282-1254 cm-1. The theoretical ⱱ(O−H) 
stretching vibrations in the compounds appeared 
around 3195-3080 cm-1 while the experimental 
stretching vibrations were observed around 
3073-2447 cm-1. The aromatic (C=C) absorption 
bands appeared in the range 1646-1401 cm-1 
theoretically. However, these bands were 
observed around 1592-1442 cm-1 experimentally.  
 
3.2.2 Theoretical NMR spectra 
 
The theoretical chemical shifts of the 
salicylaldimines (Table 2) were in good 
agreement with the experimental values. The 
data obtained revealed that the aromatic 
hydrogen in I: H6, H11, H15, H12, H10, H13, 
H17 appeared at 8.01, 8.15, 8.17, 7.83, 7.76, 
8.08, 8.32 ppm respectively in the theoretical 
spectrum, these appeared in the range 7.70-6.90 
ppm in the experimental study. The hydrogen of 
the azomethine (−HC=N) and −OH groups 
appeared at 10.31 ppm and 14.69 ppm 
respectively in the theoretical calculations while 
they were experimentally observed at 8.91 ppm 
and 13.90 ppm respectively. The chemical shift 
of the three hydrogen in the −OCH3 group were 
observed at 4.80 ppm in the theoretical 
calculations and at 3.81 ppm in the experimental 
spectrum. The aromatic carbon in I appeared in 
the range 156.12-113.69 ppm, these were 
observed experimentally in the range 160.12-
112.80 ppm. Moreover, the carbon in the 
azomethine and −OCH3 groups appeared at 
158.83 ppm and 52.28 ppm respectively in the 
theoretical calculations, these were 
experimentally observed at 161.75 ppm and 
56.31 ppm respectively. However in II, the 
hydrogen in the aromatic ring: H6, H11, H10, 
H13, H17, H14, H1 appeared at 8.04, 8.26, 8.25, 
8.25, 7.81, 7.92, 7.81 ppm respectively in the 
theoretical calculations. These were 
experimentally reported in the range 7.70-6.90 
ppm. The hydrogen of the azomethine (−HC=N) 

and −OH groups were observed at 9.11 ppm and 
13.55 ppm respectively in the theoretical 
spectrum while they were reported in the 
experimental study at 8.90 ppm and 12.70 ppm 
respectively. The aromatic carbon in II appeared 
in the range 155.97-114.10 ppm in the theoretical 
data, these appeared experimentally in the range 
159.33-115.68 ppm. The azomethine carbon 
appeared at 160.30 ppm theoretically and at 
162.85 ppm in the experimental spectrum. 
Nevertheless, the aromatic hydrogen in III: H6, 
H11, H13, H14, H8, H1 appeared at 8.15, 8.25, 
8.17, 7.93, 8.08, 7.86 ppm respectively in the 
theoretical spectrum, these appeared in the 
range 7.76-6.90 ppm in the experimental study. 
The hydrogen of the azomethine (−HC=N) and 
−OH groups appeared at 9.25 ppm and 14.33 
ppm respectively in the theoretical calculations 
while they were experimentally observed at 8.85 
ppm and 12.90 ppm respectively. The chemical 
shift of the three hydrogen in the −CH3 group 
were observed at 3.20 ppm in the theoretical 
calculations and at 2.23 ppm in the experimental 
spectrum. The aromatic carbon in III appeared in 
the range 156.20-113.88 ppm in the theoretical 
data, these appeared experimentally in the range 
159.54-118.59 ppm. The carbon in the 
azomethine and −CH3 groups appeared at 
155.68 ppm and 20.00 ppm respectively in the 
theoretical calculations while they were 
experimentally observed at 163.25 ppm and 
17.73 ppm respectively. 
 

3.2.3 Theoretical electronic spectra 
 

The theoretical electronic spectra data of the 
compounds were comparable to the 
experimental values. The agreement between 
the theoretical and experimental electronic 
spectra data corroborated the suggested 
structures. The theoretical spectrum of 
compound I showed four absorption bands at 
239, 250, 268, 345 nm, these bands were related 
to the promotion of electrons from HOMO-2 → 
LUMO, HOMO-3 → LUMO, HOMO → LUMO+1, 
HOMO → LUMO respectively. However, 
compound II displayed five absorption bands at 
251, 262, 288, 317, 375 nm. These bands were 
obtained when electrons were promoted from 
HOMO → LUMO+2, HOMO → LUMO+1, 
HOMO-2 → LUMO, HOMO-1 → LUMO and 
HOMO → LUMO respectively. Furthermore, 
compound III exhibited three absorption bands at 
240, 246, 260 nm, these bands were related to 
the promotion of electrons from HOMO → 
LUMO+1, HOMO-4 → LUMO, HOMO-3 → 
LUMO respectively. 
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Table 1. Theoretical IR data of the salicylaldimines 
 

Compounds IR (cm-1)  UV-Vis (nm) 
 OH           C=N C=C   C−O 

I 3081 1678 1646-1401 1335 236, 247, 265, 290, 318, 344 
II 3195 1697 1646-1440 1334 242, 244, 258, 316 
III 3162 1681 1641-1426 1335 240, 246, 260, 292, 319, 344 

  

A 
 

B 
 

Fig. 1. IR spectra of compound I, theoretical (A) and experimental (B) 
 

A 
 

B 
 

Fig. 2. IR spectra of compound II, theoretical (A) and experimental (B) 
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B 
 

Fig. 3. IR spectra of compound III, theoretical (A) and experimental (B) 
 

Table 2. Theoretical NMR data of the salicylaldimines 
 

 

Positions of H & C                                                   δ (ppm) 

I II III 

H1 
C1 

4.80 
126.78 

7.81 
127.64 

7.86 
127.81 

H2 
C2 

- 
127.39 

- 
127.85 

- 
127.75 

H3 
C3 

4.80 
116.68 

- 
115.07 

3.20 
116.01 

H4 
C4 

10.31 
156.12 

9.11 
155.97 

9.25 
156.20 

H5 
C5 

4.80 
113.69 

- 
114.10 

3.20 
113.98 

H6 
C6 

8.01 
127.62 

8.04 
129.33 

8.15 
129.19 

H7 
C7 

- 
158.83 

- 
160.30 

3.20 
155.68 

H8 
C8 
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130.79 
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145.84 

8.08 
144.71 

H9 
C9 

14.69 
147.64 

13.55 
115.96 

- 
113.88 

H10 
C10 

7.76 
106.39 

8.25 
123.97 

- 
137.75 

H11 
C11 

8.15 
121.95 

8.26 
134.95 

8.25 
121.76 

H12 
C12 

7.83 
116.17 

- 
123.97 

- 
126.50 
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- 
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52.48 

7.92 
- 

- 
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- 
- 

- 
- 

- 
- 

H16 
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- 
- 

- 
- 

- 
- 
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C17 

- 
- 

- 
- 

- 
- 

 

Table 3. The HOMO, LUMO and Energy gap of the salicylaldimines 
 

 I II III 

HOMO -5.7 -6.2 -6.1 
LUMO -1.8 -1.9 -2.1 
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Table 4. The total antioxidant capacity of the salicylaldimines 
 

Compounds TAC µg per AA 

I 0.65 
II 0.69 
III 0.79 

Key: AA = ascorbic acid 

 
3.2.4 Frontier molecular orbitals 
 
The highest occupied molecular orbital (HOMO) 
and the lowest unoccupied molecular orbital 
(LUMO) are also called the frontier molecular 
orbitals. They determine the way molecules 
interact with other species. The HOMO is the 
orbital energy that donates electron, since it is 
the orbital of highest energy containing electrons. 
Conversely, the LUMO is the orbital of lowest 
energy. The energy gap between the HOMO and 
LUMO is expected to play significant roles in the 
intra- and inter- charge transfers according to the 
frontier molecular orbital theory [20, 38, 39]. The 
energy band gaps between the HOMO and 
LUMO is more important in considering 
electronic transitions than individual orbital 
component of a molecule. Since the difference 
between the LUMO and HOMO shows the 
reactivities and stabilities of molecules in 
chemical reactions, thus, the lower the energy 
gap, the more reactive and less stable the 
molecule. Therefore, Fig. 1 shows the proposed 
structures, optimized structures, HOMO and 
LUMO of the synthesized salicylaldimines. The 
calculated energy band gaps (Table 3) for the 
compounds I, II and III are 3.9, 4.3 and 4.0 eV 
respectively. This shows that compound I is 
expected to be more reactive than compounds II 
and III. Thus, the chemical stability of the 
compounds could be ordered as II > III > I. 

 
3.3 Total Antioxidant Capacity  
 
The results of the total antioxidant capacities 
(TAC) of the synthesized salicylaldimines are 
presented in Table 5. The results showed that all 
the synthesized compounds displayed 
antioxidant capacities. This indicated that they 
have the ability to inhibit or limit the harm caused 
by free radicals. Antioxidants function by freely 
donating electrons to free radicals without 
changing into electron–scavenging substances 
themselves [40, 41]. They are chemicals that 
avert or reduce the harm caused by free radicals 
and can also be called free radical scavengers 
[42-44]. Free radicals are molecules that have 
one or more unpaired electrons. They are 
unstable and very reactive molecules because of 

the unpaired electrons. In order to be stable, free 
radicals either donate or accept electrons from 
another molecules which then become free 
radicals [43, 45]. These new free radicals will 
either donate or accept electrons from another 
molecules, thereby, initiating chain reactions. If 
free radicals are too many in a biological system, 
they can overwhelm the cells’ usual defenses. 
Thus, causing harms to the cells which 
eventually lead to many diseases [41, 42]. 
However, when there are antioxidants in the 
cells, they donate electrons to the free radicals, 
thereby, stabilizing them and stopping the chain 
reactions [46]. 
 
The observed differences in the TAC of the 
compounds are due to the presence of different 
substituents on the compounds and probably the 
positions of the substituents. Compound III 
displayed the highest total antioxidant capacities 
while compound I exhibited the least capacities. 
Hence, compound III would be a better free 
radical scavenger. 

 
4. CONCLUSION 
 
A comparison of the experimental and theoretical 
results showed that the theoretical results were 
comparable to the experimental values, thus, 
corroborating the proposed structures. The 
calculated energy gaps showed that compound I 
would be more reactive than compounds II and 
III. The TAC results showed that compound III 
exhibited the highest antioxidant capacities, 
which implies that it possesses the highest ability 
to inhibit or reduce the harm caused by free 
radicals. 
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