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Abstract 
 

We formulate an implicit hybrid block method for the numerical solution of stiff first-order 
Ordinary Differential Equations (ODEs) using the Legendre polynomial as our basis function via 
interpolation and collocation techniques. The paper further investigates the basic properties of 
the implicit hybrid block method and found it to be zero-stable, consistent and convergent. The 
method was also tested on some sampled stiff problems and found to perform better than some 
existing ones with which we compared our results. 
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1 Introduction 
 
In this paper, we are concerned with the solution of stiff first-order differential equations of the 
form, 

 ' ( , ), ( ) , ,y f x y y a x a b                                                                    (1) 
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where f  is assumed to be Lipchitz continuous in y  and   is a given initial value. 

 
Different methods have been proposed for the solution of [1] ranging from predictor-corrector 
methods to hybrid methods. Despite the success recorded by the predictor-corrector methods, its 
major setback is that the predictors are in reducing order of accuracy especially when the value of 
the step-length is high and moreover the results are at overlapping interval [2]. Hybrid methods 
have advantage of incorporating function evaluation at off-step points which affords the opportunity 
of circumventing the ‘the Dahlquist zero stability barrier’ and it is actually possible to obtain 
convergent k-step methods with order 2 1k  up to 7k  , [3]. The method is also useful in 
reducing the step number of a method and still remains zero-stable, [1]. 
 
Stiff differential equations were first encountered in the study of the motion of springs varying 
stiffness, from which the problem derives its name. Stiffness occurs when some components of the 
solution decay much more rapidly than others. These problems are of frequent occurrence in the 
mathematical formulation of physical situations in control theory and mass action kinetics, where 
processes with widely varying time constants are usually encountered. Historically, two chemical 
engineers, Curtis and Hirschfelder in 1952 proposed the first set of numerical integration formulas 
(both implicit backward differentiation formulas) that are well suited for stiff differential equations. 
Stiff equations pose stability problems for most numerical integrators, [4]. 
 

Definition 1 [5]: Legendre polynomials ( )ny x defined on [ 1,1]  are given by, 
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where 2 or ( 1) 2M n n   whichever is an integer. 

 

In particular, 2
0 1 2( ) 1, ( ) , ( ) (3 1) 2,...y x y x x y x x    The polynomials satisfy the following 

properties; 
 

 ( )ny x  is an even polynomial if n  is even and an odd polynomial if n  is odd, 

 ( )ny x  are orthogonal polynomials and satisfy  
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Definition 2 [6]: A differential equation is said to be stiff if  Re( ) 0, 1(1)i i m   , where   is the 

eigen value of the differential equation.  
 
Many scholars have proposed various forms of methods for the solution of (1) by adopting power 
series, Chebyshev and Lagrange polynomials as basis functions. In this paper, we develop an 
implicit hybrid block method that gives better stability condition by using Legendre polynomial as 
our basis function.  
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2 Formulation of the Implicit One-Step Hybrid Block Method 
 
We consider the first six terms of the Legendre polynomial as our basis function. This is given by, 
 

 
4

1 0 1 1
1

( 1) ( ) ( ) ( ) (2 1) ( ) ( )n n n
n

n y x y x y x n xy x ny x 


                                         (3) 

 

Interpolating (3) at point , 0n sx s   and collocating its first derivative at points 
1

, 0 1
4

n rx r

 
  

 
, 

where s and r  are the numbers of interpolation and collocation points respectively, leads to the 

following system of equations, 
 

XA U                                                                                                                        (4) 
 
where  
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Solving (4), for ' , 0(1)5ja s j   and substituting back into (3) gives a continuous linear multistep 

method of the form, 
 

1

0
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1
( ) ( ) ( ) , 0 1
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                                                                            (5) 

 

where the coefficients of ny  and n jf  are given by, 
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and ( )nt x x h  . Evaluating (5) at 
1 1

1
4 4

t
  

   
  

 gives a discrete hybrid block method of the 

form, 
 

(0) ( ) ( )m n n mA E hd hb  Y y f y F Y                                                                            (7) 
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3 Analysis of Basic Properties of the Implicit One-Step Hybrid 
Block Method 

 
3.1 Order of the Implicit One-step Hybrid Block Method 
 

Let the linear operator  ( );L y x h  associated with the block (7) be defined as, 

 

  (0)( ); ( ) ( )m n n mL y x h A Y Ey hdf y hbF Y                                                                    (8) 

 

Expanding (8) using Taylor series and comparing the coefficients of h  gives,  
 

  2 1 1
0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ...p p p p

p pL y x h c y x c hy x c h y x c h y x c h y x 
                 (9) 

 

Definition 3 [4]: The linear operator L  and the associated continuous linear multistep method (5) 

are said to be of order p if 0 1 2 1... 0 0.p pc c c c and c         

 

1pc   is called the error constant and the local truncation error is given by, 
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                              (10) 

 
For implicit one-step hybrid block method, 
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Expanding (11) in Taylor series gives, 
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Equating the coefficients of the Taylor series expansion to zero yields, 

 0 1 2 3 4 5 60, 4.5776( 06) 1.2418( 11) 4.5776( 06) 5.1670( 07)
T

c c c c c c c           

. 
Therefore, the implicit one-step hybrid block method is of uniform order five. 
 

3.2 Zero Stability of the Implicit One-Step Hybrid Block Method 
 
Definition 4 [4]: The implicit one-step hybrid block method (7) is said to be zero-stable, if the roots 

, 1,2,...,sz s k  of the first characteristic polynomial ( )z  defined by 
(0)( ) det( )z z  A E  

satisfies 1sz   and every root satisfying 1sz   have multiplicity not exceeding the order of the 

differential equation. Moreover, as 0,h   ( ) ( 1)rz z z     where   is the order of the 

differential equation, r  is the order of the matrices 
(0) andA E , see [7] for details.  

For our method, 
 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
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0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

z z

   
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     
   
   
   

                                                                                (13) 

 

4 3 3
1 2 3 4( ) ( 1) 0, 0, 1z z z z z z z z z           . Hence, the implicit one-step hybrid 

block method is zero-stable. 
 

3.3 Consistency and Convergence of the Implicit One-Step Hybrid Block 
Method 

 

The implicit one-step hybrid block method (7) is consistent since it has order 5 1p    and it is 

also convergent by consequence of Dahlquist theorem stated below. 
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Theorem 2 [8]: The necessary and sufficient conditions that a continuous LMM be convergent are 
that it be consistent and zero-stable. 
  

3.4 Convergence and Region of Absolute Stability of the Implicit One-Step 
Hybrid Block Method 

 
Definition 5 [9]: Region of absolute stability is a region in the complex z  plane, where z h . It 

is defined as those values of z  such that the numerical solutions of 'y y   satisfy 

0jy as j   for any initial condition. 

 
We shall adopt the boundary locus method to determine the region of absolute stability of the 
implicit one-step hybrid block method. This gives the stability polynomial below, 
 

4 4 3 3 4 3

2 4 3 4 3 4 3

1 5 5 6433
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1280 8 384 1920

7 4237 1 1

64 320 2 2

h w h w w h w w

h w w h w w w w

   
      

   

   
        

   

                            (14)  

 
The stability region is shown in the figure below.     
 

 
 

Fig. 1. Stability Region of the Implicit One-Step Hybrid Block Method 
 
The stability region obtained in Fig. 1 above is A-Stable, since it contains the whole of the left-half 
complex plane, [6]. 
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4 Numerical Experiments 
 
The implicit one-step hybrid block method formulated shall be tested on some set of stiff 
differential equations and compare the results with solutions from some methods of similar 
derivation. The numerical results were obtained using MATLAB. 
The following notations shall be used in the tables below; 

 
ERR- |Exact Solution-Computed Solution| 
EJA- Error in [10] 
EOK- Error in [11] 

 
Problem 1 
 
A certain radioactive substance is known to decay at the rate proportional to the amount present. A 

block of this substance having a mass of g100 originally is observed. After 40hours, its mass 

reduced to g90 . Test for the consistency of the implicit one-step hybrid block method on this 

problem for  1,0t .  

 
This stiff problem is modeled by the differential equation, 
 

 , 0.0026, (0) 100, 0,1
dN

N N t
dt

                                                                 (15) 

 

where N represents the mass of the substance at any time t and   is a constant which 

specifies the rate at which this particular substance decays. The theoretical solution to (15) is 
given by; 
 

0.0026( ) 100 tN t e                                                                                                                (16) 

 
Source: [12] 
 
This problem was solved using Half-step hybrid method of order six. We present the result for 
problem 1 using the newly derived method in Table 1 below. 
 
Problem 2 
 
Consider the highly stiff ODE 
 

2' 10( 1) , (0) 2y y y                                                       (17) 

 
with the exact solution, 
 

1
( ) 1

1 10
y t

t
 


                                                                                                   (18) 

 
Source: [11]. 
 
This problem was earlier discussed by [9], he showed that many predictor-corrector and block 
methods become unstable with this problem, including the hybrid methods. However, the newly 
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derived block method is used for the integration of this problem within the interval 0 0.1t  . The 
authors in [10] solved this stiff problem by adopting a new 3-point block method with step size ratio 

at 1r   and of order five. We present the result for problem 2 using the newly derived method in 
Table 2 below. 
 

Table 1. Showing the results for stiff problem 1 
 

t  Exact solution Computed solution ERR EJA / sect  

0.1000   99.9740033797070850  99.9740033797070850  0.000000e+000   0.000000e+000  0.0192    
0.2000   99.9480135176568470  99.9480135176568470  0.000000e+000   1.421085e−014  0.0233    
0.3000   99.9220304120923400  99.9220304120923400  0.000000e+000   0.000000e+000  0.0273    
0.4000   99.8960540612571460  99.8960540612571460  0.000000e+000   0.000000e+000  0.0314    
0.5000   99.8700844633952300  99.8700844633952300  0.000000e+000   1.421085e−014  0.0355    
0.6000   99.8441216167510670  99.8441216167510670  0.000000e+000   1.421085e−014  0.0398    
0.7000   99.8181655195695610  99.8181655195695610  0.000000e+000   1.421085e−014  0.0436    
0.8000   99.7922161700960970  99.7922161700960970  0.000000e+000   0.000000e+000  0.0477    
0.9000   99.7662735665764730  99.7662735665764730  0.000000e+000   0.000000e+000  0.0522    
1.0000   99.7403377072569700  99.7403377072569700  0.000000e+000   0.000000e+000  0.0563 

 
Table 2. Showing the result for stiff problem 2 

 
t  Exact solution Computed solution ERR EOK / sect  

0.0100    1.9090909090909092     1.9090909331157688 2.402486e-008 1.07e-04 0.0637 
0.0200    1.8333333333333335     1.8333333648932029 3.155987e-008 2.38e-04 0.0644 
0.0300    1.7692307692307692     1.7692308018612271 3.263046e-008    4.51e-04 0.0649 
0.0400    1.7142857142857144 1.7142857454780251 3.119231e-008 6.20e-04 0.0653 
0.0500    1.6666666666666665 1.6666666955435152 2.887685e-008 8.84e-04 0.0657 
0.0600    1.6250000000000000 1.6250000263694577 2.636946e-008 1.03e-03 0.0661 
0.0700    1.5882352941176470 1.5882353180705253 2.395288e-008 1.27e-03 0.0665 
0.0800    1.5555555555555556 1.5555555772891725 2.173362e-008 1.53e-03 0.0670 
0.0900    1.5263157894736841 1.5263158092141216 1.974044e-008 1.75e-03 0.0674 
0.1000    1.5000000000000000     1.5000000179685555 1.796856e-008 1.81e-03    0.0678 

 

5 Conclusion 
 
We formulated an A-stable implicit one-step hybrid block method for the solution of stiff first-order 
ordinary differential equations where we adopted Legendre polynomial as our basis function. The 
method developed was also found to be zero-stable, consistent and convergent. The hybrid block 
method was also found to perform better than some existing methods in view of the numerical 
results obtained. 
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