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Abstract
Two species of animals are competing or cooperating in the same environment. Under what
conditions do they coexist peacefully? Or under what conditions does either one of the two species
become extinct, that is, is either one of the two species excluded by the other? We investigate this
phenomenon from a mathematical point of view.

In this paper we concentrate on coexistence solutions of the competition or cooperation model
∆u+ g(u, v) = 0
∆v + h(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

This system is the general model for the steady state of a competitive or cooperative interacting
system depending on growth conditions for g and h. The techniques used in this paper are super-
sub solutions and some detailed properties of the solution of logistic equations (See [1]).
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1 Introduction
A lot of research has been focused on reaction-diffusion equations modeling various systems in
mathematical biology, especially the elliptic steady states of competitive and cooperative interacting
processes with various boundary conditions. In earlier literature, investigations into mathematical
biology models were concerned with studying those with homogeneous Neumann boundary conditions.
Later on, the more important Dirichlet problems, which allow flux across the boundary, became the
subject of study.

Suppose two species of animals, rabbits and squirrels for instance, are competing or cooperating in a
bounded domain Ω. Let u(x, t) and v(x, t) be densities of the two habitats in the place x of Ω at time
t. Then we have the dynamic competition model

ut(x, t) = ∆u(x, t) + au(x, t)− bu2(x, t)− cu(x, t)v(x, t)
vt(x, t) = ∆v(x, t) + dv(x, t)− fv2(x, t)− eu(x, t)v(x, t)

in Ω× [0,∞),

u(x, t) = v(x, t) = 0 for x ∈ ∂Ω,

or cooperation model
ut(x, t) = ∆u(x, t) + au(x, t)− bu2(x, t) + cu(x, t)v(x, t)
vt(x, t) = ∆v(x, t) + dv(x, t)− fv2(x, t) + eu(x, t)v(x, t)

in Ω× [0,∞),

u(x, t) = v(x, t) = 0 for x ∈ ∂Ω.

Here we are interested in the time independent, positive solutions, i.e. the positive solutions u(x), v(x)
of 

∆u(x) + u(x)(a− bu(x)− cv(x)) = 0
∆v(x) + v(x)(d− fv(x)− eu(x)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(1.1)

or 
∆u(x) + u(x)(a− bu(x) + cv(x)) = 0
∆v(x) + v(x)(d− fv(x) + eu(x)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(1.2)

which are called the coexistence state or the steady state. The coexistence state is the positive
density solution depending only on the spatial variable x, not on the time variable t, and so its
existence means that the two species of animals can live peacefully and forever.

A lot of work about the existence and uniqueness of the coexistence state of the above steady state
models has already been done during the last decades (See [2], [3], [4], [5], [6], [7], [8], [9]).

In [5], Cosner and Lazer established a sufficient and necessary conditions for the existence of positive
solution to the competing system.
Their result is the following:

Theorem 1.1. In order that there exist positive smooth functions u and v in Ω satisfying (1.1) with
a = d, it is necessary and sufficient that one of the following three sets of conditions hold, where λ1

is as described in the Lemma 2.2.

(1)a > λ1, b > e, c < f
(2)a > λ1, b = e, c = f
(3)a > λ1, b < e, c > f

Biologically, the Theorem 1.1 implies that they can coexist peacefully if their reproduction rates
are large enough and their self-limitation and competition rates balance each other.

In [9], Korman and Leung established a sufficient and necessary conditions for the existence of
positive solution to the cooperation system. Their result is the following:
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Theorem 1.2. For existence of a positive solution to (1.2) with b = f = 1, it is necessary and sufficient
that ce < 1.

Biologically, the Theorem 1.2 indicates that their strong cooperation may decrease reproduction
capacities and increase self-limitation abilities that cause their extinction.

However, in reality, the rates of change of population densities may vary in a more complicated and
irregular manner than can be described by the simple competition or cooperation models. In this
paper we study rather general types of the system.(See more work in generalized system in [10],
[11], [12], [13], [14], [15], [16].) We are concerned with the existence of positive coexistence when the
relative growth rates are nonlinear, more precisely, the existence and uniqueness of a positive steady
state of 

∆u+ g(u, v) = 0
∆v + h(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,

where g and h are C1 functions, Ω is a bounded domain in Rn and u, v are densities of the two
competitive or cooperative species.

The functions g and h describe how species 1 (u) and 2 (v) interact among themselves and with each
other.

The followings are questions raised in the general model with nonlinear growth rates.

Problem 1 : Under what conditions do the species coexist?

Problem 2 : When does either one of the species become extinct?

In Section 3, some sufficient and necessary conditions for the existence of positive solution in the
competition system are obtained that generalizes the Theorem 1.1, and we can also see some
nonexistence result. In Section 4. we establish sufficient and necessary conditions for the existence
of positive solution in the cooperating system that generalizes the Theorem 1.2.

2 Preliminaries
Before entering into our primary arguments and results, we must first present a few preliminary items
that we later employ throughout the proofs detailed in this paper. The following definition and lemmas
are established and accepted throughout the literature on our topic.

Definition 2.1. (Super and sub solutions)
Consider {

∆u+ f(x, u) = 0 in Ω,
u|∂Ω = 0,

(2.1)

where f ∈ Cα(Ω̄×R) and Ω is a bounded domain in Rn.
(A) A function ū ∈ C2,α(Ω̄) satisfying{

∆ū+ f(x, ū) ≤ 0 in Ω,
ū|∂Ω ≥ 0

is called a super solution to (2.1).
(B) A function u ∈ C2,α(Ω̄) satisfying{

∆u+ f(x, u) ≥ 0 in Ω,
u|∂Ω ≤ 0

is called a sub solution to (2.1).
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Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄×R) and let ū, u ∈ C2,α(Ω̄) be, respectively, super and sub solutions
to (2.1) which satisfy u(x) ≤ ū(x), x ∈ Ω̄. Then (2.1) has a solution u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤
ū(x), x ∈ Ω̄.

In our proof, we also employ accepted conclusions concerning the solutions of the following
logistic equations.

Lemma 2.2. (Established in [15])
Consider {

∆u+ uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that f(u) ≤ 0 for u ≥ c0 and
Ω is a bounded domain in Rn.
If f(0) > λ1, then the above equation has a unique positive solution, where λ1 is the first eigenvalue
of −∆ with homogeneous boundary conditions whose corresponding eigenfunction is denoted by φ1.
We denote this unique positive solution as θf .

The most important property of this positive solution is that θf is increasing as f is increasing.

We specifically note that for a > λ1, the unique positive solution of{
∆u+ u(a− u) = 0 in Ω,
u|∂Ω = 0, u > 0,

is denoted by ωa ≡ θa−x. Hence, θa−x is increasing as a > 0 is increasing.

Consider the system
∆u+ f(x, u) = 0 in, Ω,

u = 0 on ∂Ω,
(2.2)

where u = (u1, ..., um) and f = (f1, ..., fm) is quasimonotone increasing, i.e. fi(x, u) is increasing in
uj for all j 6= i.

Lemma 2.3. ([9]) Let wλ be a family of subsolutions(α ≤ λ ≤ β) to (2.2), increasing in λ such that

∆wλ + f(x,wλ) ≥ 0 in Ω, wλ = 0 on ∂Ω.

Assume also u ≥ wα, wλ does not satisfy (2.2) for any λ, and ∂wλ
∂n

changes continuously in λ on ∂Ω.
Then u ≥ supwλ.

3 Competing Species
Consider the system for two competing species of animals

∆u(x) + g(u, v) = 0
∆v(x) + h(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(3.1)

where g, h ∈ C2.

The following theorem provides a sufficient condition for the existence of a positive smooth solution
to (3.1).
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Theorem 3.1. Suppose
(A) guu < 0, guv < 0, huv < 0, hvv < 0,
(B) g(0, v) = h(u, 0) = 0
(C) there is C0 > 0 such that g(u, v) < 0, h(u, v) < 0 for u, v > c0.
If gu(0, 0) = hv(0, 0) and one of the following three sets of conditions holds.

(1)gu(0, 0) > λ1, inf(guu) < inf(huv), inf(guv) > inf(hvv)
(2)gu(0, 0) > λ1, inf(guu) = inf(huv), inf(guv) = inf(hvv)
(3)gu(0, 0) > λ1, inf(guu) > inf(huv), inf(guv) < inf(hvv)

Then (3.1) has a positive smooth solution.

Proof. By the Theorem 1.1, if one of the above three sets of conditions holds, then there is a positive
smooth solution (u, v) to

∆u+ u[gu(0, 0)− (− inf(guu))u− (− inf(guv))v] = 0
∆v + v[hv(0, 0)− (− inf(huv))u− (− inf(hvv))v] = 0

in Ω

u|∂Ω = v|∂Ω = 0.

But, by the Mean Value Theorem,

∆u+ g(u, v)
= ∆u+ g(u, v)− g(0, v)
= ∆u+ ugu(ũ, v)
= ∆u+ u[gu(0, 0) + gu(ũ, v)− gu(0, 0)]
= ∆u+ u[gu(0, 0) + gu(ũ, v)− gu(0, v) + gu(0, v)− gu(0, 0)]
= ∆u+ u[gu(0, 0) + guu(ū, v)ũ+ guv(0, v̄)v]
≥ ∆u+ u[gu(0, 0) + guu(ū, v)u+ guv(0, v̄)v]
≥ ∆u+ u[gu(0, 0) + inf(guu)u+ inf(guv)v]
= ∆u+ u[gu(0, 0)− (− inf(guu))u− (− inf(guv))v]
= 0,

for some 0 ≤ ū ≤ ũ ≤ u, 0 ≤ v̄ ≤ v, and

∆v + h(u, v)
= ∆v + h(u, v)− h(u, 0)
= ∆v + vhv(u, v̌)
= ∆v + v[hv(0, 0) + hv(u, v̌)− hv(0, 0)]
= ∆v + v[hv(0, 0) + hv(u, v̌)− hv(u, 0) + hv(u, 0)− hv(0, 0)]
= ∆v + v[hv(0, 0) + hvv(u, v̂)v̌ + huv(û, 0)u]
≥ ∆v + v[hv(0, 0) + hvv(u, v̂)v + huv(û, 0)u]
≥ ∆v + v[hv(0, 0) + inf(hvv)v + inf(huv)u]
= ∆v + v[hv(0, 0)− (− inf(huv))u− (− inf(hvv))v]
= 0

for some 0 ≤ v̂ ≤ v̌ ≤ v. Hence, (u, v) is a subsolution to (3.1).
But by the conditions of g, h, any large positive constant M satisfying
u < M, v < M in Ω is a supersolution to (3.1).
Therefore, by the Lemma 2.1, (3.1) has a positive smooth solution.

The next theorem establishes a necessary condition for the existence of a positive smooth
solution to (3.1).

Theorem 3.2. Suppose
(A) guu < 0, guv < 0, huv < 0, hvv < 0,
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(B) g(0, v) = h(u, 0) = 0
(C) For any d > 0, there is c(d) > 0 such that gu(u, d) < 0, hv(d, v) < 0 for u, v > c(d).
If gu(0, 0) = hv(0, 0) and (3.1) has a positive smooth solution, then gu(0, 0) > λ1 and one of the
following six sets of conditions holds.

(1)guu ≡ huv are constants, inf(hvv) ≤ sup(guv), sup(hvv) ≥ inf(guv)
(2) inf(huv) = sup(guu), sup(huv) > inf(guu), inf(hvv) ≤ sup(guv)
(3) inf(huv) > sup(guu), inf(hvv) < sup(guv)
(4) inf(huv) < sup(guu), sup(huv) = inf(guu), sup(hvv) ≥ inf(guv)
(5) inf(huv) < sup(guu), sup(huv) < inf(guu), sup(hvv) > inf(guv)
(6) inf(huv) < sup(guu), sup(huv) > inf(guu)

Proof. Suppose (u, v) is a positive smooth solution to (3.1).
By the Mean Value Theorem, there are ũ, ū, ṽ with 0 ≤ ū ≤ ũ ≤ u, 0 ≤ v̄ ≤ v such that

g(u, v)− g(0, v) = gu(ũ, v)u,
gu(ũ, 0)− gu(0, 0) = guu(ū, 0)ũ,
gu(ũ, v)− gu(ũ, 0) = guv(ũ, v̄)v.

Hence, by the Green’s Identity,∫
Ω
uφ1[λ1 − gu(0, 0)− guu(ū, 0)ũ− guv(ũ, v̄)v]dx

=
∫

Ω
uφ1[λ1 − gu(0, 0) + gu(0, 0)− gu(ũ, 0) + gu(ũ, 0)− gu(ũ, v)]dx

=
∫

Ω
uφ1[λ1 − gu(ũ, v)]dx

=
∫

Ω
−φ1ugu(ũ, v)] + uλ1φ1dx

=
∫

Ω
φ1[g(0, v)− g(u, v)] + uλ1φ1dx

=
∫

Ω
φ1[−g(u, v)] + uλ1φ1dx

=
∫

Ω
φ1∆u− u∆φ1dx

= 0.

But, since −guu(ū, 0)ũ− guv(ũ, v̄)v > 0 in Ω, gu(0, 0) > λ1.
By the Mean Value Theorem again, there are u1, v1 with 0 ≤ u1 ≤ u, 0 ≤ v1 ≤ v such that

g(u, v)− g(0, v) = gu(u1, v)u,
h(u, v)− h(u, 0) = hv(u, v1)v.

Hence,
∆u+ ugu(u, v)

≤ ∆u+ ugu(u1, v)
= ∆u+ g(u, v)− g(0, v)
= ∆u+ g(u, v)
= 0,

and
∆v + vhv(u, v)

≤ ∆v + vhv(u, v1)
= ∆v + h(u, v)− h(u, 0)
= ∆v + h(u, v)
= 0,

so, (u, v) is a supersolution to 
∆u(x) + ugu(u, v) = 0
∆v(x) + vhv(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.
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Since gu(0, 0) = hv(0, 0) > λ1, by the continuity of gu and hv, there is d > 0 such that gu(0, d) > λ1

and hv(d, 0) > λ1, and so, for sufficiently small m > 0,

∆[mθgu(·,d)] +mθgu(·,d)gu(mθgu(·,d),mθhv(d,·))
= m[∆θgu(·,d) + θgu(·,d)gu(mθgu(·,d),mθhv(d,·))]
≥ m[∆θgu(·,d) + θgu(·,d)gu(θgu(·,d), d)]
= 0

and
∆[mθhv(d,·)] +mθhv(d,·)hv(mθgu(·,d),mθhv(d,·))

= m[∆θhv(d,·) + θhv(d,·)hv(mθgu(·,d),mθhv(d,·))]
≥ m[∆θhv(d,·) + θhv(d,·)hv(d, θhv(d,·))]
= 0

So, (mθgu(·,d),mθhv(d,·)) is a subsolution to
∆u(x) + ugu(u, v) = 0
∆v(x) + vhv(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

Therefore, by the Lemma 2.1, there is a positive smooth solution, again denoted by (u, v) to
∆u(x) + ugu(u, v) = 0
∆v(x) + vhv(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

By the Mean Value Theorem again, there are u1, u2, v1, v2 with 0 ≤ u1, u2 ≤ u, 0 ≤ v1, v2 ≤ v such
that

gu(u, v)− gu(0, v) = guu(u1, v)u
hv(u, v)− hv(0, v) = huv(u2, v)u
gu(0, v)− gu(0, 0) = guv(0, v1)v
hv(0, v)− hv(0, 0) = hvv(0, v2)v

Therefore, by the Green’s Identity again,∫
Ω
uv([huv(u2, v)− guu(u1, v)]u+ [hvv(0, v2)− guv(0, v1)]v)dx

=
∫

Ω
uv[huv(u2, v)u+ hvv(0, v2)v − guu(u1, v)u− guv(0, v1)v]dx

=
∫

Ω
uv[hv(u, v)− hv(0, v) + hv(0, v)− hv(0, 0) + gu(0, v)− gu(u, v)− gu(0, v)

+gu(0, 0)]dx
=

∫
Ω
uv[hv(u, v)− gu(u, v)]dx

=
∫

Ω
v∆u− u∆vdx

= 0,

and so, ∫
Ω
uv([inf(huv)− sup(guu)]u+ [inf(hvv)− sup(guv)]v)dx ≤ 0,∫

Ω
uv([sup(huv)− inf(guu)]u+ [sup(hvv)− inf(guv)]v)dx ≥ 0,

which derives

(A) inf(huv) = sup(guu), inf(hvv) ≤ sup(guv),
(B) inf(huv) > sup(guu), inf(hvv) < sup(guv),
(C) inf(huv) < sup(guu),

and
(A′) sup(huv) = inf(guu), sup(hvv) ≥ inf(guv),
(B′) sup(huv) < inf(guu), sup(hvv) > inf(guv),
(C′) sup(huv) > inf(guu).

Combining (A), (B), (C) and (A′), (B′), (C′) together, we establish the result of the Theorem.
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We easily recognize that combining the Theorems 3.1 and 3.2 generalizes the result of Theorem
1.1 with linear growth rates.

We also prove a nonexistence result. In biological terms, this result confirms that sufficiently large
reproduction capacity of the species 1 with fixed reproduction rate of the species 2 results in their
extinction.

Theorem 3.3. Suppose
(A) guu < 0, guv < 0, huv < 0, hvv < 0,
(B) g(0, v) = h(u, 0) = 0
(C) For any d > 0, there is c(d) > 0 such that gu(u, d) < 0, hv(d, v) < 0 for u, v > c(d).
If gu(0, 0) > ν

µ
hv(0, 0),−1 ≤ guu < 0, and hvv ≤ −1, where µ = min[− sup(huv), 1] and ν =

max[− inf(guv), 1], then there is no positive solution to (3.1).

Proof. Suppose there is a positive solution (u, v) to (3.1).
As we have proved in the previous theorem, there is a positive solution, again denoted by (u, v), to

∆u(x) + ugu(u, v) = 0
∆v(x) + vhv(u, v) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

So, by the Mean Value Theorem, the Green’s Identity and the inequality conditions,∫
Ω

(gu(0, 0)− hv(0, 0) + [− sup(huv)− 1]u+ [1 + inf(guv)]v)uvdx
≤

∫
Ω

(gu(0, 0)− hv(0, 0) + [inf(guu)− sup(huv)]u+ [inf(guv)
− sup(hvv)]v)uvdx

≤
∫

Ω
[gu(0, 0)− hv(0, 0) + gu(u, 0)− gu(0, 0)− hv(u, v) + hv(0, v)

+gu(u, v)− gu(u, 0)− hv(0, v) + hv(0, 0)]uvdx
=

∫
Ω

[gu(u, v)− hv(u, v)]uvdx
=

∫
Ω

(−v∆u+ u∆v)dx
= 0.

(3.2)

But, if gu(0, 0) > ν
µ
hv(0, 0), then since gu(0, 0) ≥ u and hv(0, 0) ≥ v,

gu(0, 0)− hv(0, 0) + [− sup(huv)− 1]u+ [1 + inf(guv)]v ≥ µgu(0, 0)− νhv(0, 0) > 0,

which contradicts to (3.2).

4 Cooperating Species
Consider the system for two cooperating species of animals

∆u(x) + g(u(x), v(x)) = 0
∆v(x) + h(u(x), v(x)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(4.1)

where g, h ∈ C2 are such that guu < 0, guv > 0, huv > 0, hvv < 0, and g(0, v) = h(u, 0) = 0.

The following Theorem proves a necessary condition for the existence of a positive solution to (4.1).

Theorem 4.1. If gu(0, 0) > λ1, hv(0, 0) > λ1, inf(hvv) ≥ −1, and inf(huv) > 0, then the existence of
a positive solution to (4.1) implies

inf(guv) inf(huv) + inf(guu) < 0.
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Proof. Suppose inf(guv) inf(huv) + inf(guu) ≥ 0. Consider a family (uλ, vλ) = (λφ1, λ inf(huv)φ1)
with any λ > 0.
Then by the assumption and Mean Value Theorem,

∆uλ + g(uλ, vλ)
= −λλ1φ1 + g(λφ1, λ inf(huv)φ1)
= −λλ1φ1 + g(λφ1, λ inf(huv)φ1)− g(0, λ inf(huv)φ1)
= −λλ1φ1 + λφ1gu(ũ, λ inf(huv)φ1)
= λφ1(−λ1 + gu(ũ, λ inf(huv)φ1)− gu(ũ, 0) + gu(ũ, 0)− gu(0, 0) + gu(0, 0))
≥ λφ1(gu(0, 0)− λ1 + inf(guv) inf(huv)λφ1 + inf(guu)ũ)
≥ λφ1(gu(0, 0)− λ1 + inf(guv) inf(huv)λφ1 + inf(guu)λφ1)
> 0,

for some 0 ≤ ũ ≤ λφ1 and

∆vλ + h(uλ, vλ)
= −λ inf(huv)λ1φ1 + h(λφ1, λ inf(huv)φ1)
= −λ inf(huv)λ1φ1 + h(λφ1, λ inf(huv)φ1)− h(λφ1, 0)
= −λ inf(huv)λ1φ1 + λ inf(huvφ1hv(λφ1, ṽ)
= λ inf(huv)φ1[−λ1 + hv(λφ1, ṽ)− hv(λφ1, 0) + hv(λφ1, 0)− hv(0, 0) + hv(0, 0)]
= λ inf(huv)φ1[hv(0, 0)− λ1 + inf(hvv)ṽ + inf(huv)λφ1]
≥ λ inf(huv)φ1[hv(0, 0)− λ1 + inf(hvv) inf(huv)λφ1 + inf(huv)λφ1]
> 0,

for some 0 ≤ ṽ ≤ λ inf(huv)φ1.
Therefore, (uλ, vλ) = (λφ1, λ inf(huv)φ1) with any λ > 0 is a family of subsolutions to (4.1).
Furthermore, if (u, v) is a positive solution to (4.1), then u > λ0φ1 and v > λ0 inf(huv)φ1 for
sufficiently small λ0 > 0, and so by the lemma 2.3, we conclude that u ≥ λφ1 and v ≥ λ inf(huv)φ1

for any λ ≥ λ0.
Hence, there is no positive solution to (4.1).

We now establish a sufficient condition for the existence of a positive solution to (4.1).

Theorem 4.2. If gu(0, 0) > λ1, hv(0, 0) > λ1 and the system of equations

g(u, v) = 0
h(u, v) = 0

has a solution (A,B) with A > 0, B > 0, then (4.1) has a positive solution.

Proof. Let u = αφ1, v = βφ1, where α, β > 0.
Then since gu(0, 0) > λ1 and hv(0, 0) > λ1, by the Mean Value Theorem, for small enough α, β > 0,

∆u+ g(u, v)
= ∆u+ g(u, v)− g(0, v)
= −αλ1φ1 + αφ1gu(ũ, βφ1)
= αφ1[−λ1 + gu(ũ, βφ1)]
= αφ1[−λ1 + gu(0, 0) + gu(ũ, βφ1)− gu(0, βφ1) + gu(0, βφ1)− gu(0, 0)]
≥ αφ1[−λ1 + gu(0, 0) + inf(guu)ũ+ inf(guv)βφ1]
≥ 0,
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for some ũ with 0 ≤ ũ ≤ u and

∆v + h(u, v)
= ∆v + h(u, v)− h(u, 0)
= −βλ1φ1 + βφ1hv(αφ1, ṽ)
= βφ1[−λ1 + hv(αφ1, ṽ)]
= βφ1[−λ1 + hv(0, 0) + hv(αφ1, ṽ)− hv(0, ṽ) + hv(0, ṽ)− hv(0, 0)]
≥ βφ1[−λ1 + hv(0, 0) + inf(huv)αφ1 + inf(hvv)ṽ]
≥ 0,

for some ṽ with 0 ≤ ṽ ≤ v,
and so, (u, v) = (αφ1, βφ1) is a subsolution to (4.1) for sufficiently small
α, β > 0.
But, by the condition for g and h, there is a supersolution (M,N) with M > 0, N > 0 to (4.1).
We conclude by the Lemma 2.1 that there is a positive solution (u, v) to (4.1) with αφ1 ≤ u ≤
M,βφ1 ≤ v ≤ N .

We easily recognize that combining the Theorems 4.1 and 4.2 generalizes the result of Theorem
1.2 with linear growth rates.

5 Conclusion
In this paper, our investigation of the effects of nonlinear growth rates on the competition and coopera-
tion models resulted in the development and proof of Theorems 3.1, 3.2, 3.3, 4.1 and 4.2, as detailed
above. The results together assert that right choice of functions g(u, v) and h(u, v) will maintain the
existence of the positive steady state. Indeed, our results specifically outline conditions sufficient and
necessary to maintain the positive, steady state solution when rates of reproduction, self-limitation,
competition and cooperation are nonlinear.

Applying this mathematical results to real world situations, our results establish that two species
residing in the same environment can vary their interactions, within certain limitations, and continue
to survive together indefinitely at densities.The conditions necessary for coexistence, as described
in the Theorems, simply require that competing members’ rates of reproduction, self-limitation and
competition are well-balanced, and cooperating members of each species interact strongly with
themselves and weakly with members of the other species.

While our research in this paper therefore represents a progression in the field, the results obtained
have an important limitation. Our model describes the interactions of only two species who reside
in the same environment, so the parallel conditions required for the coexistence of more than two
species need to be investigated in future research (For example, see [10] that has results of perturba-
tion of the model with arbitrary N species of animals, and is the development of [14] that has the
results with two species of animals). Mathematically, analysis of competition and cooperation models
for N populations would expand the community’s understanding of the behavior of functions and
extend established theory in the field. Biologically, the investigation of models for N species would
increase knowledge on the nature of interactions between any number of species within the same
environment. Thus, the results achieved through our research will enable both fields to continue the
development of theory on interaction of populations.
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