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Abstract

We report on magnetic field measurements of 157 chemically peculiar A/B stars (Ap/Bp) based on resolved,
magnetically split absorption lines present in H-band spectra provided by the Sloan Digital Sky Survey (SDSS)/
Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. These stars represent the extreme
magnetic end of a still-growing sample of >900 Ap/Bp stars selected among the APOGEE telluric standard stars
as those with Ce I absorption lines and/or literature Ap/Bp classifications. The lines most frequently resolved
into their split components for these stars in the H-band pertain primarily pertain to Ce 11, Cr I, Fe I, Mn I1, Si I,
and Ca II, in addition to one or more unidentified ions. Using mean magnetic field modulus ((B)) estimates for
transitions with known Landé€ factors, we estimate effective Landé factors for 5 Ce III lines and 15 unknown lines
and proceed to measure (B) of 157 stars, only 3 of which have previous literature estimates of (B). This 183%
increase in the number of Ap/Bp stars for which (B) has been measured is a result of the large number of stars
observed by SDSS/APOGEE, extension of high-resolution Ap/Bp star observations to fainter magnitudes, and the
advantages of long wavelengths for resolving magnetically split lines. With (B) ~ 25 kG, the star
2MASS J02563098+4534239 is currently the most magnetic star of the SDSS/APOGEE sample. Effective
Landé€ factors, representative line profiles, and magnetic field moduli are presented. The validity of the results is
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supported using optical, high-resolution, follow-up spectra for 29 of the stars.
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1. Introduction

Globally ordered magnetic fields are observed in roughly
10%-20% of intermediate and massive main sequence stars
with spectral types between approximately FO and B2. These
stars, generally called chemically peculiar Ap and Bp stars
(referred to as Ap stars in the rest of this Letter, for simplicity’s
sake), exhibit strong overabundances of certain iron peak
elements and rare earths. The majority also exhibit under-
abundances of He, C, and O relative to solar abundances (e.g.,
Ghazaryan et al. 2018), though the more massive Bp stars
usually show overabundances of He and Si (e.g., Castro et al.
2017). These effects are caused by the disruption of normal
diffusion processes by the strong magnetic fields. As stars of
more than a few solar masses are expected to lack significant
surface convection zones in which magnetic dynamos are
generated in low-mass stars, the strong magnetic fields of Ap
stars are unexpected and often attributed to fossil fields
inherited from the collapsed gas clouds (Moss 2001).

The magnetic fields of Ap stars are most frequently
diagnosed through spectropolarimetric measurements of the
mean longitudinal field, (B,), which is strongly dependent on
the line of sight but can be obtained for the majority of Ap stars
regardless of their rotation rates. However, an important group

is formed by the Ap stars with low projected rotational
velocities and strong kG magnetic fields. For these stars,
conventional spectroscopy of sufficient resolution can be used
to measure the mean magnetic field modulus, (B), based on the
wavelength separations of resolved, magnetically split lines
(RMSLs). Although somewhat dependent on the geometry of
the observation, (B) has the advantage of being primarily
determined by the intrinsic stellar magnetic field strength. Prior
to this work, 84 Ap stars with RMSLs were known
(Mathys 2017), and their study allowed the measurement of
their magnetic fields and the establishment of a number of
general properties. The star with the strongest magnetic field
currently known, “Babcock’s Star” (HD 215441), is a B8V star
with a surface dipole field strength of 34 kG (Babcock 1960;
Preston 1969).

The vast majority of past studies of Ap stars with RSMLs
have relied on optical data of very slowly rotating stars (for
which the Doppler effect does not serve to blend the split
components), but spectroscopy at longer wavelengths provides
several advantages in terms of resolving magnetically split
lines. For example, the wavelength separation of magnetically
split components is proportional to the square of the
wavelength, such that for the fixed effective Landé factor, the
spectral resolution required to resolve the split components of a
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line is significantly lower in the H-band than it would be in the
optical. Further, the Doppler effect has a linear dependence on
wavelength, such that magnetic splitting can be resolved in the
H-band for stars that are rotating too fast for the splitting to be
resolved in the optical.

In this Letter we present the analysis of a sub-sample of 154
new stars with RMSLs in the H-band, as well as of 3 stars for
which RMSLs had been observed previously in the optical. The
157 stars were identified among the largest-ever spectroscopic
survey of Ap stars to date, being carried out by the Sloan
Digital Sky Survey (SDSS-III and SDSS-IV; Eisenstein et al.
2011; Blanton et al. 2017) sub-survey known as the Apache
Point Observatory Galactic Evolution Experiment (APOGEE;
Majewski et al. 2017). This near-tripling of the number of Ap
stars with (B) measurement is due partially to the volume and
depth of the APOGEE survey. The 157 RSML stars were
identified among a much larger sample of ~1000 Ap/Am stars
with multi-epoch APOGEE observations, and the 91/157 stars
with V magnitudes greater than 10 represents a 3000% increase
in the number of V > 10 Ap stars for which (B) has been
measured.

2. Data
2.1. APOGEE H-band Spectroscopy

This Letter focuses primarily on data from the two APOGEE
instruments, which are 300-fiber, R = 22,500, H-band spectro-
graphs that operate on the Sloan 2.5 m telescope (Gunn et al.
2006) at Apache Point Observatory (APO) and on the Du Pont
2.5 m telescope at Las Campanas Observatory. Throughout this
Letter, we refer to vacuum wavelengths when discussing the
H-band data. Each APOGEE instrument records most of the
H-band (15145-16960 A) on three detectors, witp coverage
gaps between 15800-15860 A and 16430-16480 A and with
each fiber having a ~2" diameter on-sky field of view. Total
exposure times in each observation are about one hour, and the
the 2°-3° diameter APOGEE fields are usually observed
multiple times on different nights, months, or years, to
accumulate signal for fainter targets and to check for radial
velocity variability. Individual spectra are ultimately combined
into high signal-to-noise ratio (S/N) spectra for chemical
abundance analysis. A detailed description of the APOGEE
survey was presented by Majewski et al. (2017), and the data
reduction process has been described in Nidever et al. (2015).

As discussed in Zasowski et al. (2013, 2017), 35/300
APOGEE fibers are placed on blank sky positions to facilitate
the removal of airglow emission features from science spectra,
and a further 15-35/300 fibers are placed on quasi-randomly
selected hot stars that facilitate removal of telluric absorption
features from science spectra. The latter are generally the bluest
and brightest available stars in the field and are restricted to a
magnitude range of roughly 6.5 < H < 11.0. They are selected
mostly based on raw Two Micron All-Sky Survey (ZMASS;
Skrutskie et al. 2006) J — K color but also with spatial
restrictions to account for variation of the telluric absorption
across the field. To date, the APOGEE instruments have
observed >40,000 telluric standard stars, permitting the
serendipitous discovery of exotic objects including highly
magnetized OB stars (Eikenberry et al. 2014), Be stars
(Chojnowski et al. 2015), as well as a large sample of >900
Ap stars, some of which are the focus of this Letter.
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2.2. ARCES Optical Spectroscopy

We also obtained optical spectra of 29 stars using the
Astrophysical Research Consortium Echelle Spectrograph
(ARCES; Wang et al. 2003) on the ARC 3.5m telescope at
APO. ARCES covers the full optical spectrum (3500—-10000 A)
at a resolution of R = 31,500. We used standard Image
Reduction and Analysis Facility (IRAF'') echelle data
reduction techniques, including 2D to 1D extraction, bias
subtraction, scattered light and cosmic ray removal, flat-field
correction, wavelength calibration via Thorium—Argon lamp
exposures, as well as continuum normalization and merging of
orders.

3. Sample Selection

The APOGEE Ap star sample currently consists of 986 stars
that APOGEE has observed together more than 5500 times,
with the about 85% of the stars having been identified among
the APOGEE telluric standard stars via an algorithm designed
to search for the presence of the doubly ionized Cerium (Ce 1II)
lines that are usually the strongest absorption features aside
from the broad hydrogen Bracket series lines. The other 15% of
the stars lack the Ce II lines and were instead added to the
sample based on literature Ap/Bp/Am classifications (for
detailed definitions of these spectral classes, see Chapter 5.2 of
Gray & Corbally 2009). These 986 Ap/Bp/Am stars therefore
account for just over 2% of the APOGEE telluric standard
stars, but this should be taken as a lower limit to the true
fraction.

Whereas the overall sample will be discussed in future work,
this Letter deals with the 157 stars (886 total spectra) for which
RMSLs were visually identified in one or more APOGEE
spectra. For the majority of the 157 stars, RMSLs appear in
multiple observations such that absorption lines in the
combined spectra clearly exhibit splitting. However, 17/157
stars have only been observed once to date, and in another 49/
157 cases, the RMSLs were noticed and measured in an
individual spectrum rather than the combined spectrum.
Usually this was due to one of the individual spectra having
significantly higher S/N than the others, but in some cases, it
was almost certainly due to temporal variability of the magnetic
field strength.

4. Line Identification

We used the APOGEE linelist (Shetrone et al. 2015) to
identify the majority of absorption lines present in the H-band
spectra. Atomic data for the Ce I lines was obtained from a
Ce I linelist computed by Bi€mont et al. (2002). This linelist
was previously used by Hubrig et al. (2012; provided to them
as private communication by Biemont et al.), who were the first
to confirm the presence of Ce III lines in H-band spectra of Ap
stars. For the optical follow-up spectra, we relied on the Kurucz
linelist'? for line identification.

One or more ions are clearly missing from our H-band
linelist, as indicated by several unidentified lines exhibiting
RMSLs in the spectra of numerous stars. These features are

"' RAF is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.

12 1995 Atomic Line Data (R. L. Kurucz and B. Bell) Kurucz CD-ROM No.
23. Cambridge, Mass.: Smithsonian Astrophysical Observatory.
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Figure 1. Top three rows: APOGEE spectra of 2MASS J06010117+3214538 and 2MASS J01023033+-7438487, two stars exhibiting the unknown lines discussed in
Section 4, with the lines being magnetically split for the former. Blue vertical lines indicate the unknown lines (for which the labels are the vacuum rest wavelengths in
;\) and green lines indicate Ce 1II. A few other species in common between the two stars are labeled. Strong airglow lines have been masked from the spectra,
including one that typically distorts the profile of the unknown line at 16502 A. Bottom row: a closer view of magnetically split lines in the spectrum of
2MASS J06010117+3214538. The feature redward of Ce 11 15961 A is a blend of Si 115964 A and Ce 11 15965 A. The mean magnetic field modulus obtained

from the measured splitting of each line is given.

usually detected simultaneously and they are occasionally the
only metallic absorption features beyond Ce III. They are
probably due to some heavy element that cannot be identified
owing to the limited availability of atomic data for
A > 10000 A. The strongest of these unknown lines is the
16184 A line, for which magnetically split components are
observed in ~31% of the larger Ap star sample. We used a sub-
sample of 20 narrow-lined Ap stars exhibiting the unknown

lines to measure accurate wavelengths for the features. Figure 1
displays the full APOGEE spectrum of one such narrow-lined
star 2MASSJ 01023033+4-7438487) along with a star for which
the unknown lines are magnetically split (2MASSJ 06010117
+3214538). .

The Ce 1 lines (15961, 15965, 16133 A, and in cases of
strong Ce IIL, also 16292 and 15720 A) are present in 100% of
the sample at hand, with the 16133 A line exhibiting RMSLs
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Table 1
Effective Landé g Factors
Ion A\éuc log(gf) llow 8low Elow Jhigh 8high Ehigh 8eff Nslara
A) (eV) (eV)
CI 16009.273 —0.090 2.0 1.000 9.631 3.0 1.001 10.406 1.002 + 0.050 3
ClI 16026.078 —0.140 2.0 1.000 9.631 3.0 1.074 10.405 1.148 £ 0.050 6
ClI 16895.031 0.568 2.0 1.000 9.003 3.0 0.978 9.736 0.956 + 0.050 19
Mgl 15753.291 —0.060 1.0 1.501 5.932 2.0 1.167 6.719 1.000 £ 0.050 2
Mg 1 15770.150 0.380 2.0 1.501 5.933 3.0 1.334 6.719 1.167 £ 0.050 8
Mg 11 16764.796 0.480 0.5 0.666 12.083 1.5 0.800 12.822 0.834 + 0.050 9
Mg 1 16804.520 0.730 1.5 1.334 12.085 2.5 1.200 12.822 1.099 + 0.050 8
All 16723.524 0.152 0.5 0.666 4.085 1.5 0.800 4.827 0.834 + 0.050 6
Al 16755.140 0.408 1.5 1.334 4.087 2.5 1.200 4.827 1.099 + 0.050 10
Sil 15888.794 —0.740 1.0 0.508 5.954 1.0 1.472 6.734 0.990 £ 0.050 2

(This table is available in its entirety in machine-readable form.)

for 63% of the sample and with the weaker 15961 A and
16292 A lines being split for 43% and 32% of the sample,
respectively. The Ce I 15965 A line is often blended with the
strongest Si I line covered (15964 A), such that the splitting of
Ce 11 15965 A can only be measured when the presence of Si I
lines can be ruled out by confirming absence of Si I 15893 A
and 16685 A. The fraction of stars with Ce Il 16133 A
measurements would be even higher were it not for a strong
airglow feature (16129 A) that is often poorly subtracted and
may coincide with the blue wing of the Ce III line depending
on the stellar radial velocity.

Cr 11 is the next most frequently magnetically split ion, with
the splitting of the 15370 and 15470 A lines being measurable
in 50% and 39% of the sample, respectively. Other particularly
useful lines include Fe 1 15299 A (34%), Fe 1 15626 A (31%),
Fe 116491 A (27%), Si116685 A (25%), as well as the
unidentified line at 16184 A (31%). Unlike the situation in the
optical, where Ap stars typically exhibit numerous Fe II and
Ti 10 lines, no Fe II lines are confidently detected in the spectra
of any stars, and Ti Il detections are quite rare. The star
2MASS J23102121+4717017 is the only available example
where more than two magnetically split Ti II lines were
resolved.

5. Mean Magnetic Field Modulus Measurement

Given the measurements of the wavelength separations of
magnetically split components in a given absorption line and
knowledge of the Landé g factors of the associated energy
levels, it is straightforward to compute the mean magnetic field
modulus (B) in units of Gauss according to

AN
(B) = ——. (1)
k g Ao

Here, A\ is the separation in A between an outer and the
central split component or else half of the separation between
outer components in a triplet profile. )\ is the rest wavelength
of the line in A and k is a constant, 4.67 X 10°PA G 1t
is important to note that although we have only analyzed
spectral lines exhibiting apparent triplet profiles like those
shown in the lower panels of Figure 1, the Zeeman patterns (see
Mathys 1990) of the H-band lines have not been investigated
and Equation (1) is therefore an approximation.

The effective Landé factor (g.rr) of a given transition is
calculated using the total angular momentum quantum numbers
(/) and Landé factors (g) of the lower (1) and upper level (2) as
follows:

— )N+ 1) — h(Lh + 1],
)

1 1
= —(8 + &) + —
A 2(& &) 4(g1

where in the case of J; = J;, getr is simply the average of the
Landé¢ factors of the lower and upper levels.

To measure A\, we either fit Gaussians to the absorption
features or simply estimated their positions visually. This was
done interactively using the splot program in IRAF. For each
star, the splitting was measured for as many lines as possible
and the results were averaged, with assumed or derived errors
on g.;r being propagated appropriately. On average, measure-
ments from ~13 lines per star were used, but the range of
number of lines used is quite large. In a few cases, the magnetic
splitting could only be measured in two to three lines, often
because the only metallic lines present are Ce III. In the case of
2MASS J06365367+0118455 however, the splitting of 61
lines was measured.

The J and g values used here were taken from the Kurucz
linelist, and we assumed a constant uncertainty of 0.02 for the
gerr Of lines with existing laboratory data. However, laboratory
data are unavailable for the Ce III lines and for the unknown
lines (see Section 4), such that it was necessary to estimate the
gerr Of these lines. To do so, we defined a sub-sample of 34/157
stars with high-S /N spectra, particularly well-resolved magne-
tically split features, and measurements of lines with known g
in addition to Ce Il and the unknown lines. The lines with
known g.gr were used to calculate preliminary (B) measure-
ments for the 34 stars. These values were then used derive
average estimates of g.¢ for the Ce III and unknown lines.

Table 1 summarizes the 149 lines used for measurement of
(B), providing the vacuum wavelength, log(gf), energy levels,
and g.¢ for each line, as well as the number of stars for which
magnetic splitting was measured. Overall, we find relatively
low gegr for Ce Il and the unknown lines, Wthh together
average gegr ~ 1.07. The weak Ce III 15720 A line has the
highest estimated value at g.¢ ~ 1.39, but unfortunately this
line is rarely observed.
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Figure 2. Upper panel: histogram of the magnetic field modulus for all 238 Ap
stars with resolved, magnetically split lines. The new additions from SDSS/
APOGEE are shaded in green. Lower panel: comparison of (B) as measured in
the H-band vs. the optical. The dashed line indicates perfect agreement.

5.1. H-band Results

The upper panel of Figure 2 shows the distribution of
measured (B) of all Ap stars known to exhibit RMSLs, with the
new discoveries presented in this Letter shaded in green and
with those from Mathys (2017) shaded in gray. The average for
the APOGEE sample is (B) ~ 7.1 kG, while the average for all
stars including those of Mathys (2017) is a bit higher at
(B) ~ 7.3kG due to the inclusion of Babcock’s Star. The
distribution of (B) measured using APOGEE spectra ranges
from ~3.6 kG in the case of 2MASS J02463240+0001145 up
to ~25 kG in the case of 2MASS J02563098+-4534239. A total
of 19 new examples of stars with (B) > 10kG are identified,
thus filling in the previous gap between 10-11 kG.

The lower limit on (B) of ~3.5kG measurable from the
APOGEE spectra is a consequence of resolving power,
whereby the smallest splitting that we can measure is about
0.6 A. For a star with strong Mn I 15222 A (g = 1.969),
splitting should be visible down to (B) of just below 3 kG. No
such examples have been found, however, meaning that it is
not possible to investigate the notion of an intrinsic lower limit
to measurable field strength of (B) ~ 2kG (Mathys 2017).

Chojnowski et al.

Figure 3 shows an example of a magnetically split line for
each of the 157 stars, generally showing the most clearly
resolved line. In the cases where Ce Il 16133 A is displayed,
narrow spikes blueward of the line are residuals from the
imperfect removal of the aforementioned strong airglow line at
16129 A.

5.2. Optical Results

The same procedure described in Section 5 was applied to
the 29 optical follow-up spectra obtained with the ARC 3.5 m
telescope and ARCES spectrograph in order to provide a sanity
check on the H-band measurements of (B). As expected, the
stars exhibit numerous RMSLs in the optical. For the 19/29
stars with (B) < 8 kG, we relied primarily on limited numbers
of long wavelength lines (7000-10200 A), while for the 10 /29
stars with (B) > 9 kG, we measured hundreds of RMSLs for
each star, keeping the 50 lines nearest to the average. Another 3
of the 157 stars were included in the Mathys (2017) sample of
stars for which magnetically split lines had been previously
resolved in optical spectra.

As demonstrated in the lower panel of Figure 2, we find
good agreement overall between the H-band and optical
measurements, with the results agreeing to within a kG in
most cases. The most discrepant results pertain to the star
2MASSJ 07123042-2103537 (HD 55540), where we find
(B) = 15.0kG despite Freyhammer et al. (2008) having found
(B) = 12.7kG. The three available APOGEE spectra of this
star allow us to confirm that not only is the difference due to
temporal variability of the observed (B), but also that the star is
indeed radial velocity variable as pointed out by Freyhammer
et al. (2008).

We also used the optical spectra to estimate traditional
spectral types based on comparison of the target stars to a
sample of 30 bright A and B stars with spectra in the ELODIE
Archive (Prugniel & Soubiran 2001). Stars with clear
detections of He I 4471 A and weak or missing Fe I, Mg I,
Ca 1, and Mn I lines were assigned temperature classes of B§ or
B9, while the A stars were classified based on the equivalent
widths of temperature-dependent lines (e.g., Fel 4045 A,
Mg 15183 A, Ca14227A, Mn 14031 A) as well the ratios
of neutral versus singly ionized lines (e.g., Mg I/Mg Il and
Fe 1/Fe ). Due in part to difficulty finding the continuum
around the wings of the hydrogen Balmer series lines in the
ARCES camera’s small wavelength ranges per order, lumin-
osity classes were not estimated. Anomalously strong absorp-
tion lines from Si, Cr, Sr, and Eu are specifically flagged.

Table 2 summarizes the H-band and optical magnetic field
modulus measurements, giving 2MASS designations, alternate
identifiers, V magnitudes from UCAC4 (Zacharias et al. 2013),
H magnitudes from 2MASS, the number of APOGEE spectra
of each star, the S/N of the combined spectrum, a literature or
estimated spectral type if available, the magnetic field modulus
(B), and the number of spectral lines used to measure (B). In the
cases where optical measurements were available, the final
columns of Table 2 provide the associated (B) measurement
and the number of spectral lines used. Less reliable measure-
ments of (B), usually due to large scatter between different lines
and/or measurements near the resolution limit of APOGEE are
given in parentheses in Table 2.
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Table 2

Magnetic Field Modulus Estimates

Chojnowski et al.

2MASS ID Other ID 1% H Nipecira S/N Spec. Type (B) (kG) MNiines (B) (kG) Niines
(mag) (mag) H-band H-band Optical Optical
00033808+7018217 HD 225114 8.10 8.19 12 726 AOp SrCrSi* 7.46 £ 0.54 8 7.43 £ 0.32* 36
00102704+7337035 TYC 4306-1062-1 10.84 10.07 9 537 4.17 £ 0.28 16
00283062+6947472 TYC 4299-696-1 10.53 9.45 12 682 7.92 £0.89 4
00284036+8418313 TYC 4615-2915-1 10.96 10.54 14 332 A2V° 5.10 £ 0.22 17
00323366+5512530 HD 2887 9.79 8.17 13 1793 A2:p SrCr* 495 £ 0.24 25 497 + 0.22* 27
00331847+5716167 TYC 3662-378-1 10.70 10.37 6 481 (8.53 £0.79) 5
00564145+5739255 TYC 3676-505-1 11.19 10.96 3 86 18.49 £+ 0.76 6
00584870+6240562 TYC 4021-632-1 11.22 10.45 6 411 A2:p Eu* 425 +£0.29 15 4.60 £+ 0.19* 22
01052242+5010296 TYC 3271-1597-1 10.49 10.22 3 266 (6.79 £ 1.13) 3 -
01184266+5844433 TYC 3681-1528-1 10.49 9.99 4 355 BS8® 9.67 £ 0.50 9
Notes.

? Own data (ARC 3.5 m/ARCES).
® SKiff (2014).

¢ Renson & Manfroid (2009).

4 SIMBAD.

¢ Mathys (2017).

T Freyhammer et al. (2008).

(This table is available in its entirety in machine-readable form.)

6. Conclusions

Although spectroscopic observations at long wavelengths
such as in the H-band help to maximize the A\ term of
Equation (1) and to lessen the impact of blending due to the
Doppler effect, this Letter represents the first serious exploita-
tion of this wavelength regime for investigating the magnetic
fields of Ap stars. The APOGEE sample of Ap stars with
RMSLs represents a 183% increase in the number of Ap stars
with (B) measurements, bringing the total to 238 stars. As the
SDSS/APOGEE survey is still ongoing, this number is
expected to increase. Detailed characterization of the now
much larger sample of Ap stars with RSMLs may help to shed
light on the origin of magnetic fields in stars with radiative
envelopes as well as the relations between magnetism and
other factors such as binarity and rotation. In particular, the
investigation of the stellar parameters and chemical abundances
of the sample would be a worthwhile effort, as would be high-
resolution spectroscopic monitoring to measure the average
value of (B) and the rotational period.

As demonstrated in the histogram of magnetic field modulus
presented in Figure 2, more than 50% of Ap stars with
magnetically split lines possess magnetic fields in the range of
4-7kG. Despite the identification among the APOGEE sample
of 19 new examples of stars with (B) > 10kG, led by
2MASS J02563098+4534239 ((B) = 25kG), the high-(B) tail
of the distribution remains capped by the 34 kG magnetic field
of Babcock’s Star (HD 215441; Babcock 1960). The only other
non-degenerate star known to approach 30kG is HD 75049
(Elkin et al. 2010), for which (B) ranges from 24 to 30 kG over
an orbital period. Among the more massive magnetic stars,
which are He-rich early-type B stars, the strongest known
magnetic field is only 21 kG (Hubrig et al. 2017). We can
speculate that the magnetic field value of 34kG likely
represents a critical field strength above which stable magnetic
fields do not exist in Ap stars. Such a limit would be probably
be related to the restricted range of seed fields, of the order of
milli-Gauss, that are observed in star-forming regions (Han &
Zhang 2007).
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Supporting material: machine-readable table

In the online-only version of Table 1, effective Landé g Factors, the SiI and Sill lines were mislabeled as SII and SII, even
though the associated atomic data pertains to neutral and singly ionized Silicon. We apologize for any confusion caused by the error,
and we thank Alexander Kramida for pointing it out.

Table 1
Effective Landé g Factors
Ion )‘veac log(gf) Jlow 8low Elow Jhigh &high Ehigh 8eff Nslars
(A) V) V)

CI 16009.273 —0.090 2.0 1.000 9.631 3.0 1.001 10.406 1.002 + 0.050 3
CI 16026.078 —0.140 2.0 1.000 9.631 3.0 1.074 10.405 1.148 4+ 0.050 6
CI 16895.031 0.568 2.0 1.000 9.003 3.0 0.978 9.736 0.956 + 0.050 19
Mg1 15753.291 —0.060 1.0 1.501 5.932 2.0 1.167 6.719 1.000 + 0.050

Mg1 15770.150 0.380 2.0 1.501 5.933 3.0 1.334 6.719 1.167 £+ 0.050 8

(This table is available in its entirety in machine-readable form.)
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