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ABSTRACT 
 

The wastewater containing nitrophenol compounds is discharged into the water and soil 
environment, causing severe environmental pollution problems. In this paper, a one-step anodic 
potential step method involving Au(I) disproportionation was used to prepare nanoporous gold (D-
NPG) electrodes for the electrochemical detection of 4-nitrophenol (4-NP) by differential pulse 
voltammetry (DPV). The D-NPG electrode has a high current response to the oxidation peak of 4-
hydroxylaminophenol, a product of 4-NP electroreduction. This peak is used in the 4-NP detection. 
Under the optimized conditions, the resulting detection range is wide (0.01~20 µM) and the 
detection limit is low (3.5 nM), and its anti-interference ability is good. It can be used for the 
electrochemical detection of 4-NP in real water samples. 
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1. INTRODUCTION 
 
Nitrophenol and its derivatives are important 
organic raw materials for industrial production, 
which are widely involved in the process of 
industrial synthesis of pesticides, dyes, paints 
and medicines. Wastewater containing 
nitrophenol compounds can cause severe 
environmental pollution problems [1]. Among 
them, 4-NP is more toxic and has been included 
in the priority control pollutant list of the US 
Environmental Protection Agency [2]. Therefore, 
it is important for the development of effective 
methods to detection 4-nitrophenol in the water 
environment. 
 
Several methods have been employed to detect 
nitrophenols, such as high performance liquid 
chromatography [3], spectrophotometry [4], 
fluorescence [5], enzyme-linked immunosor-bent 
assay [6], capillary electrophoresis [7] and 
electrochemical method [8-9]. Among them, 
electrochemical method is widely used in the 
detection of environmental pollutants due to their 
advantages of simplicity, rapidity, low cost, and 
in-situ detection. In this method, electrode 
materials commonly used are graphene [10], 
carbon nanotubes [11], metal oxides [12], metal 
nanomaterials [13] and so on. For example, 
Balasubramanian et al. synthesized a new type 
of CoMnO3 nanosheet by oxalic acid-assisted co-
precipitation technology and used it as an 
electrocatalyst for the highly sensitive detection 
of 4-NP [14]. The detection method has excellent 
performance with high sensitivity of 2.458 μA μM-

1
 cm

-2
, low detection limit of 10 nM and good 

reproducibility. Ndlovu et al. prepared the 
composite material of poly(propyleneimine) 
dendrimer and gold nanoparticle on graphite 
electrode (PPI-AuNP/EC) by electrodeposition 
method and used it for the electrochemical 
detection of 2-NP [15]. The detection has a wide 
detection range (0.31~50 µM) and a low 
detection limit (33 nM). Nanoporous gold (NPG) 
have excellent properties such as large specific 
surface area, high catalytic activity, and good 
electrical conductivity, and have been used in 
electrochemical detection [13,16]. 
 
In previous work, a one-step anode potential step 
method involving Au(I) disproportionation was 
used to prepare nanoporous gold (D-NPG) 
electrodes within 5 minutes [16]. As far as we 
known, there is no detection of 4-NP on the D-
NPG. In the present work, the electrochemical 
redox behavior of 4-NP on D-NPG was 
discussed at first. Then, the influence of 4-NP 

accumulation conditions (potential and time) on 
4-NP response were examined. Finally, the D-
NPG was used for the differential pulse 
voltammetry (DPV) detection of 4-NP with high 
sensitivity, low detection limit and good anti-
interference ability.  
 

2. METHODOLOGY 
 
2.1 Reagents 
 
Sulfuric acid, potassium chloride, sodium 
hydroxide, disodium hydrogen phosphate, 
sodium dihydrogen phosphate, phosphoric acid 
and 4-nitrophenol were of analytical grade and 
were used as received. All solutions were 
prepared with Millipore ultrapure water.  
 
2.2 Apparatus 
 
The electrochemical experiment was performed 
on a CHI660C or CHI660E electrochemical 
workstation (Chenhua Instruments, Shanghai, 
China) with a three-electrode configuration. A 
pure gold electrode (purity > 99.99%, 2 mm in 
diameter), saturated mercurous sulfate electrode 
(SMSE) and platinum foil were used as the 
working, reference and counter electrodes, 
respectively. A PHS-3C pH meter (Shanghai Lida 
Instrument Co., Ltd.) was used to adjust the pH 
of the solution. The surface morphology of 
nanoporous gold was observed by Quanta FEG 
250 scanning electron microscope (SEM). 
 

2.3 Preparation of D-NPG 
 
In this experiment, the one-step anode potential 
step method reported by our research group was 
used to prepare nanoporous gold film [16]. First, 
the gold electrode is polished by 2000 grit 
carbimet paper and cleaned in Millipore water 
under ultrasonic waves. Secondly, the smooth 
Au electrode was electrochemically cleaned by 
cyclic voltammetry (CV) in a 1 M H2SO4 solution. 
Then, the as-cleaned smooth gold electrode was 
run by a linear voltammetry scan (10 mV/s) 
between -0.2 and 1.1 V in a 1 M KCl solution to 
determine the preparation potential of D-NPG. 
Finally, a constant anodic potential (0.91 V) near 
Au passivation was selected to prepare the D-
NPG with a short time of 300 s.  
 

During the preparation at 0.91 V, a monovalent 
gold species (Au(I)), which is unstable and can 
spontaneously disproportionate to produce zero-
valent gold atoms, the latter aggregate and 
deposit on the gold surface to form a nanoporous 



gold film (D-NPG) [16]. Since the preparation 
potential is close to the passivation zone
porous surface can be stabilized under the 
protection of the thin layer of gold oxide. 
 
The as-prepared D-NPG was scanned by CV (
0.7 ~ 1.1 V, 100 mV s

-1
) in a 1 M H

until the CV curve was stable. The D
roughness was calculated to be 254 based on 
the reduction peak of gold oxide monolayer in CV 
curve [16]. 
 

2.4 Electrochemical Determination of 4
NP 

 
The nitrophenol detection on D-NPG electrode 
was tested by differential pulse voltammetry 
(DPV) in a 0.5 M H2SO4 solution. Before the DPV 
test, the D-NPG electrode was applied by a 
constant potential (-0.38 V for 30 min typically) in 
the H2SO4 solution containing 4
accumulation of 4-NP. Finally, a forward potential 
scan from -0.05 to 0.3 V was performed to get an 
anodic DPV curve. 
 

3. RESULTS AND DISCUSSION
 
3.1 Morphology Characterization of D

NPG 
 
The SEM image of D-NPG shows a typical 
nanoporous gold surface (Fig. 1), which is 
composed of massive aggregated gold 
nanoparticles. During preparation, the newborn 
gold atoms/clusters from Au(I) disproportionation 
are highly unstable and easy to aggregate in the 
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3. RESULTS AND DISCUSSION 

Characterization of D-

NPG shows a typical 
. 1), which is 

composed of massive aggregated gold 
. During preparation, the newborn 

gold atoms/clusters from Au(I) disproportionation 
and easy to aggregate in the 

absence of protective agent [16]. A Such a 
nanoporous structure owns many active sites 
and nanochannels, which are benefici
transfer, surface adsorption and reaction of 4
NP. 
 

3.2 CV Behavior of 4-NP on D
Electrode 

 
Fig. 2A shows the CV behaviors of 4
NPG in H2SO4 solution. There is no obvious 
characteristic peak of 4-NP in the CV from the 
blank solution (the black dotted line). When 4
was added, a reduction peak (R) appears around 
-0.38 V during the first negative potential scan. It 
is assigned to the irreversible four
reduction of 4-NP to 4-hydroxylaminophenol (4
HAP) (reaction 1 of Fig. 2B) [17-18]. During the 
positive scan, an oxidation peak (O1) appeared 
at about 0.1 V. Its reduction peak (R1) appeared 
at about 0.1 V on the second negative scan. The 
pair of redox peaks O1/R1 is corresponding to 
the two-electron reversible process between 4
HAP and 4-nitrosophenol (4-NSP) (reaction 2 of 
Fig. 2B) [17-18]. With continuous scanning, the 
current of peak R decreases, which may be due 
to that the competitive adsorption of reaction 
intermediates inhibits the 4-NP adsorption on the 
D-NPG electrode surface [19]. At the same time, 
the O1/R1 redox increase due to the 
accumulation of 4-HAP on the surface. Besides, 
after scanning several cycles of CV, a pair of 
small redox peaks (O2/R2) [20] appeared at 
around -0.3 V. They may be related to 
intermolecular or intramolecular reactions (for 
example, polymerization). 

 

Fig. 1. SEM of D-NPG 
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Fig. 2. (A) CV behavior of D-NPG electrode in 0.5 M H

 

 
Fig. 3. (A) CVs of D-NPG electrode in 0.5 M H
rates, and (B) The linear relationship between the current of the redox peak (O1/R1) and the 

 
Fig. 3A shows the influence of the scan rate 
the CVs of 4-NP on the D-NPG electrode. The 
O1/R1 peak currents (IO1 and 
linearly with the scan rate (v), which are 
expressed as IO1 = 1.65935v + 4.05516 (
0.991) and IR1 = -1.53177v - 2.33787 (
0.994) (Fig. 3B), indicating that the O1/R1 redox 
processes are controlled by surface step 
 
3.3 Influence of Accumulation Conditions 

on DPV Response 
 
Differential pulse voltammetry 
commonly used electrochemical measurement 
technique that can be used to detect trace 
amounts of inorganic and organic substances. 
Prior to DPV test, the electrode surface needs to 
accumulate substance under certain condition to 
obtain high DPV response. As shown in 
when the accumulation potential moves 
negatively to -0.38 V, the DPV current of 
oxidation peak O1 reaches the highest value. As 
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NPG electrode in 0.5 M H2SO4 + 100 µM 4-NP solution and (B) 4
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Influence of Accumulation Conditions 

 (DPV) is a 
commonly used electrochemical measurement 
technique that can be used to detect trace 
amounts of inorganic and organic substances. 
Prior to DPV test, the electrode surface needs to 
accumulate substance under certain condition to 

response. As shown in Fig. 4A, 
when the accumulation potential moves 

0.38 V, the DPV current of 
oxidation peak O1 reaches the highest value. As 

shown in Fig. 4B, the O1 peak current increases 
continuously with the increase of the 
accumulation time. It reaches a high level at the 
time of 30 min finally, indicating that the 
electrochemical adsorption equilibrium has been 
reached. Therefore, the accumulation potential of 
-0.38 V and the accumulation time of 30 min is 
the optimal condition for DPV detection of 4
 
3.4 DPV Detection of 4-NP 
 
Fig. 5A shows the DPV response of different 
concentrations of 4-NP on the D-NPG electrode 
under the optimal detection conditions. As shown 
in Fig. 5B-a, the peak current increases linearly 
with the increase of the 4-NP concentration. The 
linear concentration range is 0.01-20 µM, and the 
linear equation is I = 40.95949 c –
= 0.991). The detection limit is calculated to be 
3.5 nM (3/slope) [18-19]. Comparing the 
detection performance of the D-NPG 
with the work reported in other literatures (
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NP concentration. The 
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= 0.991). The detection limit is calculated to be 
19]. Comparing the 

NPG electrode 
with the work reported in other literatures (Table 



1), it is found that the D-NPG electrode have 
lower detection limit and wider detection 
range. 
 
Moreover, short accumulation time results in 
obvious low detection sensitivity. When
accumulation last for only 4 min (curve b), the 
response of the D-NPG electrode to 4
weakens. Note that the slope of linear curve a is 
3.28 times that of curve b. The fact indicates that 
it takes enough time to adsorb 4-NP on the inner 
and outer surfaces of the nanoporous gold film. 
At the same time, the slope on the D
electrode was compared with that on the smooth 
gold electrode. It can be seen from 
under the same accumulation condition (curve a 
and c), the slope of linear curve on
electrode (40.95949, curve a) is 3077 times that 
of the smooth gold electrode (~0.01331, curve c), 
indicating very high sensitivity for the detection of 
4-NP on the D-NPG surface.  

 

Fig. 4. The influence of accumulation (A) potential and (B) time on peak current of O1 at fixed 
(A) time of 4 min and (B) potential of 

 

Fig. 5. (A) DPV curve of D-NPG electrode in 0.5 M H
concentrations of 4-NP (accumulation time of 30min), and (B) dependence of the DPV peak 
current on 4-NP concentration at (a) smooth gold and (b, c) D

time: a and c are 30 min, and b is 4 min
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3.5 Effect of Interferents 
 
In order to evaluate whether the D
electrode has anti-interference performance, we 
carried out the effect of some interferents on the 
detection of 1 µM 4-NP. From Table
of inorganic ions, 50 fold of 3-NP and 100 fold of 
2-NP had no obvious interference (the deviation 
is less than 5%), indicating that the 
D-NPG electrode has good anti
ability. 
 
In addition, the storage stability of the D
electrode was also investigated. The electrode is 
stored at low temperature for 4 weeks. In the
week, the 4-NP current response has decayed 
obviously due to the aggregation of high active 
and unstable Au clusters/nanoparticles. 
Afterwards, little change on the DPV response 
happens in the next three weeks, indicating the 
surface is stable. 

 

The influence of accumulation (A) potential and (B) time on peak current of O1 at fixed 
(A) time of 4 min and (B) potential of -0.38 V 

 
NPG electrode in 0.5 M H2SO4 solution containing different 

NP (accumulation time of 30min), and (B) dependence of the DPV peak 
NP concentration at (a) smooth gold and (b, c) D-NPG electrode. Accumulation 

time: a and c are 30 min, and b is 4 min 
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Table 1. Performance comparison of electrochemical detection of 4-NP on gold nanomaterials 
 

Electrode material Method Linear range (μM) Detection limit (nM) Ref. 
AuNPs/RGOa/GCE DPV 

SWV 
0.05–2.0，4.0-100 
0.05–2.0 

10 
20 

[21] 

CuNPs/4,4’-bpy/Aub CA 1–500 0.34 [22] 
lamellar ridge-Auc DPV 0.025-1，1-300 20 [23] 

AuNP-SPCd i-t 0.1-315 98 [24] 
Au@MWCNTse DPV 0.01-50，80-500 — [25] 

Au–ZnO–SiO2
f/GCE DPV 0.01–1.2 

0.05–3.5 
2.8 
13.7 

[26] 

β-CD-Au@CGSg/GCE DPV 0.01-200 3.8 [27] 
ERG-AuNPh/GCE LSV 0.036-90 10 [28] 
Au-Cu(1:3)i/GCE SWV 0.1-15 80 [29] 
DVD@NP.Au/Hgj SWV 5-250 1000 [30] 
D-NPG DPV 0.01-20 3.5 This 

work 
a: Au nanoparticles/reduce grapheme oxide film; b:copper metal nanoparticles/4,4’-bipyridine modified gold electrode; c: 

lamellar-ridge architectured gold; d: Au nanoparticles electrodeposited screen printing carbon electrodes; e: gold 
nanoparticles decorated multi-walled carbon nanotubes; f: ZnO and gold nanoparticles dispersed into a silica matrix; g: 

β-CD-gold nanoparticles were anchored onto carboxylic graphene nanosheets (CGS); h: graphene–gold nanocomposite 
film; i: gold-copper alloy nanoparticles; j: gold digital versatile disc platform modified with nano-porous mercury/gold 

(Hg/Au) amalgam 
 

Table 2. The influence of different interfering ions on the detection of 1 µM 4-NP 
 

Interferent Concentration (µM) Deviation (%) 
Al3+ 100 2.69 
Cl- 100 -2.92 
Co2+ 100 -3.41 
Cu2+ 100 -4.78 
K+ 100 -3.68 
Ni2+ 100 1.41 
NO3

- 100 3.53 
Zn2+ 100 0.85 
2-NP 100 -3.26 
3-NP 50 3.33 

 

Table 3. Determination results of 4-NP in water samples (n = 3) 

 
Sample Added (μM) Found (μM) RSD (%) 
 4-NP 4-NP 4-NP 
Lake water 0 Not detected - - 
 5 5.34 1.08 106.8 

10 9.84 2.83 98.4 
Tap water 0 Not detected - - 
 5 4.78 4.36 95.6 

10 10.09 1.07 100.9 

 
The D-NPG electrode was used to detect 4-NP in 
real tap water and lake water. No 4-NP                    
signal can be detected in actual water samples. 
The possible reason is that the water                     
sample does not contain 4-NP or the 
concentration is lower than the detection limit of 
the electrode. So, we use the standard                   
addition method for determination. It can be 
concluded from Table 3 that the recovery of 4-NP 
is between 95.6% and 106.8%, which shows             

that the D-NPG electrode can be applied to 
detect the 4-NP in actual water samples. 
 

4. CONCLUSIONS 
 
In this work, an anodic potential step method was 
used to prepare nanoporous gold film (D-NPG) 
for the electrochemical detection of 4-NP. 
Experiment results show that the D-NPG 
electrode has a high detection performance to 
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the 4-NP with a wide detection range (0.01-20 
µM), low detection limit (3.5 nM), good anti-
interference ability, and can be used for the 
electrochemical detection of 4-NP in real water 
samples. Further work can be carried out on 
some nanoporous non-noble metal materials. 
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