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ABSTRACT

In this paper, de Broglies wave particle duality relation is applied to a particle in one dimensional
box problem to find the constraint for quantum decoherence of this system. It is observed that,
for a particle of mass m captured in one dimensional box of length L should follow the relation
mL ≤ h

4c
to have a stable quantum state where h is Planck’s constant and c is the speed of light in

the vacuum space. Violation of this condition would lead to quantum decoherence of this system.
It is also observed that if decoherence occurs, rate of decoherence would be inversely proportional
to the square of the particle’s initial wavelength.
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1 INTRODUCTION

Quantum decoherence is the most important
topic in quantum measurement problem [1, 2]
and quantum electrodynamics [3, 4, 5]. It was
first introduced by the German physicist H. Dieter
Zeh in 1970 [6] and become an active field of
research since the 1980s [1, 7]. The concept
of decoherence is to put in place in the broader
scientific community by Zurek in 1991. His
article in Physics Today [8] elicited a series
of contentious comments from the readership.
There were lots of controversies, but at the end it
is proved experimentally [9, 10, 11] and presently
used in different fields of quantum theory, like,
quantum optics [12], quantum computer [13],
quantum electrodynamics [3, 4, 5], quantum
gravity [14, 15] etc. Decoherence is also
important to understand the quantum classical
application limit [16].

Decoherence can be viewed as the loss of
information from a system into the environment.
In general, it is due to the coupling of a
system with its surroundings. For open quantum
system, decoherence occur due to dissipation.
Is quantum decoherence possible for an isolated
system? Very recent studies show that it is
possible [17, 18]. It is reported that there
is intrinsic decoherence due to random force
[19]. Decoherence is also possible in an
isolated system due to temperature effects [20,
21]. So far, there is no report in the literature
about decoherence due to quantum tunneling.
In present research work decoherence due to
quantum tunneling is investigated. Particle in a
one dimetional box problem is chosen for this
study as it is the simplest problem in quantum
mechanics. Motivation of this work is to test the
possibility of quantum decoherence of a quantum
particle trapped in an one dimensional box of
length L and bounded by infinite potential wall
at its two ends. Outcome of this study should
help to understand decoherence of other isolated
quantum systems. Not only that, decoherence of
a isolated quantum system, like particle in a box

of one dimension, may unfold new thoughts about
quantum classical barrier.

2 EXPLOITATION OF DE
BROGLIE RELATION ON
PARTICLE IN A BOX
PROBLEM

The ‘particle in a box’ problem is one of the most
basic problems in textbook quantum mechanics.
It describes a localized particle in a deep
potential well. Let, a particle having rest mass,
m, and momentum, p, is placed in a box of length
L. Due to the confinement of the particle in this
box, its energy states would be quantized. We
know that energy of the ith eigen state is

Eq =
n2
ih

2

8mL2
(2.1)

where, ni = 1, 2, 3, . . . , h is Planck’s constant. If,
λq is the wavelength corresponds to this eigen
state (we can say this wavelength as quantum
wavelength), we can write -

Eq =
hc

λq
(2.2)

From Equation 2.1 and 2.2 we get the expression
for the wavelength of the ground state (ni = 1) as
-

λq =
8mcL2

h
(2.3)

Now, according to our problem, the momentum
of the particle is p. Hence, kinetic energy of the
particle is -

Ep =
p2

2m
(2.4)

From de Broglie’s wave particle duality relation
we can write,

p =
h

λd
(2.5)

where, λd is de Broglie wavelength of the particle.
From Equation 2.4 and 2.5 we get

Ep =
h2

2mλ2
d

(2.6)
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It is obvious that, if the kinetic energy (Ep) of
the particle is equal to the ground state energy
(Eq(ni=1)

), particle would be in the ground state
of this quantum system. But, if particle’s kinetic
energy is less than the ground state energy,
particle would not be in any quantum state. Its
behavior must be like non-quantized particle.
Thus, the condition for the existence of the
particle in any quantum state in this system is -

Ep ≥ Eq(ni=1)
(2.7)

From Equation 2.7 we get the largest value of λd

for the existence of the particle in the quantum
state as -

λd = λq(ni=1)
(2.8)

From Equation 2.2 and 2.6 we get a relation
between λq and λd, as -

hc

λq
=

h2

2mλ2
d

(2.9)

or,

λq =
2mcλ2

d

h
(2.10)

3 CONSTRAINTS FOR
DECOHERENCE

In Equation 2.10 we have a relation between
de Broglie wavelength (λd) and the quantum
wavelength (λq) of a particle in one dimensional
box. de Broglie wavelength is directed by the
initial momentum of the particle while quantum
wavelength is restricted by the length of the
box. Thus, it is obvious that, if a particle is
trapped in such a box, its energy states would
be quantized if its de Broglie wavelength is equal
to the quantum wavelength of any one energy
state defined by the length of the box. It is
known that wavelength of the lowest energy state
is the largest one. Thus, the largest de Broglie
wavelength of the particle allowed for its quantum
state is equal to the quantum wavelength for the
lowest energy state which is double of the length
of the box. If, de Broglie wavelength of the
particle is larger than 2L, then the particle would
behave like a classical particle in that box.

Now, using the condition λd = λq(n=1)
we get

from Equation 2.10

λq =
h

2mc
(3.1)

From Equation 2.3 and 3.1 we get

mL =
h

4c
(3.2)

Thus, from Equation 2.7 we get the condition for
the existence of the particle in any quantum state
as follows -

mL ≤ h

4c
(3.3)

Right hand side of Equation 3.3 is a universal
constant. Thus, we have a restriction on product
of the mass of the particle and the length of
the box. For example, a particle of very small
mass would behave as a quantum particle in a
larger box compared to a heavier particle in a
shorter box. On the other hand, a particle of
a heavier mass having very high energy should
be confined in a very short region to be in a
quantum state, else, the particle would not be in
any quantum state. For example, L for electron
is 0.0063Å which is less than the dimension of
the atom. This result is consistent with reality
ie. electron in atoms exists in quantum states.
Mass of proton and neutron is nearly 1000 times
than electron. Thus, L for proton or neutron
is in the order of femto meter. Thus, their
matter nature is more dominated than the wave
nature. On the other hand, rest mass of photon is
0. Hence, L of photon is infinity which implies
photon always would be in quantum state. It
could not be completely converted to an object of
classical nature. In the above derivation relativity
condition is not considered. Thus, Equation 3.3
would not be valid for photon. But, derivation
including relativity would leads to a similar
equation like Equation 3.3, from which we may
have similar conclusion. Equation 3.3 is obtained
without taking environmental perturbation into
account. Environment perturbation is the reason
for decoherence. Due to quantum tunneling
the particle loses its energy to the environment.
Decrease of energy through tunneling cause the
decoherence. We may derive an equation for
decoherence considering dissipation of energy
due to tunneling.
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4 EQUATION FOR
DECOHERENCE

In previous section, the limit of the wavelength for
decoherence is mentioned. Now, let us consider
that the particle is in the quantum state and its
energy is gradually decreasing due to dissipation.
As its energy is decreasing and wavelength is
increasing it would reach to a decoherence state.
We may construct its decoherence equation as
follows.

If, rate of dissipation of energy is Rd we can write
[19]

Rd = − (∆E)

∆t
(4.1)

As decoherence is a continuous process, we can
replace ∆E by dE and ∆t by dt. Thus, for
decoherence, Equation 4.1 would be

Rd = − (dE)

dt
(4.2)

From Equation 2.4 we get

dE

dt
=

p

m

dp

dt
(4.3)

From Equation 2.5 we get

p
dp

dt
= −h2

λ3

dλ

dt
(4.4)

From Equation 4.2, 4.3 and 4.4 we get

Rd =
h2

mλ3

dλ

dt
(4.5)

If decoherence time is t, we get from Equation
4.5

Rd × t =
h2

m

∫ 2L

λi

dλ

λ3
(4.6)

Equation 4.6 is the decoherence equation for
a particle in a box of one dimension. In this
derivation uncertainty principle is not considered.
We can reformulate the decoherence equation

using uncertainty principle.

From uncertainty principle we can write,

∆p×∆λ ≥ h

2π
(4.7)

Thus, from Equation 4.1 and 4.7 we get-

Rd∆t ≥ − h2

4π2m(∆λ)2
(4.8)

5 CONCLUSION

Applying de Broglie’s wave particle duality
relation to a particle in one dimensional box a
constraint is obtained for quantum decoherence.
This constraint should help to discriminate
quantum classical border of an object which has
dual behavior in different region. This also helps
to investigate quantum to classical or classical
to quantum transformation. In this article only
one dimensional box is used, but, one can use
a similar methodology for three dimensional box
also. Taking time dependent wave function of a
particle in three dimensional box, one can test its
decoherence imposing the condition mentioned
in Equation 3.3. That would be very much
productive to understand decoherence from a
basic view point. At present, decoherence for a
particle in one dimensional box is reported and
it is observed that decoherence rate is inversely
proportional to the square of its initial wavelength.
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