
von Karman Correlation Similarity of the Turbulent Interplanetary Magnetic Field

Sohom Roy1 , R. Chhiber1,2 , S. Dasso3,4 , M. E. Ruiz5, and W. H. Matthaeus1,6
1 Department of Physics and Astronomy, University of Delaware, Newark, DE, USA

2 Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
3 CONICET, Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio, LAMP Group, CC. 67, Suc. 28, 1428 Buenos Aires, Argentina

4 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos and Departmento de Física,
LAMP Group, 1428 Buenos Aires, Argentina

5 Servicio Meteorológico Nacional, Av. Dorrego 4019—CABA República Argentina (C1425GBE) and Instituto de Astronomía y Física del Espacio (IAFE) and
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

6 Bartol Research Institute, University of Delaware, Newark, DE, USA; whm@udel.edu; sohom@udel.edu
Received 2021 June 26; revised 2021 August 20; accepted 2021 August 27; published 2021 October 1

Abstract

A major development underlying much of hydrodynamic turbulence theory is the similarity decay hypothesis due
to von Karman and Howarth here extended empirically to magnetic field fluctuations in the solar wind. In
similarity decay the second-order correlation experiences a continuous transformation based on a universal
functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles
adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly.
Here we analyze an ensemble of magnetic correlation functions computed from Advanced Composition Explorer
data at 1 au, and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity
form of the type anticipated from von Karman’s hypothesis. This provides for the first time a firm empirical basis
for employing the similarity decay hypothesis to the magnetic field, one of the primitive variables of
magnetohydrodynamics, and one frequently more accessible from spacecraft instruments. This approach is of
substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and
subgrid-scale dynamical modeling.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary physics (827); Interplanetary turbulence
(830); Plasma astrophysics (1261); Magnetohydrodynamics (1964)

1. Introduction

Several fundamental building blocks of modern turbulence
theory emerge from the von Karman–Howarth treatment of
turbulent energy decay in hydrodynamics (de Kármán &
Howarth 1938). A prominent step is the development of
equations for the time evolution of the second-order (two-point,
single-time) correlation functions. These so-called von Kar-
man–Howarth equations are the first entry in the hierarchy of
moment equations and form the basis of the famous
Kolmogorov “4/5” (or third-order) law for evaluating the
energy cascade rate (Kolmogorov 1941a). Another important
concept that is introduced in the same work is that of self-
preservation of the two-point correlations during decay. The
conjecture is that the dynamical behavior of the correlation
function over a suitable intermediate range of spatial separa-
tions, or lags, depends only on a small number of similarity
variables; for hydrodynamics the number is two—the energy
per unit mass u2, and a single similarity length-scale λ.
Normalized in an appropriate way, the underlying dimension-
less correlation function takes on a quasi-universal form over
the relevant range of length scales. This formalism then implies
a familiar decay law for the large, energy-containing length
scales, setting the stage for control of the entire turbulence
cascade process by the large-scale energy reservoirs. The
experimental confirmation of the validity of this picture, up to a
suitable degree of accuracy, is a cornerstone of hydrodynamic
turbulence theory (Batchelor & Townsend 1947, 1948; Stewart
& Townsend 1951; Batchelor 1970; Pope 2000). The scope of
potential applications of the von Karman–Howarth ideas
extends much further, and has been expounded for magneto-
hydrodynamics (MHD) and for plasmas with some support,

mainly from numerical simulations (Hossain et al. 1995; Wu
et al. 2013; Bandyopadhyay et al. 2018). Extrapolating to
natural systems there is a strong motivation to apply, and if
possible to validate, the von Karman approach in observations
of turbulence.
Here, we evaluate directly the self-preservation hypothesis

for magnetic autocorrelation functions observed at 1 au in the
turbulent solar wind. We emphasize that the magnetic field and
velocity field are equally primitive variables for incompressible
MHD and a more complete analysis would examine both or,
equivalently, the Elsässer (1950) fields. Our choice to examine
the magnetic field alone has a practical basis in that the
magnetic field is often better determined by standard spacecraft
instrumentation. Consequently the magnetic fluctuation proper-
ties have often been used as a surrogate for the full
Kolmogorov cascade, as frequently seen in the emphasis on
the magnetic field spectrum as a separate entity (Kiyani et al.
2015). This test employs a large ensemble of samples of solar
wind magnetic field data of sufficient size to separately
compute correlation lengths and energy densities for each
sample. Carrying out the two-stage normalization prescribed in
the von Karman procedure, we find a collapse of the correlation
functions to a well-defined form. This provides for the first time
a direct confirmation of von Karman similarity for an
extraterrestrial space plasma.

2. von Karman Normalization

For simplicity and to make contact with theory, we assume
that the solar wind magnetic field can be expressed as the sum
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of the mean magnetic field, and a fluctuation term:

= +B x B x b xt t t, , , , 1( ) ( ) ( ) ( )

where B x t,( ) is the mean magnetic field, and b(x,t) is the
fluctuation in the magnetic field. An ensemble average 〈...〉
defines this decomposition as á ñ =B B and 〈b〉= 0. The two-
point, single-time correlation function is defined as

= á + ñr b x b x rR t t t, , , . 2( ) ( ) · ( ) ( )

Homogeneity implies that this quantity depends only on the
spatial lag r and is independent of x (Batchelor 1970;
Matthaeus & Goldstein 1982). Note that here we are not
assuming stationarity in time, as we are considering turbulence
that freely decays in time t. The associated systematic time
variation is described by the von Karman hypothesis outlined
below. The present theoretical discussion is readily generalized
to a correlation tensor Rij(r); we forgo this generalization here
for brevity. A familiar assumption (de Kármán &
Howarth 1938) is that of statistical isotropy, that is, invariance
of the correlations under rotations, so that R depends only on
the magnitude r of the spatial lag r. Alternatively, the theory
may be generalized for anisotropic cases (Wan et al. 2012; as
expected for the solar wind) by introducing length scales
parallel and perpendicular to the magnetic field direction. Here
we adopt an ensemble that includes samples for all available
directions; by broadening the averaging procedure to sum over
all directions, we arrive at a functional representation that is
“omnidirectional” (Batchelor 1970) and depends on a single
spatial lag.

The von Karman similarity assumption, adapted to the
magnetic field, proceeds by analogy to the hydrodynamic case
as follows. Suppose that during free turbulent decay the energy
density (per unit mass) of the magnetic field, expressed in
Alfvén speed units and up to a factor of 2, varies in time as

º á ñu t v tA
2 2( ) ( ) where pr= bv t 4A

2 2∣ ( )∣ ( ), where ρ is a
suitably coarse-grained mass density (Parashar et al. 2020).
We denote the variance of the measured magnetic field (in nT2)
as b2(t).

A time-varying characteristic length L(t) along with the
characteristic time τ(t)= L(t)/u(t) comprise the similarity
variables that describe the von Karman turbulent decay. The
length L will often be associated with the outer scale or
correlation scale of the fluctuations. There are at least two
potential implications of the similarity variables L(t) and τ(t):
First, during free decay the equations can be written in terms of
these variables. In so doing it is possible that semi-universal
decay solutions can be written that do not involve the
laboratory time or length, but only the dimensionless variables
t/τ and r/L. The auxiliary constraint conditions for this
similarity solution are the well-known von Karman decay laws

a= - u Ldu

dt
3

2

and b= udL

dt
. These are quite well established

for both hydrodynamics and MHD (Hossain et al. 1995;
Bandyopadhyay et al. 2018) with some support for weakly
collisional plasmas (Wu et al. 2013). If such solutions exist and
are realized in nature, then a consequence (or corollary) is that
the correlation functions themselves undergo a continuous
time-dependent renormalization with respect to these variables
such that the conditions for similarity decay are maintained.
Below we verify the approximate validity of this self-

preservation property for the turbulent interplanetary magnetic
field.
To be specific, the von Karman similarity hypothesis asserts

that the functional form of the two-point correlation function is
self-preserving in the sense that at any stage of the decay it can
be expressed as

=R r t u t R r L t, . 32( ) ( ) ˆ ( ( )) ( )

Here R̂ is a universal function that describes the dynamics of
the correlation function over a range of scales r that is much
larger than the dissipative scales, and smaller than any specific
structures at scales associated with injection of energy. There
is, of course, no guarantee that physically realizable correlation
functions will collapse to this form upon appropriate normal-
ization. This must be established empirically. We proceed
below to test this approximate collapse to a near-universal form
using magnetic field data at 1 au.
In addition to assessing the quality of the von Karman

normalizations for the correlation functions, we carry out the
analogous procedure for the second-order magnetic structure
functions:

= á + - ñr b x r b xS t t t, , , , 42 2( ) ( ( ) ( )) ( )( )

a quantity that occupies a prominent role in Kolmogorov’s
seminal theories (Kolmogorov 1941a, 1941b; Frisch 1995;
Pope 2000). Following Equation (3) the normalized second-
order structure function, assuming isotropy or direction-
averaging, may be written as

=S r t u t S r L t, . 52 2( ) ( ) ˆ ( ( )) ( )( )

3. Data and Analysis Procedure

Ensemble of data at 1 au. The data used to compute the
correlation functions are Advanced Composition Explorer
(ACE) Level 2 MAG data (Smith et al. 1998) at 1 s resolution,
which were then downsampled to 1 minute cadence. The data
span a range of 10 years, from 1998 February 5 to 2008 March
30, consisting of 1 day intervals, in total comprising approxi-
mately 3000 samples after discarding cases that included
excessive missing data or bad values. In the present Letter the
analysis is restricted to fast wind samples that we define to be
those with average wind speeds >500 km s−1; this reduced the
ensemble size to 987 samples. Data sets were cleaned by
replacing missing or bad data points with NaN values.
The correlation functions are estimated from each data set

(with label I) using the Blackman–Tukey algorithm (Blackman
& Tukey 1958), implemented at this stage in the time domain
with τ denoting the time lag:

1. The magnetic field is given by Bi (components i= 1, 2,
3). For a given lag τ, two sets of arrays are created, Bl

(the left array) and Br (the right array), which are defined
as

t t= - =B B L B B L0: , : , 6i i i i,l ,r[ ] [ ] ( )

where L is the length of the entire data set, and i takes on
the values R, T, and N, representing coordinates in a Sun-
centered coordinate system (Fränz & Harper 2002). In the
usual way, the square brackets denote a range of indices
within the data set.

2
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2. Then the following equation is used to compute the
correlation tensor for the given lag:

t = á ñ - á ñá ñR B B B B , 7ij i j i j,l ,r ,l ,r( ) ( )

where 〈M〉 denotes averaging over the entire length of the
array M.

3. Then the autocorrelation is computed using the following
equation:

t t t t= + +R R R R . 8RR TT NN( ) ( ) ( ) ( ) ( )
4. At this stage time lags are converted to spatial lags using

the Taylor frozen-in hypothesis (Taylor 1938):

t=r V , 9sw ( )

where Vsw is the mean solar wind speed for interval I, and
r is a spatial lag in the radial direction.

We then proceed to apply the normalizations described by
Equation (3) to the collection of intervals. Operationally, we
compute the correlation length λI and average magnetic energy
per unit mass ºu R 0I I

2 ( ) for each sampled interval. Each
correlation function (labeled by interval I) is self-normalized as
RI(r/λI)/RI(0). Then these are averaged over all I to obtain an
estimate of the quasi-universal lR rˆ ( ). The average correla-
tions are compared with the individually normalized correla-
tions in the figures below. Note that a median is used to
represent the average at each lag.

The twice-normalized second-order structure function esti-
mates are obtained similarly as

l l
=

-S r

R

R R r

R0
2

0

0
. 10I I

I

I I I

I

2 ( )
( )

( ) ( )
( )

( )
( )

Then the average over intervals produces the estimate
of lS r

2ˆ ( )( )
.

4. Normalizations and Results

Figure 1 (top) illustrates the range of unnormalized
correlation functions as a function of unnormalized spatial
lag in km. We have used boxplots to illustrate the distribution
of the correlation functions at each stage in the normalization
procedure. The solid line shows the median of the correlation
functions at each (binned) lag, and the upper and lower
boundaries of the boxes describe the first (Q1) and the third
(Q3) quartiles. The whiskers of the boxplot show the
“minimum” and “maximum” values of the correlations, which
are defined with respect to the interquartile range, IQR= (Q3–
Q1):

= - = +min Q1 1.5 IQR, max Q3 1.5 IQR. 11* * ( )
The first normalization is accomplished by the procedure

RI(r)→ RI(r)/RI(0) for each interval labeled by I. The
correlation functions are interpolated onto a uniform grid.
The median is then computed for the ensemble of correlation
functions at each grid point, along with the “minimum” and
“maximum” values as described above. The result, which we
call the first-normalized correlation function, is plotted in the
middle panel of Figure 1 as the median value. The boxes give
us an estimation of the spread in the population of RI(r)/RI(0)
values; it is evident that the distribution is skewed.

The next step is to compute correlation scales λI for each
sample. The method employed is a composite of two
approaches implemented in previous studies (Ruiz et al.

2014; Isaacs et al. 2015). From the Blackman–Tukey
autocorrelations computed above a preliminary estimate of λI
is obtained by computing the “1/e” length, that is the length l¢I
for which l¢ = =R R e0 1 0.3678 ...I I I( ) ( ) . Finally, a linear
least-squares fit to l~ -R ℓ R ℓlog 0I I I[ ( ) ( )] is performed
over the interval l= ¢r 0, 2I( ) to obtain λI.
The fit determines λI for the Ith sample. The argument of the

correlation can then be scaled to ℓ/λI as in Equation (3).
Computing the medians over the population of rescaled
correlations produces the second-normalized correlation func-
tions. The median second-normalized correlation function is
portrayed in the bottom panel of Figure 1, along with the boxes
indicating the first and third quartiles of the population, and the
whiskers showing the “minimum” and “maximum” values.
By comparison of the three panels in Figure 1, it is clear that

each normalization produces a significant reduction of
statistical spread of the population of correlation functions.
This effect is particularly dramatic for lags less than a
correlation scale. A quantitative measure of this collapse to a
well-defined median is provided in Table 1, which shows the
properly normalized standard deviations of the populations in
the unnormalized population and in the first- and second-
normalized populations. In Appendix appendix, we show the
distributions of the fluctuation energies, the distribution of the
correlation lengths, and the distribution of the second-normal-
ized correlation functions at r= λ.
This collapse of the correlations is a standard approach to

demonstrating the applicability of turbulence theory to data
(Batchelor 1970; Pope 2000) and in this case provides an
empirical confirmation of the applicability of von Karman
similarity to interplanetary magnetic field observations.
An entirely analogous procedure may be applied to normal-

ize the second-order structure functions. We briefly show the
results here for completeness. Applying the relationship
Equation (10) between SI

2( ) and RI, for each data interval I,
and then averaging over the set of intervals, we arrive at the
average lS r

2ˆ ( ) as in Equation (5).
Shown in Figure 2 are the results of double normalization of

the structure functions for the same 987 fast wind samples
extracted from the ACE ensemble. Both dimensionless
structure function and dimensionless length r/λ are on a linear
scale. S

2ˆ( )
is shown as a solid line, representing the median of

the underlying estimates. The distribution of the population is
suggested by the background samples and shading at the first
and third quartiles about the median structure function. It is
apparent that at lags r/λ< 1 there is a substantial collapse to
what might be loosely thought of as a “universal form.” At
large lags r/λ? 1 the population tends toward the asymptotic
value of 2, which is achieved only when the sampled
fluctuations become entirely uncorrelated. Another view, on a
log–log scale, of the normalized structure function is provided
in Figure 3. This rendition emphasizes the inertial range. A line
with 2/3 slope is provided for reference, representing the
expected inertial range scaling of ~S r2 2 3( ) in K41 theory.

5. Discussion

The von Karman similarity decay hypothesis is the basis for
phenomenological treatments of turbulence decay of the form

µdecay rate
velocity

similarity scale
. 12

3( ) ( )

3
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Along with a formulation for evolution of the similarity scale,
relations of this form emerge in both hydrodynamics and MHD
as conditions for maintaining the property of self-preservation

of the functional form of the second- and third-order correlation
functions during decay of the turbulence. In particular, for
MHD, a model most frequently applied to the large scale and
inertial range scales of the solar wind (Matthaeus & Gold-
stein 1982; Bruno & Carbone 2013), the appropriate general-
ization is the assumption of self-preservation of the Elsässer
correlation functions (Oughton et al. 1997) or, equivalently, the
total incompressive fluctuation energy—kinetic plus magnetic
—as well as the cross correlation of velocity and magnetic
field. For details see Wan et al. (2012). For the leading-order
description, in incompressible MHD, the condition for

Figure 1. (top) Correlation functions not normalized. The solid black line
shows the median correlation vs. lag. The upper and lower boundaries of the
(brown) boxes indicate the first and third quartiles, respectively, at each grid
point. The whiskers extending from the boxes denote the “minimum” and
“maximum” values as described in Section 4. To produce these boxplots, the
data are interpolated and resampled onto a grid of 48 points per 106 km span of
lag. (middle) Correlation functions after first normalization—normalization by
energy. (bottom) Correlation functions normalized by energy and correlation
scale.

Table 1
Standard Deviations of Correlation Functions, Scaled as σ/R(0), for Different

Stages of Normalization at Selected Values of Lags

r/λ = 0.25 r/λ = 0.5 r/λ = 1

No normalization 2.163 2.015 1.759

First normalization 0.106 0.139 0.157

Second normalization 0.032 0.022 0.055

Figure 2. Normalized second-order structure functions vs. lag, on a linear
scale. See Figure 1 for a description of the boxplot elements.

Figure 3. Normalized second-order structure functions on a log–log scale. A
linear fit has been performed on the median for lags less than 0.5 correlation
length.
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obtaining these self-preservation conditions, which are general-
izations of Equation (3), are shown to be

a b= - =









dZ

dt

Z Z

L

dL

dt
Z; . 13

2 2

( )


The present results provide significant conceptual support for
use of similarity decay laws of the von Karman type as a
representation of the dissipation and heating due to turbulence
cascade (Hossain et al. 1995). This approach and its variations
are extensively employed in space physics applications,
including turbulence transport equations (Matthaeus et al.
1994; Breech et al. 2008; Adhikari et al. 2017) and both
coronal (Cranmer et al. 2007; Verdini et al. 2010) and
heliospheric (Lionello et al. 2014; van der Holst et al. 2014;
Usmanov et al. 2018) global models that include subgrid
turbulence effects.

The above analysis affirms that an isotropic form of the von
Karman self-preservation hypothesis is applicable, at a reason-
able level of approximation, for solar wind magnetic field
fluctuations in fast wind at 1 au in near-Earth orbit. In stating
the hypothesis in this form we extend the ideas of von Karman
and Howarth in several important ways. First, we examine the
similarity hypothesis for the magnetic field fluctuations alone.
In so doing we ignore the velocity field fluctuations, which one
would normally view as entering on equal footing, given that
the incompressible energy in the turbulence is the sum of
magnetic and velocity field contributions. Second, density
fluctuations are also ignored in this analysis, with the
understanding that the incompressive fluctuation energy is the
dominant ingredient of the turbulence (Matthaeus et al. 1990).
Finally, we also adopt an extended hypothesis that the
similarity form implied by Equation (3) can be obtained after
averaging over directions, even though the solar wind is known
to be anisotropic (Matthaeus et al. 1990; Dasso et al. 2005).
The legitimacy of this procedure is formally established for the
related third-order law in anisotropic hydrodynamics (Nie &
Tanveer 1999; Taylor et al. 2003); we view it as a plausible
assumption that a similar procedure can be carried out for
anisotropic MHD, as a justification for application to the
(manifestly) anisotropic solar wind plasma (Bruno &
Carbone 2013).

Further examination of the issue of anisotropy will be
deferred to a subsequent report. The present focus on the
magnetic field is also a conceptual shortcoming, even though
magnetic field is often adopted as a surrogate for the full
Kolmogorov cascade; however, it will clearly be a priority to
extend the present similarity analysis to the full Elsässer
variables, taking velocity fields into account.

In this preliminary report we analyzed only the fast wind, in
order to not confuse different wind types that may system-
atically differ. Future work will study the properties of the full

ensemble of correlations including slow wind, fast wind, and
their comparison. Finally, to the extent that the present
demonstration stands on firm footing, it may further motivate
implementation of von Karman similarity to a wider variety of
astrophysical applications (Elmegreen & Scalo 2004).

This research supported in part by NASA Heliophysics
Supporting Research grants 80NSSC18K1210 and
80NSSC18K1648, NASA Heliophysics Guest Investigator
grant 80NSSC19K0284, and the NASA IMAP project under
subcontract SUB0000317 from Princeton University, and the
NASA PUNCH project under SWRI subcontract N99054DS.
SD acknowledges partial support from the Argentinean grants
UBACyT (UBA). The ACE magnetic field data were down-
loaded from https://spdf.gsfc.nasa.gov/pub/data/ace/mag/
level_2_cdaweb/mfi_h3.

Appendix A
Distributions

This material provides additional information concerning the
distribution of energies and correlation lengths in the fast wind
sample from the ACE magnetic field instrument discussed in
the main text. It also shows a distribution of estimates of the
normalized correlation at a one correlation length lag.
The following figures show the distributions of the energies

and the correlation lengths, which are the two quantities that
characterize the two stages of our normalization. Additionally,
the distribution of the magnetic field autocorrelation functions,
after applying the two normalizations mentioned above, are
shown at 1 correlation length.
From Figure 4, we can see that there is a wide variability in

the magnetic field energies, as well as the correlation lengths.
But, after normalizing as per the von Karman procedure, we see
that the distribution of the correlation functions at 1 correlation
length has a very narrow spread.
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