

Asian Journal of Probability and Statistics

7(3): 76-97, 2020; Article no.AJPAS.55363

ISSN: 2582-0230

*Corresponding author: E-mail: moolman.henri@gmail.com;

The Out-of-Kilter Algorithm and Its Applications to Network
Flow Problems

W. H. Moolman1*

1Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha, South Africa.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJPAS/2020/v7i330187

Editor(s):

(1) Dr. Monika Hadas-Dyduch, University of Economics in Katowice, Poland.

(2) Dr. Manuel Alberto M. Ferreira, School of Technology and Architecture (ISTA), Portugal.

(3) Dr. S. M. Aqil Burney, University of Karachi, Pakistan.

Reviewers:

(1) Sabo John, Adamawa State University, Nigeria.

(2) Pasupuleti Venkata Siva Kumar, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering & Technology,

India.

(3) Mubariz Nuriyev, Center for Scientific Research and Statistical Innovations, Russia.

Complete Peer review History: http://www.sdiarticle4.com/review-history/55363

Received: 20 January 2020
Accepted: 27 March 2020
Published: 20 June 2020

Abstract

The out-of-kilter algorithm, which was published by D.R. Fulkerson [1], is an algorithm that computes
the solution to the minimum-cost flow problem in a flow network. To begin, the algorithm starts with an
initial flow along the arcs and a number for each of the nodes in the network. By making use of
Complementary Slackness Optimality Conditions (CSOC) [2], the algorithm searches for out-of-kilter
arcs (those that do not satisfy CSOC conditions). If none are found the algorithm is complete. For arcs
that do not satisfy the CSOC theorem, the flow needs to be increased or decreased to bring them into
kilter. The algorithm will look for a path that either increases or decreases the flow according to the need.
This is done until all arcs are in-kilter, at which point the algorithm is complete. If no paths are found to
improve the system then there is no feasible flow. The Out-of-Kilter algorithm is applied to find the
optimal solution to any problem that involves network flows. This includes problems such as
transportation, assignment and shortest path problems. Computer solutions using a Pascal program and
Matlab are demonstrated.

Review Article

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

77

Keywords: Network flow diagram; nodes; arcs; source; sink; capacity; residual capacity; node potentials;
reduced cost; augmenting path; feasible solution; optimal solution; complementary slackness
optimality condition; Kilter diagram; Out-of-Kilter algorithm; transportation problem;
assignment problem; shortest path problem.

1 Introduction

The Out-of-Kilter algorithm can be applied to solve the maximum flow and minimum cost – maximum flow
problems as well as problems that can be formulated as such problems e.g. the transportation problem. The
problem to be solved is displayed in the form of a network flow diagram (explained in the next section). The
formulations of the maximum flow and minimum cost – maximum flow problems are shown.

A key result that is used when applying the Out-of-Kilter theorem is the Complementary Slackness
Optimality Conditions (CSOC) theorem [2]. This theorem specifies the conditions for the optimality of the
Out-of-Kilter theorem. The theorem as well as its use together with the Kilter diagram, that accompanies it,
are discussed. The details of the steps to be followed when applying the Out-of-Kilter theorem are shown
and some technical issues (return flow arc and setting of arc capacities) are discussed. An example is
presented where the CSOC theorem is used to verify the optimality of a particular solution. The verification
steps are shown.

Computer programs that are available in the literature are discussed. The following computer applications of
the theorem using Pascal and Matlab programs are shown.

1. Transportation problem.
2. Assignment problem.

3. Shortest Path problem.

2 Network Terminology

A network flow diagram is a diagram consisting of points called nodes (vertices), where some of the nodes
are joined by straight lines called arcs (edges).

The start node in the diagram is called the source and the end node the sink.

An arc),(ji is formed by connecting two nodes labelled i and j using a straight line.

A forward arc is an arc that contains a flow from source to sink. A backward (reverse) arc is an arc that
contains a flow from the sink to source.

The flow, lower and upper capacities of the arc),(ji are denoted by ijijx , and iju respectively.

For arc,),(ji the residual capacity is ijijij xur  and for),(ij the arc it is ijji xr  .

The cost for the arc),(ji is ijc and for),(ij the arc it is ijc .

The dual variables i of the minimum cost flow problem associated with nodes ni ,,2,1  are called the

node potentials (prices).

Fig. 1. Network with costs, upper

The node potentials are the numbers written next to each of the nodes. The amount

defined as the reduced cost of arc (i

result of the effects of the node prices

and one with 0
ijc as unproductive. When

An augmenting path (chain) is a simple
sink of a graph using only arcs (edges) with positive capacities.

When seeking a solution to a network flow problem, the nodes between the source and sink nodes are given

labels. Labelling a node is an entry of the form

of flow out of the node. A + sign means that the flow out of the node is increased and a
decreased.

3 Problem Statement and Motivation

Consider a network with m nodes (vertices) and

The maximum flow problem:

If the objective is to determine the maximum flow that can be sent from node 1 (source) to node
the problem can be formulated as

Maximize 


m

j
jx

2
1 (maximize the total flow out of the source) or






1

1

m

j
jmx (maximize the total flow into the sink)

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.

Network with costs, upper capacities and node potentials

The node potentials are the numbers written next to each of the nodes. The amount ij cc 

), ji . This can be interpreted as the change in the cost of arc

result of the effects of the node prices i and j . An arc),(ji with 0
ijc can be thought of as productive

as unproductive. When 0
ijc it is neither productive nor unproductive.

(chain) is a simple path (a path that does not contain cycles) from the source to the
dges) with positive capacities.

When seeking a solution to a network flow problem, the nodes between the source and sink nodes are given

a node is an entry of the form),(as , where s denotes the sign (+ or –) and

of flow out of the node. A + sign means that the flow out of the node is increased and a – sign means it is

Problem Statement and Motivation

nodes (vertices) and n arcs (edges).

If the objective is to determine the maximum flow that can be sent from node 1 (source) to node

(maximize the total flow out of the source) or

(maximize the total flow into the sink)

; Article no.AJPAS.55363

78

jiijc   is

the change in the cost of arc),(ji as

can be thought of as productive

it is neither productive nor unproductive.

that does not contain cycles) from the source to the

When seeking a solution to a network flow problem, the nodes between the source and sink nodes are given

) and a the amount

sign means it is

If the objective is to determine the maximum flow that can be sent from node 1 (source) to node m (sink)

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

79

subject to 0
11








m

ik
k

ki

m

ij
j

ij xx , mi ,,2,1  (flow conservation constraints)

 ijijij ux  , mji ,,2,1,  , (capacity constraints).

Often ij is taken as 0 for all),(ji .

The minimum cost-maximum flow problem:

If the objective is to find the minimum cost of the maximum flow M from node 1 to node m the problem
can be formulated as

Minimize ij

m

i

m

j
ij xc

 1 1

subject to 0
11








m

ik
k

ki

m

ij
j

ij xx , mi ,,2,1  (flow conservation constraints)

 ijijij ux  , mji ,,2,1,  , (capacity constraints)

 Mx
m

i
i 

2
1 or Mx

m

i
im 





1

1

, (maximum flow constraint).

In the above-mentioned formulations, the sums and inequalities are taken over existing arcs in the network.

A feasible solution to a network problem is a solution that satisfies all the constraints imposed.

An optimal solution to a network problem is a solution that satisfies all the constraints imposed and
maximizes/minimizes the objective function.

Many algorithms for solving this problem were proposed over the past 6 decades. These include those by
Fulkerson [1] – out-of-kilter algorithm, Busacker & Gowan [3] – Cheapest Path Augmentation, Klein [4] –
Cycle cancelling, Engquist [5] – Successive shortest path, Carpaneto & Toth [6] – Primal-Dual, Goldberg &
Tarjan [7] – Push/Relabel and Orlin [8] – Network Simplex.

For the following reasons the out-of-kilter algorithm for solving this problem will be discussed.

1. The algorithm applies an iterative solution strategy that satisfies the flow conservation constraints but
might violate capacity constraints (feasibility) and optimality. The purpose of the algorithm is to decrease
non-feasibility and move towards optimality. This is different from the approaches followed in other
algorithms that are used to solve this problem.

2. The algorithm can be used to solve a wider range of network problems e.g. transportation, assignment,
shortest path, caterer problems.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

80

4 The Complementary Slackness Optimality Condition (CSOC)
Theorem and Kilter Diagram

Complementary Slackness Optimality Conditions (CSOC) theorem [9]:

Consider a network with a set of arcs }),{(mmjiA  , where i is the “from” node and j the "to"

node. A feasible solution
*x is an optimal solution of the minimum cost flow problem if and only if some set

of node potentials),,,(21 m  satisfy the following reduced cost optimality conditions for every

arc Aji ),(.

I If ,0
ijc then ijijx *

.

II If ,*
ijijij ux  then 0

ijc . If ,*
ijijij ux  then 0

ijc can also be used.

III If ,0
ijc then ijij ux *

.

The lower bounds Ajiij ,, can be taken as 0.

Proof: See appendix.

Fig. 2. The Kilter diagram

Kilter diagram explanation:

A particular solution
xx  to the minimum cost flow problem will generate flows Ajixij ),(,

 along the

arcs and node potential values mii ,,2,1,  . For each arc),(ji , jiijij cc   can be calculated

and the pair of values),(* 
ijij cx plotted on the kilter diagram. If the plotted point for a particular arc is on the

shaded line in the kilter diagram, the arc is labelled as "in kilter", if not it is labelled "out-of-kilter". The
purpose of the out-of-kilter algorithm is to bring all out-of-kilter arcs in kilter, while not changing the kilter

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

81

status of the existing in-kilter arcs. An out-of-kilter arc can be brought in-kilter by (i) changing the flow

values Ajixij ),(, (horizontal axis value) or (ii) changing the reduced cost values Ajicij ),(,
by

altering the node potential values mii ,,2,1,  . Once all the arcs are in-kilter, the solution found is

optimal.

5 The Out-of-Kilter Algorithm Steps [10,11]

Initial values:

Find an initial flow satisfying the flow conservation constraints and a set of node potentials

mii ,,2,1,  . All flows and potentials equal to 0 can be used for this purpose. Let

jiijij cc   .

If 0
ijc ,),max(),(),,min(),(maxmin ijijijij xjixxjix   .

If 0
ijc ,),max(),(),,min(),(maxmin ijijijij uxjixxjix   .

If 0
ijc ,),max(),(),,min(),(maxmin ijijijij uxjixuxjix  .

Arcs that are “in-kilter” should satisfy

I If ,0
ijc then ijijx  .

II If ,ijijij ux  then 0
ijc . If ijijij ux  , then 0

ijc is also valid.

III If ,0
ijc then ijij ux  .

Any arcs that do not satisfy these conditions are labelled “out-of-kilter”. While any arcs are out of kilter and
the procedure described below is successful, repeat it for all out-of-kilter arcs.

Attempt to update flows:

Select an out-of-kilter arc (qp,).

If),(min qpxxpq  , set),(,, min qpxxvqtps pq  .

If),(max qpxxpq  , set pqxqpxvptqs ),(,, max .

Attempt to find a flow-augmenting chain from s to t carry up to v additional units of flow without using the

arc (qp,) and without exceeding),(max jix in forwarding arcs or falling below),(min jix in backward

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

82

arcs. This can be achieved by starting the labelling algorithm with node s labels),(v and adhering to the

values of maxx and minx when adjusting the flows.

If successful, increase flow in the chain and increase/decrease flow in),(qp by tb the flow possible in the

chain. If not successful (failing to label all the nodes on the path from s to t), attempt to update node
potentials as follows.

Attempt to update node potentials:

Let L be the set of all arcs (ji,) labelled at one end and not at the other such that ijijij ux  .

For those arcs in L labelled at i : if 0
ijc , set

 ijij c , otherwise set ij .

For those arcs in L labelled at j : if 0
ijc , set

 ijij c , otherwise set ij .

Set }),(:min{ Ljiij   .

If  =0, then stop – no feasible flow.

Otherwise set   kk for all unlabelled nodes and update

ijc for all arcs labelled at one end and not

the other. When the algorithm terminates, either all the arcs are in kilter and the current flows are optimal or
no feasible solution exists.

6 The Out-of-Kilter Algorithm Application [12,13]

Maximum flow – Ford-Fulkerson algorithm steps

0 Initialize flow at 0x
1 While an augmentation path p exists

2 Do augment flow x minimum residual capacity of arcs on path p .

3 Adjust residual capacities of arcs on the path p and return to step 2.

The algorithm finishes when no more augmentation paths can be found.

The augmentation path can involve using forward arcs (increasing flow from source to sink) or backward
arcs (increasing flow in the reverse direction from the sink to source).

Out-of-kilter implementation – return flow arc:

1. A return flow arc from the sink to the source (node m to node1) is added to ensure circulation of the flow.

2. In the implementation of the maximum flow problem, the costs associated with all the arcs except the
return flow arc are 0.

3. For the return flow arc, the cost is  (0) for the maximum flow problem and 0 for the minimum
cost-maximum flow problem.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

83

4. When implementing the maximum flow problem the return flow arc has a lower capacity of 0 and an

upper capacity of at least min(ts,), where s a total of upper capacities of all arcs connected to the source

and t total of upper capacities of all arcs connected to the sink.

5. When implementing the minimum cost-maximum flow problem both the lower and upper capacities are

M maximum flow.

7 Example of Maximum Flow and Minimum Cost-Maximum Flow –
Manual Implementation

7.1 Problem statement

Cars enter a road network at node 1 and travel to node 6. The capacities and times to traverse for each of the
arcs in the network are shown in the diagram below. The following is needed:

1. The maximum number of cars that can travel between nodes 1 and 6.
2. The maximum number of cars that can travel between nodes 1 and 6 in minimum time.

In the diagram that follows the first number in the rectangular boxes is the capacity (number of vehicles) of
the route and the second number the time to traverse it (in minutes).

Fig. 3. Capacities and times to traverse for roads in a network

7.2 Writing down solutions by inspection of the network diagram

The return arc (6,1) with an upper capacity of min(1400, 1000) = 1000 is added.

6

5

4 2

3

1

600, 30

400, 60

400, 60

600, 30 300, 10

100, 70

600, 50

600, 30

800, 10

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

84

The following feasible solutions can be written down by increasing flow along the following paths between
nodes 1 and 6.

Solution 1 – paths and flows

Path Flow
1-2-4-6 min(800, 600, 400) = 400
1-3-5-6 min(600, 400, 400) = 400
1-2-5-6 min(400, 100, 200) = 100
1-2-4-5-6 min(300, 200, 600, 100) = 100

Solution 2 – Flows and residuals

arc 1,2 1,3 2,4 2,5 3,4 3,5 4,5 4,6 5,6 6,1
flow 600 400 500 100 0 400 100 400 600 1000
residual 200 200 100 0 300 0 500 0 0 0

Total time  117 000

Solution 3 – modified solution 1

Add path 1-2-4-5-6 with forward flow 100 and path 6-5-3-1 with backward flow 100.

arc 1,2 1,3 2,4 2,5 3,4 3,5 4,5 4,6 5,6 6,1
flow 700 300 600 100 0 300 200 400 600 1000
residual 100 300 0 0 300 100 400 0 0 0

Total time  113 000

Solution 4 – modified solution 1

Add path 1-3-4-5-6 with forward flow 200 and path 6-5-3-1 with backward flow 200.

arc 1,2 1,3 2,4 2,5 3,4 3,5 4,5 4,6 5,6 6,1
flow 600 400 500 100 200 200 300 400 600 1000
residual 200 200 100 0 100 200 300 0 0 0

Total time  113 000

Solution 5 – modified solution 2

Increase (1,2) by 100, decrease (1,3) by 100.
Increase (2,4) and (3,4) by 400 (combined) and decrease (3,5) by 400.
Increase (4,5) by 400.

arc 1,2 1,3 2,4 2,5 3,4 3,5 4,5 4,6 5,6 6,1
flow 700 300 600 100 300 0 500 400 600 1000
residual 100 300 0 0 0 400 100 0 0 0

Total time  107 000

7.3 Verification of optimality of solutions

Maximum flow problem – solution 1

arcs where ijijx  : (3,4)

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

85

arcs where ijijij ux  : (1,2), (1,3), (2,4), (4,5)

arcs where ijij ux  : (2,5), (3,5), (4,6), (5,6), (6,1)

Using jiijij cc   and 0ijc for all arcs),(ji , 01  and the CSOC theorem the following

should hold for an optimal solution.

021  , 031  , 042  , 054   0i for 5,,2,1 i .

064  , 065  , 016 

06  and 06   06  .

There are no inconsistencies in the values of the  's (agree with optimality conditions). Since the other 3
solutions are all feasible and have the same maximum flow as solution 1, they are also optimal solutions.

Minimum cost-maximum flow problem – solution 1

The total flow has to be specified. Since this is treated as a maximum flow minimum-cost problem, the flow
as found in the solution to the maximum flow problem will be used. As an initial solution to the problem, the
solution 1 to the maximum flow problem will be used. Since this a feasible solution, the optimality of the
solution needs to be checked. For this solution to be optimal

0 jiijc  for arcs (1,2), (1,3), (2,4), (4,5)

 0 for arcs (2,5), (3,5), (4,6), (5,6),

 0 for arcs (3,4), (6,1)

From the above 010 21   , 050 31   , 030 42   , 030 54   ,

070 52   , 060 53   , 060 64   , 030 65   ,

010 43   , 016  .

From the first 4 equations assuming 01  : 102  , 503  , 404  , 705  .

From the next 4 inequalities: 1105  , 1006  .

Since 705  is inconsistent with 1105  , this solution is not optimal.

Minimum cost-maximum flow problem – solution 4

0 jiijc  for arcs (1,2), (1,3), (4,5)

 0 for arcs (2,4), (2,5), (3,4), (4,6), (5,6)

 0 for arcs (3,5), (6,1)

From the above 010 21   , 050 31   , 030 54   , 030 42   ,

070 52   , 010 43   , 060 64   , 030 65   , 016 

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

86

060 53   (upper bound solutions can also be equalities).

From the first 3 equations assuming 01  : 102  , 503  , 3030 4545   .

From the next 5 inequalities: 4030 424   , 8070 525   ,

6010 434   , 6046  , 3056  .

For the last 2 inequalities: 11060 535   , 016  .

From 404  and 604  it follows that 604  and 9030603045  ,

12030903056  
.

There are no inconsistencies in the above solutions. Therefore the solution is optimal.

The computer solution to the above-mentioned problem is shown in the appendix.

8 Computer Programs to Implement the Out-of-Kilter Algorithm [14]

Bray and Witzgall [15] suggested a procedure called NETFLOW [16] to determine the minimum cost flow
in a network using the Out-of-Kilter algorithm. Later in 1970 [17] they also published a correction to the
original algorithm.

Clasen [18] published an ALGOL procedure that executes the Out-of-Kilter algorithm. The Fortran program
written by the Share Distribution Agency [19] is designed to save space by arranging arcs so that the source
nodes are in order.

Kindler [20] published a Fortran program called OKAY that uses the Out-of-Kilter algorithm to allocate
flows in a network to minimize its total cost of flow. The program uses a subroutine called PACKUP that
constructs a packed list of arcs entering each node and a subroutine called KILT to implement the algorithm.

Woolsey and Swanson [21] wrote an out-of-kilter algorithm in Fortran and illustrated its use with an
assignment problem.

Smith [22] wrote programs that execute the Out-of-Kilter algorithm in Pascal and Basic. Shen [23] pointed
out that these programs contain some errors and modified them to correct these errors.

Du Preez and Van Der Merwe [24] described the implementation of a user-friendly trans-shipment program
(written in Pascal) based on the Out-of-Kilter algorithm. The validation of the program, time tests and
applications were also discussed.

Nowicki [25] wrote a program in Matlab to implement the Out-of-Kilter algorithm. The data input to the
program is using a file with the 3 matrices (cost, upper bound, lower bound). These mm matrices denoted

by uc,  and respectively contain the cost, upper bound and lower bound associated with each of the arcs

}),{(mmjiA  . The functions OOK (with parameters uc, and  that calculates the optimal flow in

the various arcs) and koszt (calculates the total cost of the optimal solution) need to be called to get a
solution. If there is only one optimal solution the program implements the algorithm correctly, but for more
than one optimal solution for an assignment problem, it gets into an infinite loop. The tie in optimal
solutions can be removed by adding small positive numbers (all different) to each of the values in the cost
matrix.

Examples of the implementation of the maximum flow and minimum cost
shown in the appendix. The implementations of the correcte
translation of the COBOL program by Bray and Witzgall [15

The Out-of-Kilter algorithm can be used to determine the optimal flow of any problem that can be
formulated as a network flow problem. This includes the transportation problem, the assignment problem
and the shortest route problem.

Computer solutions to maximum flow and minimum cost
shown in the appendix.

9 The Out-of-Kilter Algorithm Applied

At the i th supply point, an amount at most

amount at least Jjbj ,,2,1,  is required. In the diagram, each supply point node is connected to each

demand point node by an arc (IJ arcs). Each of these arcs has
a cost per unit as given in the problem. All the supply points’ nodes (plants 1, 2 and 3) are connected to the
source node. Each of these arcs has a lower bound of 0, an upper bound of the amount available and a cost
per unit of 0. Similarly, all the demand points' nodes (regions 1, 2, 3 and 4) are connected to the sink node.
Each of these arcs has a lower bound of the amount demanded, an upper bound of
0. If the total supply is greater than the total deman
equal to the supply surplus is added. If the total demand is greater than the total supply, a dummy source
(dummy row) with supply equal to the demand surplus is added. Because no shipment is made in case o
dummy source and dummy destination, the cost per unit for the dummy column and dummy row are
assigned zero values. The minimum cost solution is sought. An additional arc is created where the demand
node is connected to the source node with lower and up
unit of 0.

Fig. 4. Network representation of a transportation problem

The computer solution to the above-
Out-of-Kilter algorithm, is shown in the appendix.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.

lementation of the maximum flow and minimum cost-maximum flow problems are
shown in the appendix. The implementations of the corrected Pascal program of Smith [22]

gram by Bray and Witzgall [15] are illustrated.

Kilter algorithm can be used to determine the optimal flow of any problem that can be
formulated as a network flow problem. This includes the transportation problem, the assignment problem

imum flow and minimum cost – maximum flow problems and these problems are

Algorithm Applied to the Transportation Problem

th supply point, an amount at most Iiai ,,2,1,  is available. At the j th demand point, an

is required. In the diagram, each supply point node is connected to each

arcs). Each of these arcs has a lower bound of 0, an upper bound of
a cost per unit as given in the problem. All the supply points’ nodes (plants 1, 2 and 3) are connected to the
source node. Each of these arcs has a lower bound of 0, an upper bound of the amount available and a cost

demand points' nodes (regions 1, 2, 3 and 4) are connected to the sink node.
Each of these arcs has a lower bound of the amount demanded, an upper bound of  and a cost per unit of
0. If the total supply is greater than the total demand, a dummy destination (dummy column)
equal to the supply surplus is added. If the total demand is greater than the total supply, a dummy source
(dummy row) with supply equal to the demand surplus is added. Because no shipment is made in case o
dummy source and dummy destination, the cost per unit for the dummy column and dummy row are
assigned zero values. The minimum cost solution is sought. An additional arc is created where the demand
node is connected to the source node with lower and upper bound total supply = total demand and cost per

Network representation of a transportation problem

-mentioned problem, using the Matlab implementation of the Netflow
shown in the appendix.

; Article no.AJPAS.55363

87

maximum flow problems are
] and a Matlab

Kilter algorithm can be used to determine the optimal flow of any problem that can be
formulated as a network flow problem. This includes the transportation problem, the assignment problem

maximum flow problems and these problems are

Transportation Problem

th demand point, an

is required. In the diagram, each supply point node is connected to each

a lower bound of 0, an upper bound of and
a cost per unit as given in the problem. All the supply points’ nodes (plants 1, 2 and 3) are connected to the
source node. Each of these arcs has a lower bound of 0, an upper bound of the amount available and a cost

demand points' nodes (regions 1, 2, 3 and 4) are connected to the sink node.
and a cost per unit of

(dummy column) with demand
equal to the supply surplus is added. If the total demand is greater than the total supply, a dummy source
(dummy row) with supply equal to the demand surplus is added. Because no shipment is made in case of a
dummy source and dummy destination, the cost per unit for the dummy column and dummy row are
assigned zero values. The minimum cost solution is sought. An additional arc is created where the demand

per bound total supply = total demand and cost per

mentioned problem, using the Matlab implementation of the Netflow

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

88

10 The Out-of-Kilter Algorithm Applied to the ASSIGNMENT Problem

Assignment models are used to assign members of one set to members of another set in the least cost or
maximum profit manner e.g. n men are to be assigned to n jobs (one man per job) such that the total time
taken to perform the jobs is a minimum. This can be seen as a transportation problem with n supply points
(men) and n demand points (jobs). In the diagram, each supply point node is connected to each demand

point node by an arc (
2n arcs). Each of these arcs has a lower bound of 0, an upper bound of 1 and a time as

given in the problem. All the supply points' nodes are connected to the source node. Each of these arcs has a
lower bound and upper bound of 1 and a time of 0. Similarly, all the demand points' nodes are connected to
the sink node. Each of these arcs has a lower bound and upper bound of 1 and a time of 0. The arc
connecting the sink node to the source node has lower and upper bound of n and a cost of 0.

When the number of men (jobs) exceeds the number of jobs (men), dummy jobs (men) are created with zero
costs and the solution proceeds as in the balanced case (men = jobs). In the case of a maximization
assignment problem, the signs of all the profits are changed and the problem still treated as a minimization
assignment problem.

men jobs

Fig. 5. Network representation of an assignment problem

In the above diagram, there are 3 men (1, 2 and 3) that are to be assigned to 3 jobs (4, 5 and 6). The time
taken for each man-job combination is printed in the rectangle above the arrow that connects the man and
job nodes. The computer solution to the above-mentioned problem, using the Matlab implementation of the
Netflow Out-of-Kilter algorithm, is shown in the appendix.

1
4

2
5

3 6

1 4

5

5

7

6

5

8

8

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

89

11 The Out-of-Kilter Algorithm Applied to the SHORTEST PATH
Problem

The shortest distance between a starting point (in this diagram Los Angeles) and endpoint (in this diagram
St. Louis) is sought. This can be treated as a minimum cost problem. The cost associated with an arc that
connects nodes shown on the diagram is the distance between the nodes that are connected by the arc. The
lower and upper bounds of all arcs are 0 (route not selected) and 1 (the route is selected) respectively. An arc
that connects the endpoint (in this case St. Louis) with the start point (in this case Los Angeles) with cost 0
and lower and upper bounds of 1 is added to the network.

Fig. 6. Network representation of the shortest path problem

The computer solution to the above-mentioned problem, using the Matlab implementation of the Netflow
Out-of-Kilter algorithm, is shown in the appendix.

 Distance table

Dallas

Salt

Lake

City

Phoenix

Denver

Des

Moines

Los

Angeles

St. Louis

9

16

35

15

12

25

14
17

22

19

14 8

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

90

12 Conclusion

The Out-of-Kilter algorithm is a procedure that can solve the maximum flow problem, the minimum cost -
maximum flow problem and any problems involving network flow that can be formulated as these problems.
When applying the algorithm, the Complementary Slackness Optimality Conditions (CSOC) theorem is used
to classify arcs in the network as either “Out-of-Kilter” or “In-Kilter”. “Out-of-Kilter” arcs are adjusted. An
optimal solution has been found when all the arcs are “In-Kilter”. Both the theory and computing
implementation of the algorithm and its applications are demonstrated.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Fulkerson DR. An out-of-kilter method for minimal cost flow problems. Journal of the Society for

Industrial and Applied Mathematics. 1961;9(1):18-27.

[2] Ahuja RK, Magnanti TL, Orlin JB. Network flows theory, algorithms and applications. Upper Saddle
River, New Jersey, Prentice-Hall; 1993.

[3] Busacker RG, Gowen PG. A procedure for determining a family of minimum cost network flow
patterns. Operation Research Office Technical Report 15, John Hopkins University, Baltimore; 1961.

[4] Klein M. A primal method for minimum cost flows with applications to the assignment and
transportation problems. Management Sci. 1967;14(3):205-220.

[5] Engquist M. A successive shortest path algorithm for the assignment problem. Research Report,
Center for Cybernetic Studies (CCS) 375, University of Texas, Austin; 1980.

[6] Carpaneto G, Toth P. Primal-dual algorithms for the assignment problem. DAM. 1987;18:137-153.

[7] Goldberg AV, Tarjan RE. A new approach to the maximum flow problem. Journal of the ACM.
1988;35(4):921-940.

[8] Orlin JB. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming. 1997;78(2):109–129.

[9] Vaidyanathan B, Ahuja RK, Magnanti TL, Orlin JB. Minimum cost flow problem. Chapter in
Handbook of Graph Theory, Combinatorial Optimization and Algorithms, Thulasiraman K,
Arumugam S, Brändstadt A & Nishizeki T (Editors), Boca Raton, FL. CRC Press; 2016.

[10] Dowsland K. Classical Techniques. 19-68, In Search Methodologies Introductory Tutorials in
Optimization and Decision Support Techniques, Burke EK & Kendall G (Editors). New York,
Springer Science + Business Media; 2005.

[11] Durbin EP, Kroenke DM. The out-of-kilter algorithm: A primer. United States Air Force Project
RAND, Memorandum RM-5472-PR; 1967.

[12] Ford LR, Fulkerson DR. Maximal flow through a network. Canadian Journal of Mathematics. 1956;8:
399-404.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

91

[13] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms, 2nd Ed. Cambridge,
Massachusetts, MIT Press; 2001.

[14] Barr R, Glover F, Klingman G. An improved version of the out-of-kilter method and a comparative
study of computer codes. Research Report C.S. 102, University of Texas, Austin, Texas; 1972.

[15] Bray TA, Witzgall C. Algorithm 336: Netflow. Comm. ACM. 1968;11:631-632.

[16] Briggs WA. Algorithm 248: Netflow. Comm. ACM. 1965;8(2):103-104.

[17] Bray TA, Witzgall C. Remark on Algorithm 336: Netflow. Comm. ACM. 1970;13:192.

[18] Clasen RJ. The numerical solution of network problems using the out-of-kilter algorithm. The United
States Air Force Project RAND, Memorandum RM-5456-PR; 1968.

[19] Share Distribution Agency. Out-of-Kilter network routine, Share Distribution 3536, Share
Distribution Agency, Hawthorne, New York; 1967.

[20] Kindler J. The out-of-kilter algorithm and some of its applications in water resources. International
Institute for Applied Systems Analysis (IIASA) Working Paper WP-75-019; 1975.

[21] Woolsey RED, Swanson HS. Operations research for immediate application. A Quick and Dirty
Manual, Harper & Row, New York; 1975.

[22] Smith DK. Network optimization practice: A computational guide. Chichester, Ellis Horwood; 1982.

[23] Shen Z. Log truck scheduling by network programming. Thesis Submitted to the Department of
Forest Engineering for Degree of Master of Forestry, Univ. of Washington, Seattle, WA; 1989.

[24] Du Preez ND, Van Der Merwe. Die ontwikkeling van ’n gebruikersvriendelike transskeppingpakket
vir IBM-aanpasbare persoonlike rekenaars. SA Journal of Industrial Engineering. 1988;2(2):25-39.

[25] Nowicki M. Adding out-of-kilter algorithm; 2014.
Available:https://github.com/MichalNowicki/NumericalAlgebraCodes/blob/master/OOKmatlab/OOK
.m

Appendix

A1 Proof of the Complementary Slackness Optimality Conditions (CSOC) theorem

The following result by Vaidyanathan, Ahuja, Magnanti & Orlin [9] taken from the textbook on Graph
Theory can be found by making use of the fact that the objective functions of the primal and dual minimum
cost flow problems are equal. From this result it follows that

max(
*),0 ijijijij xcuc   for every arc Aji ),(.

I If ,0
ijc the left hand side of the above is 0. Therefore the right hand side can only be 0 if 0* ijx .

II If ,0 *
ijij ux  it must be that 0

ijc . Otherwise the right hand side of will be negative.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

92

III If ,0
ijc the left hand side of (A) is ijij uc . To have equality in the above, ijij ux *

must hold.

A2 Examples of implementation of maximum flow and minimum cost-maximum flow problems

The implementations of the corrected Pascal program of Smith [22] and a Matlab translation of the COBOL
program, when solving the problem in 7.1, will be illustrated.

Maximum flow solution using Pascal.

Input

Data are input into the program in an interactive manner as shown below.

Input number of nodes and number of arcs 6 10
Input details of the arcs in the following order:
Start node Finish node Lower bound Upper bound Cost

 S F L U C
Arc number 1 1 2 0 800 0
. . . .
Arc number 9 5 6 0 600 0
Arc number 10 6 1 0 1000 –1

Output

Arc number Start node Finish node Lower bound Upper bound Cost Optimal flow
1 1 2 0 800 0 600
2 1 3 0 600 0 400
3 2 4 0 600 0 500
4 2 5 0 100 0 100
5 3 4 0 300 0 0
6 3 5 0 400 0 400
7 4 5 0 600 0 100
8 4 6 0 400 0 400
9 5 6 0 600 0 600
10 6 1 0 1000 -1 1000

Node number Pi(n)
1 0
2 0
3 0
4 0
5 0
6 0

The upper bound for arc (6,1) is taken as min (800+600, 400+600) = 1000, but can be taken as any integer
 1000.

Minimum cost-maximum flow solution using Pascal.

Input

Input number of nodes and number of arcs 6 10
Input details of the arcs in the following order:
Start node Finish node Lower bound Upper bound Cost

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

93

 S F L U C
Arc number 1 1 2 0 800 10
. . . .
Arc number 9 5 6 0 600 30
Arc number 10 6 1 1000 1000 0

Output

Arc number Start node Finish node Lower bound Upper bound Cost Optimal flow

1 1 2 0 800 10 700

2 1 3 0 600 50 300

3 2 4 0 600 30 600

4 2 5 0 100 70 100

5 3 4 0 300 10 300

6 3 5 0 400 60 0

7 4 5 0 600 30 500

8 4 6 0 400 60 400

9 5 6 0 600 30 600

10 6 1 1000 1000 0 1000

Node number Pi(n)
1 0
2 10
3 50
4 60
5 90
6 120

Maximum flow solution Matlab.

Input

The function used is a Matlab translation of function called Netflow (using the algorithm described by Bray
and Witzgall [15]) with arguments iNode (vector of start nodes), eNode (vector of end nodes), cost (vector
of costs per unit) , lo (vector of lower bounds), hi (vector of upper bounds) and nNodes (number of nodes).

iNode = [1 1 2 2 3 3 4 4 5 6];

eNode = [2 3 4 5 4 5 5 6 6 1];

cost = [0 0 0 0 0 0 0 0 0 -1];

lo = [0 0 0 0 0 0 0 0 0 0];

hi = [800 600 600 100 300 400 600 400 600 9999];

nNodes = 6;

1 Only the starting and end nodes of the arcs in the network are specified.
2 The cost for arc (6,1) is -1, while all other costs are 0.
3 The lower bounds for all arcs are 0.

4 The upper bound for arc (6,1) is a large number 9999, but can be any integer min (800+600,
400+600) = 1000.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

94

Output

netProblems(1)
out = iNode eNode Lower Upper Cost Flow
 1 2 0 800 0 600
 1 3 0 600 0 400
 2 4 0 600 0 500
 2 5 0 100 0 100
 3 4 0 300 0 0
 3 5 0 400 0 400
 4 5 0 600 0 100
 4 6 0 400 0 400
 5 6 0 600 0 600
 6 1 0 9999 -1 1000

The starting and end nodes are shown in the first 2 columns and the optimal flows in the last column.

Minimum cost-maximum flow solution Matlab.

The same function as for maximum flow is called, but the input is changed.

Input

iNode = [1 1 2 2 3 3 4 4 5 6];
eNode = [2 3 4 5 4 5 5 6 6 1];
cost = [10 50 30 70 10 60 30 60 30 0];
lo = [0 0 0 0 0 0 0 0 0 1000];
hi = [800 600 600 100 300 400 600 400 600 1000];
nNodes = 6;

1 Only the starting and end nodes of the arcs in the network are specified.
2 The cost for arc (6,1) is 0, while all other costs are as given in the problem.
3 The lower bounds for all arcs except arc (6,1) are 0.
4 The upper bound for all arcs except arc (6,1) are as given.
5 For arc (6,1) the lower and upper bounds are the maximum flow = 1000.

Output

 netProblems(2)
out = iNode eNode Lower Upper Cost Flow
 1 2 0 800 10 700
 1 3 0 600 50 300
 2 4 0 600 30 600
 2 5 0 100 70 100
 3 4 0 300 10 300
 3 5 0 400 60 0
 4 5 0 600 30 500
 4 6 0 400 60 400
 5 6 0 600 30 600
 6 1 1000 1000 0 1000

The starting and end nodes shown in the first 2 columns and the optimal flows in the last column.

Transportation problem (section 9) solution using Matlab.

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

95

Input

iNode = [1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 7 8 9];
eNode = [2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 9 9 9 9 1];
cost = [0 0 0 131 218 266 120 250 116 263 278 178 132 122 189 0 0 0 0 0];
 lo = [450 300 500 0 0 0 0 0 0 0 0 0 0 0 0 450 200 300 300 1250];
 hi = [450 300 500 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 9999 450 200 300 300
1250];
nNodes = 9;

Output

netProblems(3)
out = iNode eNode Lower Upper Cost Flow
 1 2 450 450 0 450
 1 3 300 300 0 300
 1 4 500 500 0 500
 2 5 0 9999 131 150
 2 6 0 9999 218 0
 2 7 0 9999 266 0
 2 8 0 9999 120 300
 3 5 0 9999 250 100
 3 6 0 9999 116 200
 3 7 0 9999 263 0
 3 8 0 9999 278 0
 4 5 0 9999 178 200
 4 6 0 9999 132 0
 4 7 0 9999 122 300
 4 8 0 9999 189 0
 5 9 450 450 0 450
 6 9 200 200 0 200
 7 9 300 300 0 300
 8 9 300 300 0 300

Solution:

supply demand amount cost per unit total cost
2 5 150 131 19650
2 8 300 120 36000
3 5 100 250 25000
3 6 200 116 23200
4 5 200 178 35600
4 7 300 122 36600

Total cost = 176 050.

Assignment problem (section 10) solution using Matlab.

Input

iNode = [1 1 1 2 2 2 3 3 3 4 4 4 5 6 7 8];
eNode = [2 3 4 5 6 7 5 6 7 5 6 7 8 8 8 1];
cost = [0 0 0 1 4 5 5 7 6 5 8 8 0 0 0 0];
lo = [1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 3];

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

96

hi = [1 1 1 9999 9999 9999 9999 9999 9999 9999 9999 9999 1 1 1 3];
nNodes = 8;

Output

netProblems(4)
out = iNode eNode Lower Upper Cost Flow
 1 2 1 1 0 1
 1 3 1 1 0 1
 1 4 1 1 0 1
 2 5 0 9999 1 0
 2 6 0 9999 4 1
 2 7 0 9999 5 0
 3 5 0 9999 5 0
 3 6 0 9999 7 0
 3 7 0 9999 6 1
 4 5 0 9999 5 1
 4 6 0 9999 8 0
 4 7 0 9999 8 0
 5 8 1 1 0 1
 6 8 1 1 0 1
 7 8 1 1 0 1
 8 1 3 3 0 3

The optimum allocation shown is man 2 to job 6, man 3 to job 7 and man 4 to job 5 with a total time of
4+6+5=15. An allocation of man 2 to job 5, man 3 to job 7 and man 4 to job 6 with a total time of 1+6+8=15
is also optimum.

Shortest route problem (section 11) solution using Matlab.

The labels attached to the different cities are

1 Los Angeles
2 Salt Lake City
3 Phoenix
4 Denver
5 Des Moines
6 Dallas
7 St. Louis

Input

iNode = [1 1 1 2 2 3 3 4 4 4 5 6 7];
eNode = [2 3 4 4 5 4 6 5 6 7 7 7 1];
cost = [16 9 35 12 25 15 22 14 17 19 8 14 0];
lo = [0 0 0 0 0 0 0 0 0 0 0 0 1];
hi = [1 1 1 1 1 1 1 1 1 1 1 1 1];
nNodes = 7;

Output

netProblems(5)
out = iNode eNode Lower Upper Cost Flow
 1 2 0 1 16 0
 1 3 0 1 9 1

Moolman; AJPAS, 7(3): 76-97, 2020; Article no.AJPAS.55363

97

 1 4 0 1 35 0
 2 4 0 1 12 0
 2 5 0 1 25 0
 3 4 0 1 15 1
 3 6 0 1 22 0
 4 5 0 1 14 0
 4 6 0 1 17 0
 4 7 0 1 19 1
 5 7 0 1 8 0
 6 7 0 1 14 0
 7 1 1 1 0 1

From the above it follows that the shortest route is 1-3-4-7 i.e. Los Angeles-Phoenix-Denver-St. Louis with a
distance of 9+15+19 = 43.

© 2020 Moolman; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://www.sdiarticle4.com/review-history/55363

