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Abstract 
 

The maximum flow and minimum cost-maximum flow problems are both concerned with determining 
flows through a network between a source and a destination. Both these problems can be formulated as 
linear programming problems. When given information about a network (network flow diagram, 
capacities, costs), computing enables one to arrive at a solution to the problem. Once the solution 
becomes available, it has to be applied to a real world problem. The use of the following computer 
software in solving these problems will be discussed: R (several packages and functions), specially 
written Pascal programs and Excel SOLVER. The minimum cost-maximum flow solutions to the 
following problems will also be discussed: maximum flow, minimum cost-maximum flow, transportation 
problem, assignment problem, shortest path problem, caterer problem. 
 

 

Keywords: Maximum flow; minimum cost-maximum flow; nodes; arcs; source; sink; capacities; costs; 
objective function; flow conservation and capacity constraints; algorithm; optimal solution; 
network optimization; transportation problem; assignment problem; shortest path problem; 
caterer problem. 

 

1 Introduction  
 
Maximum flow applies to any problem where the objective is to move as many as possible 
goods/objects/people between two locations via intermediate locations (optimal solution). 
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This will include problems such as maximizing oil/water flow via various pipelines, traffic flow via various 
routes, cell phone data traffic via network towers and scheduling of flights of airlines between cities via 
intermediate cities. 
 
Examples 
 

1 Minimizing traffic congestion see e.g. [1,2]. They solved the traffic congestion problem i.e. maximum 
flow of goods in a dynamic network with the help of a Lingo Model. 

2 Schwarz [3] considered partially completed baseball league games and showed that the problem of 
eliminating teams (that cannot win a league) from a list of potential league winners can be reduced to 
a maximum network flow problem. 

 
Minimum cost-maximum flow applies to flow problems where both capacities and costs are involved. An 
example of a situation where this will be applicable can be found in [4]. In the problem it is desired to 
maximize the number of cars that pass through a network of roads (defined by nodes and arcs) between two 
points (start and finish nodes). Each road (arc) in the network has a maximum capacity and a time taken to 
traverse it. The problem is to find the maximum number of cars that can travel between the two points at a 
minimum total time (optimal solution). In this example, time can be seen as the cost. It is obvious that a 
minimum cost-maximum flow problem where all the costs associated with the arcs are equal is the same as a 
maximum flow problem. 
 
Besides finding a solution to a pure minimum cost-maximum flow problem (as described in the above 
example), the solution methods can also be used to solve special cases of the problem. Computer solutions of 
the following such cases will also be discussed. 
 

1 The transportation problem (moving supplies at minimum costs from a certain number of sources 
to various destinations). The original transportation model of Dantzig [5] involved two sources of 
tin cans (located at Seattle and San Diego) and three destinations (located at New York, Chicago 
and Topeka).  For given supplies, demands and transportation costs per case of cans an optimal 
solution that minimizes the total cost was calculated. 

2 The assignment problem (e.g. assigning people to jobs / matching males and females for 
compatibility). This problem is a special case of the transportation model. A common algorithm of 
solving this problem is the Hungarian method developed by Kuhn [6]. 

 
Examples 

 
An application of the assignment method in agriculture using R is given by [7]. 
 
Hultberg and Cardoso [8] formulated a model of the task of assigning classes to teachers such that the 
average number of subjects assigned to each teacher is minimized. This problem turns out to be a special 
case of the fixed charge transportation problem. 
 
Chen et al [9] considered an application of bipartite matching (optimal matching of people and jobs) of 
assigning staff to tasks.  
 

3 The shortest path problem (finding the shortest distance between two points via intermediate 
points). Demaine and Goldwasser [10] show how the Bellman-Ford implementation of the shortest 
path method can be applied to use discrepancies in currency exchange rates (arbitrage) to make 
money by converting currencies. 

4 The caterer problem (cleaning napkins at minimum cost to satisfy demands at various future 
times). Szwarc and Posner [11] developed a one-pass transportation solution that solves the caterer 
problem with a fixed number of new napkins. 
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Ahuja et al. [12] devoted a chapter in a book to the topic of network optimization. According to them, 
solutions to the maximum flow and minimum cost-maximum flow problems are part of a wider class of 
problems called network optimization. The chapter describes 42 applications of network optimization drawn 
from different fields. Each of the problems that are considered can be presented as a network graph. Solution 
approaches are discussed. 
 
Due to the vast amount of mathematical and computing details that are available on the various methods 
mentioned above, the following approach will be followed in the sections that follow. 
 

1 The mathematical details will be kept to a minimum.  
2 The important algorithms used to solve the above mentioned problems will be reviewed. Interested 

readers can follow up on the references given. 
3 Manual solution of the maximum flow problem using the labelling algorithm. 
4 Manual solution of the minimum cost-maximum flow problem using the Busacker-Gowen minimum-

cost flow algorithm. 
5 Computing the solutions of the maximum flow and minimum cost-maximum flow problems using (i) 

R packages (ii) Pascal programs and (iii)  SOLVER in an excel spreadsheet. 
6 The minimum cost - maximum flow solutions to the assignment and transportation problems by (i) 

formulating them as linear programming problems and using R and (ii) using a Pascal program to find 
the solution. 

7 The minimum cost – maximum flow solution to the shortest route problem by (i) formulating it as a 
linear programming problem and using R to find the solution and (ii) solving it using  SOLVER in an 
excel spreadsheet.  

8 The minimum cost – maximum flow solution to the caterer problem  by (i)  formulating this problem 
as a transportation problem and solving it with the use of R  and (ii)  using  SOLVER in an excel 
spreadsheet.ch a way that the  

 

2 Problem Formulation and Algorithms 
 
2.1 Problem statement  
 

Let ),( ANG   be a directed network defined by a set },,2,1{ nN  of nodes and a set

},:),,{( NjijijiA  of arcs that connect certain pairs of nodes. Denote the numbers of nodes and 

arcs by n and m respectively. Each arc ),( ji  has a capacity of iju , a lower bound of ij and a flow of ijx

. The node 1i  will be called the source (origin of the flow) and the node ni   the sink (destination of 
the flow). The maximum flow is defined as the maximum amount that can be sent from the source to the 
sink via the network and is formulated as 
 

Maximize  



1

1

j
Aj

jx (Total flow out of the source)  or  

                 



1j
Aj

jnx (Total flow into the sink) ,                                                                                                                                                                      

  

subject to       
                                                                                                        





Ajij

ji
Ajij

ij xx
),::({}),:({

  (Flow conservation constraint)           

                                                              

ijijij ux   .         (Capacity constraint)                                                                                    
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Denote the cost associated with a flow of 1 unit along the arc ),( ji  by ijc  and the maximum flow amount 

determined by solving the above mentioned problem by M . 

 
The minimum cost-maximum flow problem can be formulated as 
 

Minimize 



1

1

j
Aj

jij xc (Total flow cost out of the source)  or  

                



1j
Aj

jnjn xc (Total flow cost into the sink),                                                                                                    

                                                                                                                                                            
subject to    
                                                                                                       





Ajij

ji
Ajij

ij xx
),::({}),:({

 .           

                                                                                                              

ijijij ux               

                                                                                                                        

Mx
Aji

ij 
,

.    (Maximum flow constraint) 

 

2.2 Algorithms for solving the maximum flow problem 
 
2.2.1 Maximum flow 
 
The maximum flow problem was first formulated by [13] as a simplified model of Soviet railway traffic 
flow. Ford and Fulkerson [14] created the first known algorithm to solve this problem. Over the years 
various improved solutions to this algorithm were proposed e.g. Dinitz [15] – Blocking Flow algorithm,  
Edmonds and Karp [16] – The shortest Augmenting Path algorithm, Goldberg and Tarjan [17] – Push-
Relabel algorithm and Goldberg and Rao [18] – Binary Blocking Flow algorithm, KRT (King, Rao, Tarjan) 
algorithm [19] , the Orlin and KRT algorithm [20]. 

 
Some of the algorithms that were proposed only apply to specialized graphs e.g. Sherman [21] – undirected 
graphs and Malhotra, Pramodh-Kumar and Maheshwari [22] – acyclic networks. Ahmed et al. [23] proposed 
an algorithm of the maximum flow problem that requires less iterations and augmentation than the Ford-

Fulkerson algorithm. Orlin [24] gives an )(mnO  , )( 15/16nOm  time algorithm which is currently the fastest 

strongly polynomial time algorithm (e.g. of )( 2nO ) for the maximum flow problem. 

 
The following Table 1, obtained from Wikipedia [25], shows the complexities of the various algorithms. 

 
2.2.2 Minimum cost-maximum flow  
 
Many algorithms for solving the minimum cost-maximum flow problem were proposed over the past 6 
decades. These include those by Fulkerson [26] – Out-of-Kilter algorithm, Busaker & Gowan [27] – 
Cheapest Path Augmentation, Klein [28] – Cycle cancelling, Engquist [29] – Successive shortest path,  
Carpaneto & Toth [30] – Primal-Dual, Goldberg & Tarjan [17] –  Push/Relabel and [31,32,33] – Network 
Simplex. A summary of the algorithms and their complexities is shown in the Table 3. 
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Table 1. Complexities of some maximum flow algorithms 
 

Algorithm Complexity 
Ford-Fulkerson mO( f ), where f  is the maximum amount of flow 

from source to sink. 
Edmonds-Karp )( 2nmO  

Dinic blocking flow )( 2 mnO  

Malhotra, Pramodh-Kumar and Maheshwari (MPM) )( 3nO  

Dinic’s  )log( nnmO  

General Push-Relabel )( 2 mnO  

King, Rao, Tarjan (KRT) )log( nmnO a
, where 

nn

m
a

log


. 

Binary Blocking 
)loglog),min((

2
2/13/2 U

m

n
mnmO  , 

where U is the maximum capacity of the network. 
Orlin + KRT )(nmO  

 
Table 2. Limitations of some maximum flow algorithms 

 
Algorithm Limitation 
Ford-Fulkerson Only guaranteed to terminate if all weights are rational. 
MPM Only works on acyclic networks 

 
Table 3. Complexities of some minimum cost-maximum flow algorithms 

  
Algorithm Complexity 
Out-of-Kilter mO( U ) 

Cheapest Path 
Augmentation 

)( 3vnO , where v is the number of augmentations required. 

Cycle cancelling )( 2 mUWnO , where W is the maximal cost of an arc in the graph. 

Successive shortest 
path 

)()( nmTnmO  , where )(nmT  is the time required to find the shortest path in a 

graph with n nodes and m arcs. 
Primal-Dual nO( U ) 

Network Simplex 
(Orlin) 

))log(( 2

C

n
mnO , where C is the maximum of cost values. 

Network Simplex 
(Tarjan) 

))log(log(
C

n
nnmO   

 
A polynomial time algorithm is an algorithm whose execution time is polynomial on the size of the input, or 
can be bounded by such a polynomial e.g. )( 2nO  is polynomial time. 
 

Orlin [34] proposed a faster polynomial time minimum cost flow algorithm. He also presented a summary 
table of polynomial and strongly polynomial algorithms showing authors, dates and running times. Parpalea 
[35] discussed some residual networks and successive short paths algorithms that can be used to solve the 
minimum cost flow problem. As applications, Dijkstra’s shortest path algorithm and the minimum cost flow 
application are discussed. Sokkalingam, Ahuja, and Orlin [36] discussed polynomial time cycle-cancelling 
algorithms for minimum-cost flows. 
 

Goldberg and Tarjan [37] survey basic techniques behind efficient maximum flow algorithms, starting with 
the history and basic ideas behind the fundamental maximum flow algorithms and then explores the 
algorithms in more detail. The study is restricted to basic maximum flow algorithms and does not include 
special cases and generalizations. 
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3 Solution of the Maximum Flow Problem  
 
3.1 Example 
 
The application of the maximum flow and minimum cost-maximum flow methods will be demonstrated by 
calculating flows for a network which has 6 nodes and 10 arcs as shown in the Table below. The computer 
solution methods described can easily be adapted to solve these problems for any numbers of nodes and arcs. 
 

Table 4. Arcs, upper capacities and costs of network 
 

arc (1,2) (1,3) (2,4) (2,5) (3,2) (3,4) (3,5) (4,6) (5,4) (5,6) 

iju  7 10 7 6 2 3 4 7 1 10 

ijc  4 0 2 4 1 11 1 2 2 5 

 

 
 

Fig. 1. Graph of arcs and upper capacities in the network with 6 nodes 
 

3.2 Finding the maximum flow by using the labelling algorithm 
 
According to the Ford-Fulkerson algorithm each node is labelled (pre, flow), where pre is the node 
preceding the node and flow the amount that can be sent from the source to that particular node. This 
labelling of nodes is continued until the sink can be labelled and a path from source to sink is established. 
Using this labelling approach the following paths from source (node 1) to sink (node 6) can be found. 
 

Table 5. Paths between source and sink using the labelling approach 
 

Path Flow 
1-2-4-6  7 
1-3-2-5-6  2 
1-3-5-6  4 
Total flow 13 

 

The amount of flow along a given path from source to sink is the flow of the arc (on the path) with the 
minimum flow (flow of bottleneck arc). For each of the above flows from source to sink the upper capacities 
of the arcs on the path are adjusted by subtracting the amount of flow from their existing upper capacities. 
After updating the upper capacities (residual capacities) the capacities on the flow chart change to that are 
shown below. 
 

 
 

Fig. 2. Graph of arcs and adjusted capacities 
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The only path starting at the source with a positive flow in this network is 1-3-4 with a flow of 3. However, 
the sink node cannot be labelled along this path, since the arc (4,6) has an adjusted capacity of 0. This 
problem can be overcome by sending 3 units back to node 2 along the reverse path 6-4-2. This allows the 
following flows. 
 

Table 6. Adjusted flows obtained after introducing a reverse path 
 

Path Flow 
6-4-2 -3 
1-3-4-6  3 
2-5-6  3 

 
After introducing these flows, the total flow increases to 13+3+3-3=16. After adjusting the upper capacities 
by subtracting the additional flows it is found that the only positive flow starting at the source is at arc (1,3) 
with an adjusted capacity of 1. Since all the arcs starting from node 3 have adjusted capacities of 0, no 
further increase in flow is possible and the optimal flow is reached. The solution to the maximum flow is 
therefore 
 

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx . 

 

3.3 Using the lpSolve library in R 
 
The maximum flow problem can be formulated and solved as a linear programming problem. The code 
below shows the solution using the lpSolve library in R.    
 
 library(lpSolve) 
 # variables x12 x13 x24 x25 x32 x34 x35 x46 x54 x56 
 # max flow calculation 
 # Objective function 
 f.obj=c(0,0,0,0,0,0,0,1,0,1)   
 # Flow conservation constraints (first 4) 
 # Capacity constraints (next 10) 
 f.con = matrix(c(1,0,-1,-1,1,0,0,0,0,0, 
                  0,1,0,0,-1,-1,-1,0,0,0, 
                  0,0,1,0,0,1,0,-1,1,0, 
                  0,0,0,1,0,0,1,0,-1,-1, 
                  1,0,0,0,0,0,0,0,0,0, 
                  0,1,0,0,0,0,0,0,0,0, 
                  0,0,1,0,0,0,0,0,0,0, 
                  0,0,0,1,0,0,0,0,0,0, 
                  0,0,0,0,1,0,0,0,0,0, 
                  0,0,0,0,0,1,0,0,0,0, 
                  0,0,0,0,0,0,1,0,0,0, 
                  0,0,0,0,0,0,0,1,0,0, 
                  0,0,0,0,0,0,0,0,1,0, 
                  0,0,0,0,0,0,0,0,0,1),nrow=14,byrow=TRUE) 
 # Signs for constraints 
 f.dir = c(rep("=",4),rep("<=",10))   
 # Right hand sides of constraints 
 f.rhs = c(rep(0,4),7,10,7,6,2,3,4,7,1,10) 
 # Execute Linear Programming function  
 lp ("max", f.obj, f.con, f.dir, f.rhs) 
Success: the objective function is 16 
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 # Write the solution  
 lp ("max", f.obj, f.con, f.dir, f.rhs)$solution 
 [1] 7 9 4 5 2 3 4 7 0 9 

 

This solution is the same as that found in 3.2 above. 
 

3.4 Using the igraph library in R 
 
The igraph library in R has a built-in max_flow function that can find the solution to the maximum flow 
problem. 
  
library(igraph) 
 # Enter matrix with columns “node from”, “node to”, “capacity” 
 E <- rbind(c(1,2,7), c(1,3,10), c(2,4,7), c(2,5,6), c(3,2,2), c(3,4,3), c   
 (3,5,4), c(4,6,7), c(5,4,1), c(5,6,10)) 
 colnames(E) <- c("from", "to", "capacity") 
 # Define graph 
 g1 <- graph_from_data_frame(as.data.frame(E)) 
 # Find max flow value and flows 
 max_flow(g1, source=V(g1)["1"], target=V(g1)["6"]) 
 $value 
 [1] 16 
 
 $flow 
 [1] 7  9  3  6  2  3  4  6  0 10 
 
The igraph solution shown below is slightly different to that obtained by using lpSolve, but it has the same 
objective function value. This shows that the solution to a maximum flow problem is not necessarily unique. 
 

10,6,4,3,2,6,3,9,7 564635343225241312  xxxxxxxxx . 

 

3.5 Using the Pascal procedure MAXFLOW 
 
The Pascal procedure MAXFLOW, that was written by Syslo, Deo and Kowalik [38], can be used to 
calculate the maximum flow and the flow along the various arcs. The algorithm used is due to Dinitz [15] 
with modifications by Malhotra, Pramodh-Kumar and Maheshwari [22] and is therefore called the DMKM 
algorithm.  
 
The DMKM algorithm is based on constructing a series of layered networks i.e. partitioning the network into 
layers. In a layered network the first layer is the source (label =1), the second layer all immediate successors 
(nodes) of the source (labels=2), the third layer all immediate successors of the second layer (labels=3) etc. 
The final layer is the sink. All nodes that are not labelled and arcs incident on them are deleted. For each 
layered network an attempt is made to find a saturating flow (a flow path between source and sink where for 
at least one arc on the path the flow = upper capacity). After sending an amount of flow between source and 

sink, the residual capacities are adjusted i.e. upper capacity of arc ijij xuji ),(  and upper capacity of 

arc ijxij ),( . After deleting all saturated arcs and using the updated residual capacities, a new layered 

network is constructed and the procedure of finding a saturating flow through the network repeated. This 
algorithm of combining a layered network with a saturating flow continues until a saturating flow cannot be 
found. Once this happens the maximum flow has been found. The maximum flow is the sum of all the 
saturating flows found (cumulative flow). 
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The MAXFLOW procedure can be found in [38] p.289-295. The Pascal programming code needed for the 
data input and writing the results are shown in A1 in the appendix. The input data and output results are 
shown below. 
 
Input and output 
 

The ),( ji th entry in the data input matrix is the capacity of the arc ),( ji . Nodes which are not connected 

are allocated a capacity of 0. The input matrix for the network data in Table 4.  
 
0 7 10 0 0 0 
0 0 0 7 6 0 
0 2 0 3 4 0 
0 0 0 0 0 7 
0 0 0 1 0 10 
0 0 0 0 0 0 

 
The output is shown below. 
 

0 7 9 0 0 0 
0 0 0 3 6 0 
0 2 0 3 4 0 
0 0 0 0 0 6 
0 0 0 0 0 10 
0 0 0 0 0 0 

 

The maximum flow for arc ),( ji  is the ),( ji th entry in the above table. The solution is 

 

10,6,4,3,2,6,3,9,7 564635343225241312  xxxxxxxxx , 

 
which is the same as the solution obtained from igraph. 
 

3.6 Using SOLVER in an excel spreadsheet 
 
Below is the excel spreadsheet showing the SOLVER solution (see column D) to the maximum flow for the 
data in Table 1. 
 

Table 7. SOLVER solution to maximum flow for the data in Table 1 
 
  B C D E F G H 
  from to flow capacity nodes net flow flow cons. 
3 1 2 7 7 1 16   
4 1 3 9 10 2 0 0 
5 2 4 4 7 3 0 0 
6 2 5 5 6 4 0 0 
7 3 2 2 2 5 0 0 
8 3 4 3 3 6 0 0 
9 3 5 4 4       
10 4 6 7 7       
11 5 4 0 1       
12 5 6 9 10       
13               
14     max flow 16       
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Explanation of obtaining Table 3 entries 
 
Columns B and C show the nodes that define the different arcs. 
 
Column D shows the flow along the various arcs. Initially all the flows are 0. The final flows are calculated 
by the solver program. 
 
Column E shows the upper capacities of the different arcs. 
 
Column F is a list of the nodes. 
 
Column G defines the net flows for each of the nodes. These are obtained from the column D flows as 
follows. 
 
Net flow – Node 1(G3): =D3+D4 
                  Node 2(G4): =D3+D7-D5-D6 
                  Node 3(G5): =D4-D7-D8-D9 
                  Node 4(G6): =D5+D8+D11-D10 
                  Node 5(G7): =D6+D9-D11-D12 
                  Node 6(G8): =D10+D12-D3-D4 
 
Column H shows the flow conservation constraints (all 0’s in this case). 
 
The maximum flow is calculated in cell G3 and indicated in cell E14 (=G3). 
 
When using SOLVER the objective cell is G3, the objective Max, the changing variable cells D3-D12, the 
constraints  D3-D12<= E3-E12 and G4-G8 = H4-H8 and the Solving Method the Simplex LP. The “Make 
Unconstrained Variables Non-Negative” box is ticked. 
 

4 Solution of the Minimum Cost– Maximum Flow Problem 
 
4.1 Using the lpSolve library in R 
 
The lpSolve solution to the minimum cost – maximum flow problem is very similar to that for the maximum 
flow problem.  
 
The following changes are needed. 
 

1 The objective function coefficients are the costs (see f.obj values). 
2 An additional constraint total flow = maximum flow is added (5th row in f.con matrix). 
3 The objective function needs to be minimized. 

 
  library(lpSolve) 
  # variables x12 x13 x24 x25 x32 x34 x35 x46 x54 x56 
  # min cost calculation 
  f.obj=c(4,0,2,4,1,11,1,2,2,5) 
  f.con = matrix(c(1,0,-1,-1,1,0,0,0,0,0, 
                   0,1,0,0,-1,-1,-1,0,0,0, 
                   0,0,1,0,0,1,0,-1,1,0, 
                   0,0,0,1,0,0,1,0,-1,-1, 
                   0,0,0,0,0,0,0,1,0,1, 
                   1,0,0,0,0,0,0,0,0,0, 
                   0,1,0,0,0,0,0,0,0,0, 
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                   0,0,1,0,0,0,0,0,0,0, 
                   0,0,0,1,0,0,0,0,0,0, 
                   0,0,0,0,1,0,0,0,0,0, 
                   0,0,0,0,0,1,0,0,0,0, 
                   0,0,0,0,0,0,1,0,0,0, 
                   0,0,0,0,0,0,0,1,0,0, 
                   0,0,0,0,0,0,0,0,1,0, 
                   0,0,0,0,0,0,0,0,0,1),nrow=15,byrow=TRUE) 
  f.dir = c(rep("=",5),rep("<=",10)) 
  f.rhs = c(rep(0,4),16,7,10,7,6,2,3,4,7,1,10) 
  lp ("min", f.obj, f.con, f.dir, f.rhs) 
 Success: the objective function is 154  
  lp ("min", f.obj, f.con, f.dir, f.rhs)$solution 
 [1] 7 9 4 5 2 3 4 7 0 9 
 
The solution here is the same as that for the maximum flow problem. This will not be the case in general. 
 

4.2 Using the Busacker-Gowen minimum-cost flow algorithm 
 
The following steps are followed in the application of this algorithm. 
 

1 Start with a zero flow in the network i.e. 0ijx  for all arcs ),( ji  that form part of the network. 

 
Calculate residual capacities for the arcs.  
 

1.1 Arc ),( ji  has residual capacity ijijij xur   and cost ijc . 

1.2 Arc ),( ij  has residual capacity ijji xr   and cost ijji cc  . 

 
2 Using the cost of each arc as length, find the shortest path in the network from the source to the sink 

node. 
3 Determine the amount of flow that can be sent along the path identified in step 2. This amount of flow 

will be the minimum of the capacities of all the arcs that are on this path. 
4 Update the capacities and costs of the residual network and return to step 1. The algorithm stops when 

a path from source to sink with positive flows cannot be found. 
 

Table 8. Application of the Busacker-Gowen min-cost flow algorithm 
 

Shortest path  ijx  comment 
1-3-2-4-6 min(10,2,7,7)=2  
1-3-5-4-6 min(8,4,1,5)=1  
1-3-5-6 min(7,3,10)=3  
1-2-4-6 min(7,5,4)=4  
1-2-4-5-6 min(3,1,1,7)=1 Flow of arc (5,4) changes from 1 to 0. 
1-2-5-6 min( 2,6,6)=2  
1-3-4-2-5-6 min(4,3,7,4,4)=3 Flow of arc (2,4) changes from 7 to 4. 

 
From the above table the following solution can be written down. 
 

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx . 
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4.3 Using the Pascal procedure BUSACKER 
 
This procedure is the computer implementation of the Busacker-Gowen min-cost flow algorithm. This 
procedure makes use of the PDM procedure which is the Pape, d’Esopo implementation of the Moore-
Bellman shortest path algorithm (Moore [39] and Bellman [40]). This algorithm was modified by d’Esopo 
and refined by Pape [41]. 
 
The Pascal procedure BUSACKER can be found in [38] p.310-312. The Pascal programming code needed 
for the data input and writing the results are shown in A2 in the appendix. The input data and output results 
are shown below. 
 
Input and output 
 

This procedure needs as input both the capacity and cost matrices. In the matrices below the ),( ji th entry 

refers to the capacity/unit cost of arc ),( ji . The unit costs of the arcs which are not connected is set equal to 

a large number e.g. 9999 which is much larger than any of the unit costs associated with the arcs which are 
connected. 
 
 Capacity matrix: 
 

0 7 10 0 0 0 
0 0 0 7 6 0 
0 2 0 3 4 0 
0 0 0 0 0 7 
0 0 0 1 0 10 
0 0 0 0 0 0 

 

 Cost matrix: 
 

9999 4 0 9999 9999 9999 
9999 9999 9999 2 4 9999 
9999 1 9999 11 1 9999 
9999 9999 9999 9999 9999 2 
9999 9999 9999 2 9999 5 
9999 9999 9999 9999 9999 9999 

 

The output is shown below. 
 

0 7 9 0 0 0 
0 0 0 4 5 0 
0 2 0 3 4 0 
0 0 0 0 0 7 
0 0 0 0 0 9 
0 0 0 0 0 0 

 

The minimum cost/maximum flow for arc ),( ji  is the ),( ji th entry in the above table. The solution is 
 

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx . 

 

4.4 Using SOLVER in an excel spreadsheet 
 
Below is the excel spreadsheet showing the SOLVER solution (see column E) to the minimum cost – 
maximum flow for the data in Table 4. See [42]. 
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Table 9. SOLVER solution to minimum cost – maximum flow for the data in Table 1 
 

  B C D E F G H I 
  from to flow capacity nodes Net flow Flow cons. cost 
3 1 2 7 7 1 16 16 4 
4 1 3 9 10 2 0 0 0 
5 2 4 4 7 3 0 0 2 
6 2 5 5 6 4 0 0 4 
7 3 2 2 2 5 0 0 1 
8 3 4 3 3 6 0 0 11 
9 3 5 4 4       1 
10 4 6 7 7       2 
11 5 4 0 1       2 
12 5 6 9 10       5 
13                 
14     min cost 154         

 
The above spreadsheet is a modified version of the one used for maximum flow. The following 
modifications are made. 
 

1 Cell H3 has 16 (maximum flow) instead of a blank. 
2 Column I with costs per unit is added. 
3 The value of the minimum cost cell E14 is calculated as =SUMPRODUCT(D3:D12,I3:I12). 
4 When using SOLVER the objective cell is G3 and the objective Min. 

 

5 The Minimum Cost– Maximum Flow Solution to the Transportation 
and Assignment Problems  

 
5.1 Transportation problem using the lp.transport function in lpSolve in R 
 
In the transportation problem shown below there are 4 supply sources and 6 demand destinations. The ),( ji th 

entry in the cost matrix below is the cost of transporting one unit from source 4,3,2,1i  to destination 

6,,2,1 j . 

Cost matrix 





















2510304219

3384062035

915252

2983551130

,  supply vector





















30

45

10

30

, demand vector 





























35

22

7

6

20

25

. 

 

In the R code shown below the transportation problem is formulated as a linear programming problem.  
  
library(lpSolve) 
 costs = matrix(c(30,11,5,35,8,29, 
                  2,5,2,5,1,9, 
                  35,20,6,40,8,33, 
                  19,2,4,30,10,25),nrow=4, byrow=TRUE) 
 # Supply constraints 
 row.signs = rep ("<", 4) 
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 row.rhs = c(30,10,45,30) 
 # Demand constraints 
 col.signs = rep (">", 6) 
 col.rhs <- c(25,20,6,7,22,35) 
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs) 
 Success: the objective function is 1902  
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)$solut  
 ion 
       [,1] [,2]  [,3]  [,4] [,5]  [,6] 
[1,]     0   12    0    0     0   18 
[2,]     3     0    0    7     0     0 
[3,]     0     0    6    0   22   17 
[4,]   22     8    0    0     0     0 
 

In the above solution matrix the entry in row i , column j  is the optimum amount to be transported from 

supply source i  to demand destination j . The solution is 

 

8,22,17,22,6,7,3,18,12 424136353324211612  xxxxxxxxx . 

 

5.2 Transportation problem using the Pascal procedure TRANSPORT  
 
The transportation problem can be formulated as  
 

Minimize ij

m

i

n

j
ij xc

 1 1

 subject to 

 

miax i

n

j
ij ,,2,1,

1




  (supply constraints) 

 

njbx j

m

i
ij ,,2,1,

1




 (demand constraints) 

 

njmixij ,,2,1;,,2,1,0   . 

 

In the above, ijc is the cost of transporting 1 unit from supply point i  to demand point j , ijx is the amount 

sent from supply point i  to demand point j , ia the maximum amount available at supply point i  and jb

the minimum amount demanded at demand point j . 

 
The network representation of this problem is done in the following way. Arcs connect each of the m supply 
nodes to each of the n demand nodes ( mn arcs). Each of these arcs have an upper capacity of  . The 
source node is connected to each of the supply nodes (each of these arcs have an upper capacity of the 
supply available) and the sink node to each of the demand nodes (each of these arcs have a lower capacity of 
the minimum amount demanded). 
 
By using the approach, explained by [38], the above mentioned problem can be solved by solving the 
following maximum flow problem. 
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Maximize 
 

m

i

n

j
ijx

1 1

 subject to 

 

miax i

n

j
ij ,,2,1,

1




  (supply constraints) 

 

njbx j

m

i
ij ,,2,1,

1




 (demand constraints) 

 

0ijx  for ijji cvu 
 

 

     0  otherwise. 
 

In the above iu  and jv are the variables in the dual of the transportation problem which is 

maximize     j

n

j
ji

m

i
i bvau 




11

 subject to 

 

ijji cvu  ,  0, ji vu . 

 

In the maximum flow solution of the transportation problem the arcs for which ijji cvu   are 

removed from the network. According to the complementary slackness theorem 0ijx for these arcs and 

therefore they can be removed from the network. 
 
 
The TRANSPORT procedure can be found in [38] p.68-71. The Pascal programming code needed for the 
data input and writing the results are shown in A3 in the appendix. The output results are shown below. 
  
Input and output 
 
The inputs to the pascal procedure are the cost matrix, supply and demand vectors as shown at the beginning 
of the previous section. 
 
The optimal solution output is 
 

0 12 0 0 0 18 
3 0 0 7 0 0 
0 0 6 0 22 17 
22 8 0 0 0 0 

 

In the above solution matrix the entry in row i , column j  is the optimum amount to be transported from 

supply point i  to demand point j . The solution is 

 

8,22,17,22,6,7,3,18,12 424136353324211612  xxxxxxxxx , which is the 

same as that found by using lpSolve in R. 
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5.3 Assignment problem solution using the Pascal procedure TRANSPORT  
 
In the assignment problem, each of n persons are to be assigned to one of n jobs (one person per job) where

ijc is the cost associated with assigning person i  to job j . The minimum cost assignment problem can be 

formulated as 
 

Minimize ij

n

i

n

j
ij xc

 1 1

 subject to 

 

nix
n

j
ij ,,2,1,1

1




  (one person per job) 

 

njx
n

i
ij ,,2,1,1

1




 (one job per person) 

 

0ijx  or njni ,,2,1;,,2,1,1   . 

 
The assignment problem can be solved by using the TRANSPORT procedure with input the cost matrix and 
vectors of n  1’s for both the supply and demand. 
 

Example 1 – Minimization assignment. 
 

Assignment of 4 persons to 4 jobs. 
 

Cost matrix





















95612

36312

4113

5254

. 

 

The solution is given below. 
 

1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 

 

According to this solution person 1 is assigned to job 1, person 2 to job 2, person 3 to job 4 and person 4 to 
job 3. 
 

Example 2 – Maximization assignment. 
 

Four workers (  4321 wwww  are to be assigned to 4 machines  4321 mmmm  
such that the productivity 

is maximized. The productivity matrix is  
 

914108

182257

13131112

141089

4

3

2

1

4321

w

w

w

w

mmmm

 . 



 
 
 

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184 
 
 
 

44 
 
 

Since the formulation is a minimization problem, the entries in the productivity matrix will be negative 
(maximizing is the same as minimizing the negative productivity). With this productivity matrix and supply 
and demand vectors of 1’s the solution is 
 

0 0 0 1 
1 0 0 0 
0 0 1 0 
0 1 0 0 

 
According to this solution worker 1 is assigned to machine 4, worker 2 to machine 1, worker 3 to machine 3 
and worker 4 to machine 2. 
 

5.4 Assignment problem solution using the lp.assign function in lpSolve in R 
 
Example 1 – Minimization problem  
  
library(lpSolve) 
assign.costs = matrix (c(4,5,2,5,3,1,1,4,12,3,6,3,12,6,5,9), 4, 4) 
lp.assign (assign.costs) 
Success: the objective function is 13  
lp.assign (assign.costs)$solution 
     [,1] [,2] [,3] [,4] 
[1,]    1    0    0    0 
[2,]    0    1    0    0 
[3,]    0    0    0    1 
[4,]    0    0    1    0 
 
Example 2 – Maximization problem  
  
library(lpSolve) 
assign.prod = matrix (c(-9,-12,-7,-8,-8,-11,-5,-10,-10,-13,-22,-14,-14,-1 
3,-18,-9), 4, 4)  
lp.assign (assign.prod) 
Success: the objective function is -58   
lp.assign (assign.prod)$solution 
     
       [,1] [,2] [,3] [,4] 
[1,]    0    0    0    1 
[2,]    1    0    0    0 
[3,]    0    0    1    0 
[4,]    0    1    0    0 
 
The assignments are the same as those obtained by using the Pascal procedure TRANSPORT. 
 

6 The Minimum Cost– Maximum Flow Solution to the Shortest Route 
Problem  

 

6.1 Shortest route problem 
 
The solution approaches will be described by solving the following problem.  
 
A cargo is to be transported from Los Angeles to St. Louis. As can be seen from the diagram below, there 
are various possible routes between these two cities. The travelling times between cities (in hours) are 
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indicated on the diagram. The shortest route in terms of travelling time between these two cities is to be 
determined. 
 

 
 

Fig. 3. Travelling times between cities situated on routes from Los Angeles to St. Louis 
 

In order to write a linear programming formulation of this shortest route problem the cities on the routes will 
be labelled as follows. 
 

Los Angeles-1, Salt Lake City-2, Phoenix-3, Denver-4, Des Moines-5, Dallas-6, St.Louis-7. 
 

Let 1ijx  or 0  depending on whether or not the route between cities i  and j  is included in the route 

between Los Angeles to St. Louis. This problem can be formulated as the following linear programming 
problem. 
 

Minimize 675747464536342524141312 1481917142215251235916 xxxxxxxxxxxxz   

Subject  to  
 

1141312  xxx , 0252412  xxx , 0363413  xxx , 0474645342414  xxxxxx , 

0574525  xxx , 0674636  xxx , 1675747  xxx , 1ijx  or 0 . 

 

6.2 Shortest route solution using linear programming formulation in lpSolve 
 
library(lpSolve) 
# Cities Los Angeles-1,Salt Lake City-2,Phoenix-3,Denver-4,Des Moines-5, 
# Dallas-6,St.Louis-7 
# variables x12 x13 x14 x24 x25 x34 x36 x45 x46 x47 x57 x67 
 f.obj = c(16,9,35,12,25,15,22,14,17,19,8,14) 
 f.con = matrix(c(1,1,1,0,0,0,0,0,0,0,0,0, 
                  1,0,0,-1,-1,0,0,0,0,0,0,0, 
                  0,1,0,0,0,-1,-1,0,0,0,0,0, 
                  0,0,1,1,0,1,0,-1,-1,-1,0,0, 
                  0,0,0,0,1,0,0,1,0,0,-1,0, 
                  0,0,0,0,0,0,1,0,1,0,0,-1, 
                  0,0,0,0,0,0,0,0,0,1,1,1),nrow=7,byrow=TRUE) 
 f.dir = c(rep("=",7)) 
 f.rhs = c(1,rep(0,5),1) 
 lp ("min", f.obj, f.con, f.dir, f.rhs) 
Success: the objective function is 43  
 lp ("min", f.obj, f.con, f.dir, f.rhs)$solution 
 [1] 0 1 0 0 0 1 0 0 0 1 0 0 
 

The solution is 1,1,1 473413  xxx  with all other variables 0. This means that the shortest route is Los 

Angeles-Phoenix-Denver-St. Louis with a total time of 9 + 15 + 19 = 43 hours. 
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6.3 Shortest route solution using SOLVER in excel 
 
Below is the excel spreadsheet showing the SOLVER solution (see column D) to the shortest route problem 
for the distances shown in Fig. 3. 
 

Table 10. SOLVER solution to the shortest route solution for the network in Fig. 3 
 

  B C D E F G H 
2 from to flow Cities Net flow Flow cons. Time 
3 1 2 0 1 1 1 16 
4 1 3 1 2 0 0 9 
5 1 4 0 3 0 0 35 
6 2 4 0 4 0 0 12 
7 2 5 0 5 0 0 25 
8 3 4 1 6 0 0 15 
9 3 6 0 7 1 1 22 
10 4 5 0       14 
11 4 6 0       17 
12 4 7 1       19 
13 5 7 0       8 
14 6 7 0       14 
15               
16     min time 43       

 
Cities:  Los Angeles-1, Salt Lake City-2, Phoenix-3, Denver-4, Des Moines-5, Dallas-6, St.Louis-7. 
 
Explanation of obtaining Table 7 entries. 
 
Columns B and C show the labels of the cities “from” and “to”. 
 
Column D shows the values of the decision variables (0’s or 1’s). Initially all the values are 0. The final 
values shown above are calculated by the solver program. 
 
Column E shows the labels of the 7 cities. 
 
Column F defines the net flows for each of the cities. These are obtained from the column D flows as 
follows. 
 
Net flow –  City 1(F3):  =D3+D4+D5 
                  City 2(F4):  =D3-D6-D7 
                  City 3(F5): =D4-D8-D9 
                  City 4(F6): =D5+D6+D8-D10-D11-D12 
                  City 5(F7): =D7+D10-D13 
                  City 6(F8): =D9+D11-D14 
                  City 7(F9): =D12+D13+D14 
 
Column G shows the flow conservation constraints (1’s for cities 1 and 7, 0’s for cities 2 to 6). 
 
Column H shows the travelling times between the cities.   
 
The minimum time is calculated in cell E16 by using the formula SUMPRODUCT(D3:D14,H4:H14). 
 
When using SOLVER the objective cell is E16, the objective Min, the changing variable cells D3-D14, the 
constraints F3-F9 = G3-G9 and the Solving Method is Simplex LP. The “Make Unconstrained Variables 
Non-Negative” box is ticked. 
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The solution 1,1,1 473413  xxx  with all other variables 0 is the same as that obtained from using 

lpSolve. 
 

7 The Minimum Cost–Maximum Flow Solution to the Caterer Problem  
 
7.1 Caterer problem description 
 
The solution approaches will be described by solving the following problem.  
 
A caterer has to provide food for meals in the next 8 days. The number of cloth napkins that are to be used in 
the meals for these 8 days are 90, 140, 84, 95, 130, 170, 155 and 200 respectively. New napkins cost 5. Dirty 
napkins can be washed at a laundry and used on subsequent days. The following types of laundry are 
available: A fast laundry charges 1.20 per napkin and will deliver for use on the second day, while a slow 
laundry charges 0.80 per napkin and can deliver for use on the third day. The problem is to find the least cost 
“purchase and use” plan for the caterer.  
 

7.2 Transportation problem solution of the caterer problem 
 
The caterer problem can be formulated as a transportation problem. The table below shows a summary of the 
supply, demand and costs in such a formulation. 
 

Table 11. Transportation formulation of caterer problem 
 

                    Supply Source 
 Costs 5 5 5 5 5 5 5 5 0 1064 1 
  M M 1.2 0.8 0.8 0.8 0.8 0.8 0 90 2 
  M M M 1.2 0.8 0.8 0.8 0.8 0 140 3 
  M M M M 1.2 0.8 0.8 0.8 0 84 4 
  M M M M M 1.2 0.8 0.8 0 95 5 
  M M M M M M 1.2 0.8 0 130 6 
  M M M M M M M 1.2 0 170 7 
Demand 90 140 84 95 130 170 155 200 709     
Day 1 2 3 4 5 6 7 8 Surplus     

 
Explanation of table entries: 
 

1 Big M entries. M is taken as a cost per napkin which is much larger than the known costs (in this case 
5, 1.2 and 0.8). These cost entries appear in cells where transport from source to demand cannot be 
done.  

2 Supply sources. Source 1 refers to the option of supplying new napkins every day i.e. the total supply 
of new napkins is 90+140+84+95+130+170+155+200=1064. Sources 2 to 7 refer to using washed 
napkins on days 3 to 8. For these sources the costs are entered by taking into account the days on 
which these washed napkins would become available. 

3 Surplus. This is the difference between the total supply and total demand i.e. 
90+140+84+95+130+170=709. A dummy demand of 709 with 0 costs is created to balance the 
transportation supplies and demands. 

 
 library(lpSolve) 
 costs = matrix(c(5,5,5,5,5,5,5,5,0, 
                  100,100,1.2,0.8,0.8,0.8,0.8,0.8,0, 
                  100,100,100,1.2,0.8,0.8,0.8,0.8,0, 
                  100,100,100,100,1.2,0.8,0.8,0.8,0, 
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                  100,100,100,100,100,1.2,0.8,0.8,0, 
                  100,100,100,100,100,100,1.2,0.8,0, 
                  100,100,100,100,100,100,100,1.2,0),nrow=7, byrow=TRUE) 
 row.signs = rep ("<=", 7) 
 row.rhs = c(1064,90,140,84,95,130,170) 
 col.signs = rep (">=", 9) 
 col.rhs <- c(90,140,84,95,130,170,155,200,709) 
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs) 
 Success: the objective function is 2466.2  
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)$solution  
     
       [,1]   [,2]   [,3]  [,4]   [,5]  [,6]   [,7]  [,8]   [,9] 
[1,]   90  140    84   41      0     0      0     0  709 
[2,]     0     0       0   54    36     0      0     0      0 
[3,]     0     0       0     0    94   46      0     0      0 
[4,]     0     0       0     0      0   84      0     0      0 
[5,]     0     0       0     0      0   40    55     0      0 
[6,]     0     0       0     0      0     0  100    30     0 
[7,]     0     0       0     0      0     0      0  170     0 
 
From the above output the following solution can be written down. 
 

Table 12. Solution of caterer problem 
 

Supply/day 1 2 3 4 5 6 7 8 Total Cost per napkin 
new 90 140 84 41     355 5 
fast      40 100 170 310 1.2 
slow     54 130 130 55 30 399 0.8 

 

Total cost = 2.24668.03992.13105355  . 
 

7.3 Solution of the caterer problem using solver in excel  
 
The caterer problem can be formulated as a linear programming problem and solved using SOLVER in 
excel. The formulation is given below. 
 

Let ijx  be the quantity transported from supply i  to demand j .  

 

Minimize 
 

)(2.1)(5 7867564534231817161514131211 xxxxxxxxxxxxxxz 

484746383736352827262524(8.0 xxxxxxxxxxxx  )685857 xxx   

  
Subject to  
 

10641817161514131211  xxxxxxxx  

90282726252423  xxxxxx  

1403837363534  xxxxx  

8448474645  xxxx  

95585756  xxx  
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1306867  xx  

17078 x  

9011 x  

14012 x  

842313  xx  

95342414  xxx  

13045352515  xxxx  

1705646362616  xxxxx  

155675747372717  xxxxxx  

20078685848382818  xxxxxxx  

0ijx  

 
Table 13. SOLVER solution to the caterer problem 

 
 B C D E F G 
 supply demand quantity cost net flow flow cons 
2 1 1 90 5 355 1064 
3 1 2 140 5 90 90 
4 1 3 84 5 140 140 
5 1 4 5 5 84 84 
6 1 5 0 5 95 95 
7 1 6 36 5 130 130 
8 1 7 0 5 170 170 
9 1 8 0 5 90 90 
10 2 3 0 1.2 140 140 
11 3 4 0 1.2 84 84 
12 4 5 0 1.2 95 95 
13 5 6 40 1.2 130 130 
14 6 7 100 1.2 170 170 
15 7 8 170 1.2 155 155 
16 2 4 90 0.8 200 200 
17 2 5 0 0.8     
18 2 6 0 0.8     
19 2 7 0 0.8     
20 2 8 0 0.8     
21 3 5 130 0.8     
22 3 6 10 0.8     
23 3 7 0 0.8     
24 3 8 0 0.8     
25 4 6 84 0.8     
26 4 7 0 0.8     
27 4 8 0 0.8     
28 5 7 55 0.8     
29 5 8 0 0.8     
30 6 8 30 0.8     
31             
32     cost 2466.2     
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Explanation of obtaining Table 8 column entries. 
 

1 Supply and demand. These show the supply source and demand day numbers as they appear in 
Table 8. 

2 Quantity. These are the decision variables i.e. amounts of napkins to be bought/cleaned. Initially 
these values are all 0.  

3 Cost. These show the costs per napkin as they appear in the objective function. 
4 Net flow. These are the left hand sides of the constraints in the linear programming formulation. 

These are obtained from the column D quantities as follows. 
 
F2: = SUM(D2:D9) 
F3: = D10+SUM(D16:D20) 
F4: = D11+SUM(D21:D24) 
F5: = D12+SUM(D25:D27) 
F6: = D13+SUM(D28:D29) 
F7: = D14+D30 
F8: = D15 
F9: = D2  
F10: = D3 
F11: = D4+D10 
F12: = D5+D16+D11 
F13: = D6+D17+D21+D12 
F14: = D7+D18+D22+D25+D13 
F15: = D8+D19+D23+D26+D28+D14 
F16: = D9+D20+D24+D27+D29+D30+D15 
 

5   Flow conservations. These are the right hand sides of the constraints in the linear programming 
formulation. 

 
When using SOLVER the objective cell is E32, the objective Min, the changing variable cells D2-D30 and 
the constraints  F2-F8 <= G2-G8 and F9-F16 <= G9-G16. The Solving Method is Simplex LP and the 
“Make Unconstrained Variables Non-Negative” box is ticked. 
 
When written in matrix form, the SOLVER solution shown in the above table is as shown below. 
 
      [,1]    [,2]  [,3]  [,4]   [,5]  [,6]   [,7]   [,8]   [,9] 
[1,]   90  140   84     5      0   36      0      0  709 
[2,]     0      0     0   90      0     0      0      0      0 
[3,]     0      0     0     0  130   10      0      0      0 
[4,]     0      0     0     0      0   84      0      0      0 
[5,]     0      0     0     0      0   40    55      0      0 
[6,]     0      0     0     0      0     0  100    30      0 
[7,]     0      0     0     0      0     0      0  170      0 
 
From the above output the following solution can be written down. 
 

Table 14. Costs for SOLVER solution 
 

Supply/day 1 2 3 4 5 6 7 8 Total Cost per napkin 
new 90 140 84 5  36   355 5 
fast      40 100 170 310 1.2 
slow     90 130 94 55 30 399 0.8 

 

Total cost = 2.24668.03992.13105355  . 
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The SOLVER solution is slightly different to the transportation solution obtained from lpSolve. However the 
costs for these two solutions are the same. This shows that the optimal solution for the caterer problem is not 
necessarily unique. 
 

8 Conclusion 
 
The maximum flow and minimum cost - maximum flow problems were defined and formulated as linear 
programming problems. Each of the problems considered was motivated by examples in the form of short 
explanations of published applications. A review of the algorithms used to solve the above mentioned 
problems was conducted. This included presentations (in the form of tables) of the complexity of the various 
algorithms. 
 

The major part of the article was devoted to the practical implementation of the above mentioned methods. 
This involved explanations (using data obtained from given problems) of each of the following. 
 

1 A manual solution of the maximum flow problem using the labelling algorithm. 
2 A manual solution of the minimum cost-maximum flow problem using the Busacker-Gowen 

minimum-cost flow algorithm. 
3 Solutions of the maximum flow and minimum cost-maximum flow problems using (i) R packages 

(ii) Pascal programs and (iii)  SOLVER in an excel spreadsheet. 
4 The minimum cost-maximum flow solutions to the assignment and transportation problems by (i) 

formulating them as linear programming problems and using R and (ii) using a Pascal program to 
find the solution. 

5 The minimum cost – maximum flow solution to the shortest route problem by (i) formulating it as a 
linear programming problem and using R to find the solution and (ii) solving it using  SOLVER in 
an excel spreadsheet.  

6 The minimum cost – maximum flow solution to the caterer problem by (i) formulating this problem 
as a transportation problem and solving it with the use of R  and (ii)  using  SOLVER in an excel 
spreadsheet. 
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Appendix 
 

A1   Input and output code for MAXFLOW program 
 

Programming:  Pascal code 

 

Program maxflow(input,output); 

CONST      N = 11; 

             MAX = 60; 

TYPE ARRNN = ARRAY[1..N,1...N] OF INTEGER; 

              ARRN = ARRAY[1..N] OF INTEGER; 

        ARRMAX = ARRAY[1..MAX] OF INTEGER; 

VAR S1,T1,I,J  :  INTEGER; 

CAPA1,FLOW1 :  ARRNN; 

The main body of the program succeeding the procedure is given below. This part is need for data entry and 
writing the results. 

BEGIN (* MAIN PROGRAM*) 

        S1 := 1; 

        T1 := N; 

        WRITELN(‘ENTER CAPACITIES’); 

         FOR I := 1 TO N DO 

         BEGIN 

              FOR J := 1 TO N DO 

              BEGIN 

                   WRITE(‘CAPACITY ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘  ’ ); 

                   READLN(CAPA1[I,J]) 

              END; 

         END; 

         MAXFLOW(N,S1,T1,MAX,CAPA1,FLOW1); 

         WRITELN(‘THE FLOW IS’); 

         FOR I := 1 TO N DO 

         BEGIN  

                FOR J := 1 TO N DO 

                BEGIN 

                     WRITE(‘   ’,FLOW1[I,J]) 

                END; 

                WRITELN 

         END; 

END. 
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A2   Input and output code for BUSACKER program 
 

Programming:  Pascal code 

 

Program minimum_cost(input,output); 

CONST      N = 5; 

TYPE ARRNN = ARRAY[1..N,1...N] OF INTEGER; 

              ARRN = ARRAY[1..N] OF INTEGER; 

VAR S1,T1,INF1,TARDETFLOW1,TOTALCOST1,I,J  :  INTEGER; 

                                                   COST1,CAPA1,FLOW1 :  ARRNN; 

 

The main body of the program succeeding the procedure is given below. This part is need for data entry and 
writing the results. 

BEGIN  (*MAIN PROGRAM*) 

     S1 := 1; 

     T1 := N; 

     INF1 := 9999; 

     TARGETFLOW1 := 31; 

     WRITELN(‘ENTER CAPACITIES AND COSTS’); 

      FOR I := 1 TO N DO 

      BEGIN 

             FOR J := 1 TO N DO 

             BEGIN 

                   WRITE(‘CAPACITY ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘  ’ ); 

                   READLN(CAPA1[I,J]) 

             END; 

     END; 

     FOR I := 1 TO N DO 

     BEGIN 

            FOR J := 1 TO N DO 

           BEGIN 

                 WRITE(‘COST ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘  ’ ); 

                 READLN(COST1[I,J]) 

           END; 

     END; 

    BUSACKER(N,S1,T1,INF1,TARGETFLOW1,COST1,CAPA1,FLOW1,TOTALCOST1); 

     WRITELN(‘THE MIN COST FLOW IS’); 

      FOR I := 1 TO N DO 

      BEGIN 

            FOR J := 1 TO N DO 

            BEGIN 

                  WRITE(‘   ’, FLOW1[I,J]) 

            END; 

            WRITELN 

      END; 

     WRITELN(‘THE TOTAL COST IS ’, TOTALCOST1); 

END. 
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A3   Input and output code for TRANSPORT program 
 

Programming:  Pascal code 

 

program transport(input,output); 

CONST M=4; 

               N=4; 

TYPE ARRMN = ARRAY[1..M,1...N] OF INTEGER; 

              ARRM = ARRAY[1..M] OF INTEGER; 

             ARRN = ARRAY[1..N] OF INTEGER; 

VAR        INF1 : LONGINT; 

            I,J,KO1 : INTEGER; 

                    A1 : ARRM; 

                    B1 : ARRN; 

              C1,X1 : ARRMN; 

The main body of the program succeeding the procedure is given below. This part is needed for data entry 
and writing the results. 

BEGIN  (* MAIN PROGRAM *) 

     INF1 := 1000; 

    WRITELN(‘COSTS’); 

     FOR I := 1 TO M DO 

     BEGIN 

            FOR J := 1 TO N DO 

            BEGIN 

                 WRITE(‘COST ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘  ’ ); 

                 READLN(C1[I,J]) 

            END; 

     END; 

          FOR I := 1 TO M DO 

          BEGIN 

               WRITE(‘SUPPLY ’, ‘ I=’,I:2, ‘  ’ ); 

               READLN(A1[I]) 

         END; 

         FOR J := 1 TO N DO 

          BEGIN 

               WRITE(‘DEMAND ’, ‘ J=’,J:2, ‘  ’ ); 

               READLN(B1[J]) 

         END; 

         TRANSPORT(M,N,INF1,A1,B1,C1,X1,KO1); 

         WRITELN(‘OPTIMAL SOLUTION’); 

         FOR I := 1 TO M DO 

         BEGIN 

               FOR J := 1 TO N DO 

               BEGIN 

                    WRITE(‘   ’, X1[I,J]:6 ) 

               END; 

              WRITELN 

        END; 
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       WRITELN(‘THE OPTIMAL COST IS ’,KO1); 

END. 
_______________________________________________________________________________________ 
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