

Asian Journal of Probability and Statistics

7(3): 28-57, 2020; Article no.AJPAS.55184

ISSN: 2582-0230

*Corresponding author: E-mail: moolman.henri@gmail.com;

The Maximum Flow and Minimum Cost–Maximum Flow
Problems: Computing and Applications

W. H. Moolman1*

1Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha, South Africa.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJPAS/2020/v7i330185

Editor(s):
(1) Dr. S. M. Aqil Burney, University of Karachi, Pakistan.

Reviewers:
(1) Tajini Reda, National School of Mineral Industry, Morocco.

(2) Muhammad Kamal Amjad, National University of Sciences and Technology, Pakistan.
(3) Nalini V. Vaidya, G. H. Raisoni College of Engineering, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/55184

Received: 08 January 2020
Accepted: 12 March 2020
Published: 20 June 2020

Abstract

The maximum flow and minimum cost-maximum flow problems are both concerned with determining
flows through a network between a source and a destination. Both these problems can be formulated as
linear programming problems. When given information about a network (network flow diagram,
capacities, costs), computing enables one to arrive at a solution to the problem. Once the solution
becomes available, it has to be applied to a real world problem. The use of the following computer
software in solving these problems will be discussed: R (several packages and functions), specially
written Pascal programs and Excel SOLVER. The minimum cost-maximum flow solutions to the
following problems will also be discussed: maximum flow, minimum cost-maximum flow, transportation
problem, assignment problem, shortest path problem, caterer problem.

Keywords: Maximum flow; minimum cost-maximum flow; nodes; arcs; source; sink; capacities; costs;
objective function; flow conservation and capacity constraints; algorithm; optimal solution;
network optimization; transportation problem; assignment problem; shortest path problem;
caterer problem.

1 Introduction

Maximum flow applies to any problem where the objective is to move as many as possible
goods/objects/people between two locations via intermediate locations (optimal solution).

Review Article

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

29

This will include problems such as maximizing oil/water flow via various pipelines, traffic flow via various
routes, cell phone data traffic via network towers and scheduling of flights of airlines between cities via
intermediate cities.

Examples

1 Minimizing traffic congestion see e.g. [1,2]. They solved the traffic congestion problem i.e. maximum
flow of goods in a dynamic network with the help of a Lingo Model.

2 Schwarz [3] considered partially completed baseball league games and showed that the problem of
eliminating teams (that cannot win a league) from a list of potential league winners can be reduced to
a maximum network flow problem.

Minimum cost-maximum flow applies to flow problems where both capacities and costs are involved. An
example of a situation where this will be applicable can be found in [4]. In the problem it is desired to
maximize the number of cars that pass through a network of roads (defined by nodes and arcs) between two
points (start and finish nodes). Each road (arc) in the network has a maximum capacity and a time taken to
traverse it. The problem is to find the maximum number of cars that can travel between the two points at a
minimum total time (optimal solution). In this example, time can be seen as the cost. It is obvious that a
minimum cost-maximum flow problem where all the costs associated with the arcs are equal is the same as a
maximum flow problem.

Besides finding a solution to a pure minimum cost-maximum flow problem (as described in the above
example), the solution methods can also be used to solve special cases of the problem. Computer solutions of
the following such cases will also be discussed.

1 The transportation problem (moving supplies at minimum costs from a certain number of sources
to various destinations). The original transportation model of Dantzig [5] involved two sources of
tin cans (located at Seattle and San Diego) and three destinations (located at New York, Chicago
and Topeka). For given supplies, demands and transportation costs per case of cans an optimal
solution that minimizes the total cost was calculated.

2 The assignment problem (e.g. assigning people to jobs / matching males and females for
compatibility). This problem is a special case of the transportation model. A common algorithm of
solving this problem is the Hungarian method developed by Kuhn [6].

Examples

An application of the assignment method in agriculture using R is given by [7].

Hultberg and Cardoso [8] formulated a model of the task of assigning classes to teachers such that the
average number of subjects assigned to each teacher is minimized. This problem turns out to be a special
case of the fixed charge transportation problem.

Chen et al [9] considered an application of bipartite matching (optimal matching of people and jobs) of
assigning staff to tasks.

3 The shortest path problem (finding the shortest distance between two points via intermediate
points). Demaine and Goldwasser [10] show how the Bellman-Ford implementation of the shortest
path method can be applied to use discrepancies in currency exchange rates (arbitrage) to make
money by converting currencies.

4 The caterer problem (cleaning napkins at minimum cost to satisfy demands at various future
times). Szwarc and Posner [11] developed a one-pass transportation solution that solves the caterer
problem with a fixed number of new napkins.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

30

Ahuja et al. [12] devoted a chapter in a book to the topic of network optimization. According to them,
solutions to the maximum flow and minimum cost-maximum flow problems are part of a wider class of
problems called network optimization. The chapter describes 42 applications of network optimization drawn
from different fields. Each of the problems that are considered can be presented as a network graph. Solution
approaches are discussed.

Due to the vast amount of mathematical and computing details that are available on the various methods
mentioned above, the following approach will be followed in the sections that follow.

1 The mathematical details will be kept to a minimum.
2 The important algorithms used to solve the above mentioned problems will be reviewed. Interested

readers can follow up on the references given.
3 Manual solution of the maximum flow problem using the labelling algorithm.
4 Manual solution of the minimum cost-maximum flow problem using the Busacker-Gowen minimum-

cost flow algorithm.
5 Computing the solutions of the maximum flow and minimum cost-maximum flow problems using (i)

R packages (ii) Pascal programs and (iii) SOLVER in an excel spreadsheet.
6 The minimum cost - maximum flow solutions to the assignment and transportation problems by (i)

formulating them as linear programming problems and using R and (ii) using a Pascal program to find
the solution.

7 The minimum cost – maximum flow solution to the shortest route problem by (i) formulating it as a
linear programming problem and using R to find the solution and (ii) solving it using SOLVER in an
excel spreadsheet.

8 The minimum cost – maximum flow solution to the caterer problem by (i) formulating this problem
as a transportation problem and solving it with the use of R and (ii) using SOLVER in an excel
spreadsheet.ch a way that the

2 Problem Formulation and Algorithms

2.1 Problem statement

Let),(ANG  be a directed network defined by a set },,2,1{ nN  of nodes and a set

},:),,{(NjijijiA  of arcs that connect certain pairs of nodes. Denote the numbers of nodes and

arcs by n and m respectively. Each arc),(ji has a capacity of iju , a lower bound of ij and a flow of ijx

. The node 1i will be called the source (origin of the flow) and the node ni  the sink (destination of
the flow). The maximum flow is defined as the maximum amount that can be sent from the source to the
sink via the network and is formulated as

Maximize 



1

1

j
Aj

jx (Total flow out of the source) or

 



1j
Aj

jnx (Total flow into the sink) ,

subject to





Ajij

ji
Ajij

ij xx
),::({}),:({

 (Flow conservation constraint)

ijijij ux  . (Capacity constraint)

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

31

Denote the cost associated with a flow of 1 unit along the arc),(ji by ijc and the maximum flow amount

determined by solving the above mentioned problem by M .

The minimum cost-maximum flow problem can be formulated as

Minimize 



1

1

j
Aj

jij xc (Total flow cost out of the source) or

 



1j
Aj

jnjn xc (Total flow cost into the sink),

subject to





Ajij

ji
Ajij

ij xx
),::({}),:({

 .

ijijij ux 

Mx
Aji

ij 
,

. (Maximum flow constraint)

2.2 Algorithms for solving the maximum flow problem

2.2.1 Maximum flow

The maximum flow problem was first formulated by [13] as a simplified model of Soviet railway traffic
flow. Ford and Fulkerson [14] created the first known algorithm to solve this problem. Over the years
various improved solutions to this algorithm were proposed e.g. Dinitz [15] – Blocking Flow algorithm,
Edmonds and Karp [16] – The shortest Augmenting Path algorithm, Goldberg and Tarjan [17] – Push-
Relabel algorithm and Goldberg and Rao [18] – Binary Blocking Flow algorithm, KRT (King, Rao, Tarjan)
algorithm [19] , the Orlin and KRT algorithm [20].

Some of the algorithms that were proposed only apply to specialized graphs e.g. Sherman [21] – undirected
graphs and Malhotra, Pramodh-Kumar and Maheshwari [22] – acyclic networks. Ahmed et al. [23] proposed
an algorithm of the maximum flow problem that requires less iterations and augmentation than the Ford-

Fulkerson algorithm. Orlin [24] gives an)(mnO ,)(15/16nOm  time algorithm which is currently the fastest

strongly polynomial time algorithm (e.g. of)(2nO) for the maximum flow problem.

The following Table 1, obtained from Wikipedia [25], shows the complexities of the various algorithms.

2.2.2 Minimum cost-maximum flow

Many algorithms for solving the minimum cost-maximum flow problem were proposed over the past 6
decades. These include those by Fulkerson [26] – Out-of-Kilter algorithm, Busaker & Gowan [27] –
Cheapest Path Augmentation, Klein [28] – Cycle cancelling, Engquist [29] – Successive shortest path,
Carpaneto & Toth [30] – Primal-Dual, Goldberg & Tarjan [17] – Push/Relabel and [31,32,33] – Network
Simplex. A summary of the algorithms and their complexities is shown in the Table 3.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

32

Table 1. Complexities of some maximum flow algorithms

Algorithm Complexity
Ford-Fulkerson mO(f), where f is the maximum amount of flow

from source to sink.
Edmonds-Karp)(2nmO

Dinic blocking flow)(2 mnO

Malhotra, Pramodh-Kumar and Maheshwari (MPM))(3nO

Dinic’s)log(nnmO

General Push-Relabel)(2 mnO

King, Rao, Tarjan (KRT))log(nmnO a
, where

nn

m
a

log


.

Binary Blocking
)loglog),min((

2
2/13/2 U

m

n
mnmO  ,

where U is the maximum capacity of the network.
Orlin + KRT)(nmO

Table 2. Limitations of some maximum flow algorithms

Algorithm Limitation
Ford-Fulkerson Only guaranteed to terminate if all weights are rational.
MPM Only works on acyclic networks

Table 3. Complexities of some minimum cost-maximum flow algorithms

Algorithm Complexity
Out-of-Kilter mO(U)

Cheapest Path
Augmentation

)(3vnO , where v is the number of augmentations required.

Cycle cancelling)(2 mUWnO , where W is the maximal cost of an arc in the graph.

Successive shortest
path

)()(nmTnmO  , where)(nmT is the time required to find the shortest path in a

graph with n nodes and m arcs.
Primal-Dual nO(U)

Network Simplex
(Orlin)

))log((2

C

n
mnO , where C is the maximum of cost values.

Network Simplex
(Tarjan)

))log(log(
C

n
nnmO 

A polynomial time algorithm is an algorithm whose execution time is polynomial on the size of the input, or
can be bounded by such a polynomial e.g.)(2nO is polynomial time.

Orlin [34] proposed a faster polynomial time minimum cost flow algorithm. He also presented a summary
table of polynomial and strongly polynomial algorithms showing authors, dates and running times. Parpalea
[35] discussed some residual networks and successive short paths algorithms that can be used to solve the
minimum cost flow problem. As applications, Dijkstra’s shortest path algorithm and the minimum cost flow
application are discussed. Sokkalingam, Ahuja, and Orlin [36] discussed polynomial time cycle-cancelling
algorithms for minimum-cost flows.

Goldberg and Tarjan [37] survey basic techniques behind efficient maximum flow algorithms, starting with
the history and basic ideas behind the fundamental maximum flow algorithms and then explores the
algorithms in more detail. The study is restricted to basic maximum flow algorithms and does not include
special cases and generalizations.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

33

3 Solution of the Maximum Flow Problem

3.1 Example

The application of the maximum flow and minimum cost-maximum flow methods will be demonstrated by
calculating flows for a network which has 6 nodes and 10 arcs as shown in the Table below. The computer
solution methods described can easily be adapted to solve these problems for any numbers of nodes and arcs.

Table 4. Arcs, upper capacities and costs of network

arc (1,2) (1,3) (2,4) (2,5) (3,2) (3,4) (3,5) (4,6) (5,4) (5,6)

iju 7 10 7 6 2 3 4 7 1 10

ijc 4 0 2 4 1 11 1 2 2 5

Fig. 1. Graph of arcs and upper capacities in the network with 6 nodes

3.2 Finding the maximum flow by using the labelling algorithm

According to the Ford-Fulkerson algorithm each node is labelled (pre, flow), where pre is the node
preceding the node and flow the amount that can be sent from the source to that particular node. This
labelling of nodes is continued until the sink can be labelled and a path from source to sink is established.
Using this labelling approach the following paths from source (node 1) to sink (node 6) can be found.

Table 5. Paths between source and sink using the labelling approach

Path Flow
1-2-4-6 7
1-3-2-5-6 2
1-3-5-6 4
Total flow 13

The amount of flow along a given path from source to sink is the flow of the arc (on the path) with the
minimum flow (flow of bottleneck arc). For each of the above flows from source to sink the upper capacities
of the arcs on the path are adjusted by subtracting the amount of flow from their existing upper capacities.
After updating the upper capacities (residual capacities) the capacities on the flow chart change to that are
shown below.

Fig. 2. Graph of arcs and adjusted capacities

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

34

The only path starting at the source with a positive flow in this network is 1-3-4 with a flow of 3. However,
the sink node cannot be labelled along this path, since the arc (4,6) has an adjusted capacity of 0. This
problem can be overcome by sending 3 units back to node 2 along the reverse path 6-4-2. This allows the
following flows.

Table 6. Adjusted flows obtained after introducing a reverse path

Path Flow
6-4-2 -3
1-3-4-6 3
2-5-6 3

After introducing these flows, the total flow increases to 13+3+3-3=16. After adjusting the upper capacities
by subtracting the additional flows it is found that the only positive flow starting at the source is at arc (1,3)
with an adjusted capacity of 1. Since all the arcs starting from node 3 have adjusted capacities of 0, no
further increase in flow is possible and the optimal flow is reached. The solution to the maximum flow is
therefore

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx .

3.3 Using the lpSolve library in R

The maximum flow problem can be formulated and solved as a linear programming problem. The code
below shows the solution using the lpSolve library in R.

 library(lpSolve)
 # variables x12 x13 x24 x25 x32 x34 x35 x46 x54 x56
 # max flow calculation
 # Objective function
 f.obj=c(0,0,0,0,0,0,0,1,0,1)
 # Flow conservation constraints (first 4)
 # Capacity constraints (next 10)
 f.con = matrix(c(1,0,-1,-1,1,0,0,0,0,0,
 0,1,0,0,-1,-1,-1,0,0,0,
 0,0,1,0,0,1,0,-1,1,0,
 0,0,0,1,0,0,1,0,-1,-1,
 1,0,0,0,0,0,0,0,0,0,
 0,1,0,0,0,0,0,0,0,0,
 0,0,1,0,0,0,0,0,0,0,
 0,0,0,1,0,0,0,0,0,0,
 0,0,0,0,1,0,0,0,0,0,
 0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0,0,1,0,0,0,
 0,0,0,0,0,0,0,1,0,0,
 0,0,0,0,0,0,0,0,1,0,
 0,0,0,0,0,0,0,0,0,1),nrow=14,byrow=TRUE)
 # Signs for constraints
 f.dir = c(rep("=",4),rep("<=",10))
 # Right hand sides of constraints
 f.rhs = c(rep(0,4),7,10,7,6,2,3,4,7,1,10)
 # Execute Linear Programming function
 lp ("max", f.obj, f.con, f.dir, f.rhs)
Success: the objective function is 16

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

35

 # Write the solution
 lp ("max", f.obj, f.con, f.dir, f.rhs)$solution
 [1] 7 9 4 5 2 3 4 7 0 9

This solution is the same as that found in 3.2 above.

3.4 Using the igraph library in R

The igraph library in R has a built-in max_flow function that can find the solution to the maximum flow
problem.

library(igraph)
 # Enter matrix with columns “node from”, “node to”, “capacity”
 E <- rbind(c(1,2,7), c(1,3,10), c(2,4,7), c(2,5,6), c(3,2,2), c(3,4,3), c
 (3,5,4), c(4,6,7), c(5,4,1), c(5,6,10))
 colnames(E) <- c("from", "to", "capacity")
 # Define graph
 g1 <- graph_from_data_frame(as.data.frame(E))
 # Find max flow value and flows
 max_flow(g1, source=V(g1)["1"], target=V(g1)["6"])
 $value
 [1] 16

 $flow
 [1] 7 9 3 6 2 3 4 6 0 10

The igraph solution shown below is slightly different to that obtained by using lpSolve, but it has the same
objective function value. This shows that the solution to a maximum flow problem is not necessarily unique.

10,6,4,3,2,6,3,9,7 564635343225241312  xxxxxxxxx .

3.5 Using the Pascal procedure MAXFLOW

The Pascal procedure MAXFLOW, that was written by Syslo, Deo and Kowalik [38], can be used to
calculate the maximum flow and the flow along the various arcs. The algorithm used is due to Dinitz [15]
with modifications by Malhotra, Pramodh-Kumar and Maheshwari [22] and is therefore called the DMKM
algorithm.

The DMKM algorithm is based on constructing a series of layered networks i.e. partitioning the network into
layers. In a layered network the first layer is the source (label =1), the second layer all immediate successors
(nodes) of the source (labels=2), the third layer all immediate successors of the second layer (labels=3) etc.
The final layer is the sink. All nodes that are not labelled and arcs incident on them are deleted. For each
layered network an attempt is made to find a saturating flow (a flow path between source and sink where for
at least one arc on the path the flow = upper capacity). After sending an amount of flow between source and

sink, the residual capacities are adjusted i.e. upper capacity of arc ijij xuji ),(and upper capacity of

arc ijxij ),(. After deleting all saturated arcs and using the updated residual capacities, a new layered

network is constructed and the procedure of finding a saturating flow through the network repeated. This
algorithm of combining a layered network with a saturating flow continues until a saturating flow cannot be
found. Once this happens the maximum flow has been found. The maximum flow is the sum of all the
saturating flows found (cumulative flow).

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

36

The MAXFLOW procedure can be found in [38] p.289-295. The Pascal programming code needed for the
data input and writing the results are shown in A1 in the appendix. The input data and output results are
shown below.

Input and output

The),(ji th entry in the data input matrix is the capacity of the arc),(ji . Nodes which are not connected

are allocated a capacity of 0. The input matrix for the network data in Table 4.

0 7 10 0 0 0
0 0 0 7 6 0
0 2 0 3 4 0
0 0 0 0 0 7
0 0 0 1 0 10
0 0 0 0 0 0

The output is shown below.

0 7 9 0 0 0
0 0 0 3 6 0
0 2 0 3 4 0
0 0 0 0 0 6
0 0 0 0 0 10
0 0 0 0 0 0

The maximum flow for arc),(ji is the),(ji th entry in the above table. The solution is

10,6,4,3,2,6,3,9,7 564635343225241312  xxxxxxxxx ,

which is the same as the solution obtained from igraph.

3.6 Using SOLVER in an excel spreadsheet

Below is the excel spreadsheet showing the SOLVER solution (see column D) to the maximum flow for the
data in Table 1.

Table 7. SOLVER solution to maximum flow for the data in Table 1

 B C D E F G H
 from to flow capacity nodes net flow flow cons.
3 1 2 7 7 1 16
4 1 3 9 10 2 0 0
5 2 4 4 7 3 0 0
6 2 5 5 6 4 0 0
7 3 2 2 2 5 0 0
8 3 4 3 3 6 0 0
9 3 5 4 4
10 4 6 7 7
11 5 4 0 1
12 5 6 9 10
13
14 max flow 16

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

37

Explanation of obtaining Table 3 entries

Columns B and C show the nodes that define the different arcs.

Column D shows the flow along the various arcs. Initially all the flows are 0. The final flows are calculated
by the solver program.

Column E shows the upper capacities of the different arcs.

Column F is a list of the nodes.

Column G defines the net flows for each of the nodes. These are obtained from the column D flows as
follows.

Net flow – Node 1(G3): =D3+D4
 Node 2(G4): =D3+D7-D5-D6
 Node 3(G5): =D4-D7-D8-D9
 Node 4(G6): =D5+D8+D11-D10
 Node 5(G7): =D6+D9-D11-D12
 Node 6(G8): =D10+D12-D3-D4

Column H shows the flow conservation constraints (all 0’s in this case).

The maximum flow is calculated in cell G3 and indicated in cell E14 (=G3).

When using SOLVER the objective cell is G3, the objective Max, the changing variable cells D3-D12, the
constraints D3-D12<= E3-E12 and G4-G8 = H4-H8 and the Solving Method the Simplex LP. The “Make
Unconstrained Variables Non-Negative” box is ticked.

4 Solution of the Minimum Cost– Maximum Flow Problem

4.1 Using the lpSolve library in R

The lpSolve solution to the minimum cost – maximum flow problem is very similar to that for the maximum
flow problem.

The following changes are needed.

1 The objective function coefficients are the costs (see f.obj values).
2 An additional constraint total flow = maximum flow is added (5th row in f.con matrix).
3 The objective function needs to be minimized.

 library(lpSolve)
 # variables x12 x13 x24 x25 x32 x34 x35 x46 x54 x56
 # min cost calculation
 f.obj=c(4,0,2,4,1,11,1,2,2,5)
 f.con = matrix(c(1,0,-1,-1,1,0,0,0,0,0,
 0,1,0,0,-1,-1,-1,0,0,0,
 0,0,1,0,0,1,0,-1,1,0,
 0,0,0,1,0,0,1,0,-1,-1,
 0,0,0,0,0,0,0,1,0,1,
 1,0,0,0,0,0,0,0,0,0,
 0,1,0,0,0,0,0,0,0,0,

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

38

 0,0,1,0,0,0,0,0,0,0,
 0,0,0,1,0,0,0,0,0,0,
 0,0,0,0,1,0,0,0,0,0,
 0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0,0,1,0,0,0,
 0,0,0,0,0,0,0,1,0,0,
 0,0,0,0,0,0,0,0,1,0,
 0,0,0,0,0,0,0,0,0,1),nrow=15,byrow=TRUE)
 f.dir = c(rep("=",5),rep("<=",10))
 f.rhs = c(rep(0,4),16,7,10,7,6,2,3,4,7,1,10)
 lp ("min", f.obj, f.con, f.dir, f.rhs)
 Success: the objective function is 154
 lp ("min", f.obj, f.con, f.dir, f.rhs)$solution
 [1] 7 9 4 5 2 3 4 7 0 9

The solution here is the same as that for the maximum flow problem. This will not be the case in general.

4.2 Using the Busacker-Gowen minimum-cost flow algorithm

The following steps are followed in the application of this algorithm.

1 Start with a zero flow in the network i.e. 0ijx for all arcs),(ji that form part of the network.

Calculate residual capacities for the arcs.

1.1 Arc),(ji has residual capacity ijijij xur  and cost ijc .

1.2 Arc),(ij has residual capacity ijji xr  and cost ijji cc  .

2 Using the cost of each arc as length, find the shortest path in the network from the source to the sink

node.
3 Determine the amount of flow that can be sent along the path identified in step 2. This amount of flow

will be the minimum of the capacities of all the arcs that are on this path.
4 Update the capacities and costs of the residual network and return to step 1. The algorithm stops when

a path from source to sink with positive flows cannot be found.

Table 8. Application of the Busacker-Gowen min-cost flow algorithm

Shortest path ijx comment
1-3-2-4-6 min(10,2,7,7)=2
1-3-5-4-6 min(8,4,1,5)=1
1-3-5-6 min(7,3,10)=3
1-2-4-6 min(7,5,4)=4
1-2-4-5-6 min(3,1,1,7)=1 Flow of arc (5,4) changes from 1 to 0.
1-2-5-6 min(2,6,6)=2
1-3-4-2-5-6 min(4,3,7,4,4)=3 Flow of arc (2,4) changes from 7 to 4.

From the above table the following solution can be written down.

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx .

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

39

4.3 Using the Pascal procedure BUSACKER

This procedure is the computer implementation of the Busacker-Gowen min-cost flow algorithm. This
procedure makes use of the PDM procedure which is the Pape, d’Esopo implementation of the Moore-
Bellman shortest path algorithm (Moore [39] and Bellman [40]). This algorithm was modified by d’Esopo
and refined by Pape [41].

The Pascal procedure BUSACKER can be found in [38] p.310-312. The Pascal programming code needed
for the data input and writing the results are shown in A2 in the appendix. The input data and output results
are shown below.

Input and output

This procedure needs as input both the capacity and cost matrices. In the matrices below the),(ji th entry

refers to the capacity/unit cost of arc),(ji . The unit costs of the arcs which are not connected is set equal to

a large number e.g. 9999 which is much larger than any of the unit costs associated with the arcs which are
connected.

 Capacity matrix:

0 7 10 0 0 0
0 0 0 7 6 0
0 2 0 3 4 0
0 0 0 0 0 7
0 0 0 1 0 10
0 0 0 0 0 0

 Cost matrix:

9999 4 0 9999 9999 9999
9999 9999 9999 2 4 9999
9999 1 9999 11 1 9999
9999 9999 9999 9999 9999 2
9999 9999 9999 2 9999 5
9999 9999 9999 9999 9999 9999

The output is shown below.

0 7 9 0 0 0
0 0 0 4 5 0
0 2 0 3 4 0
0 0 0 0 0 7
0 0 0 0 0 9
0 0 0 0 0 0

The minimum cost/maximum flow for arc),(ji is the),(ji th entry in the above table. The solution is

9,7,4,3,2,5,4,9,7 564635343225241312  xxxxxxxxx .

4.4 Using SOLVER in an excel spreadsheet

Below is the excel spreadsheet showing the SOLVER solution (see column E) to the minimum cost –
maximum flow for the data in Table 4. See [42].

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

40

Table 9. SOLVER solution to minimum cost – maximum flow for the data in Table 1

 B C D E F G H I
 from to flow capacity nodes Net flow Flow cons. cost
3 1 2 7 7 1 16 16 4
4 1 3 9 10 2 0 0 0
5 2 4 4 7 3 0 0 2
6 2 5 5 6 4 0 0 4
7 3 2 2 2 5 0 0 1
8 3 4 3 3 6 0 0 11
9 3 5 4 4 1
10 4 6 7 7 2
11 5 4 0 1 2
12 5 6 9 10 5
13
14 min cost 154

The above spreadsheet is a modified version of the one used for maximum flow. The following
modifications are made.

1 Cell H3 has 16 (maximum flow) instead of a blank.
2 Column I with costs per unit is added.
3 The value of the minimum cost cell E14 is calculated as =SUMPRODUCT(D3:D12,I3:I12).
4 When using SOLVER the objective cell is G3 and the objective Min.

5 The Minimum Cost– Maximum Flow Solution to the Transportation
and Assignment Problems

5.1 Transportation problem using the lp.transport function in lpSolve in R

In the transportation problem shown below there are 4 supply sources and 6 demand destinations. The),(ji th

entry in the cost matrix below is the cost of transporting one unit from source 4,3,2,1i to destination

6,,2,1 j .

Cost matrix





















2510304219

3384062035

915252

2983551130

, supply vector





















30

45

10

30

, demand vector





























35

22

7

6

20

25

.

In the R code shown below the transportation problem is formulated as a linear programming problem.

library(lpSolve)
 costs = matrix(c(30,11,5,35,8,29,
 2,5,2,5,1,9,
 35,20,6,40,8,33,
 19,2,4,30,10,25),nrow=4, byrow=TRUE)
 # Supply constraints
 row.signs = rep ("<", 4)

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

41

 row.rhs = c(30,10,45,30)
 # Demand constraints
 col.signs = rep (">", 6)
 col.rhs <- c(25,20,6,7,22,35)
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)
 Success: the objective function is 1902
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)$solut
 ion
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 12 0 0 0 18
[2,] 3 0 0 7 0 0
[3,] 0 0 6 0 22 17
[4,] 22 8 0 0 0 0

In the above solution matrix the entry in row i , column j is the optimum amount to be transported from

supply source i to demand destination j . The solution is

8,22,17,22,6,7,3,18,12 424136353324211612  xxxxxxxxx .

5.2 Transportation problem using the Pascal procedure TRANSPORT

The transportation problem can be formulated as

Minimize ij

m

i

n

j
ij xc

 1 1

 subject to

miax i

n

j
ij ,,2,1,

1




 (supply constraints)

njbx j

m

i
ij ,,2,1,

1




 (demand constraints)

njmixij ,,2,1;,,2,1,0   .

In the above, ijc is the cost of transporting 1 unit from supply point i to demand point j , ijx is the amount

sent from supply point i to demand point j , ia the maximum amount available at supply point i and jb

the minimum amount demanded at demand point j .

The network representation of this problem is done in the following way. Arcs connect each of the m supply
nodes to each of the n demand nodes (mn arcs). Each of these arcs have an upper capacity of  . The
source node is connected to each of the supply nodes (each of these arcs have an upper capacity of the
supply available) and the sink node to each of the demand nodes (each of these arcs have a lower capacity of
the minimum amount demanded).

By using the approach, explained by [38], the above mentioned problem can be solved by solving the
following maximum flow problem.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

42

Maximize 
 

m

i

n

j
ijx

1 1

 subject to

miax i

n

j
ij ,,2,1,

1




 (supply constraints)

njbx j

m

i
ij ,,2,1,

1




 (demand constraints)

0ijx for ijji cvu 

 0 otherwise.

In the above iu and jv are the variables in the dual of the transportation problem which is

maximize j

n

j
ji

m

i
i bvau 




11

 subject to

ijji cvu  , 0, ji vu .

In the maximum flow solution of the transportation problem the arcs for which ijji cvu  are

removed from the network. According to the complementary slackness theorem 0ijx for these arcs and

therefore they can be removed from the network.

The TRANSPORT procedure can be found in [38] p.68-71. The Pascal programming code needed for the
data input and writing the results are shown in A3 in the appendix. The output results are shown below.

Input and output

The inputs to the pascal procedure are the cost matrix, supply and demand vectors as shown at the beginning
of the previous section.

The optimal solution output is

0 12 0 0 0 18
3 0 0 7 0 0
0 0 6 0 22 17
22 8 0 0 0 0

In the above solution matrix the entry in row i , column j is the optimum amount to be transported from

supply point i to demand point j . The solution is

8,22,17,22,6,7,3,18,12 424136353324211612  xxxxxxxxx , which is the

same as that found by using lpSolve in R.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

43

5.3 Assignment problem solution using the Pascal procedure TRANSPORT

In the assignment problem, each of n persons are to be assigned to one of n jobs (one person per job) where

ijc is the cost associated with assigning person i to job j . The minimum cost assignment problem can be

formulated as

Minimize ij

n

i

n

j
ij xc

 1 1

 subject to

nix
n

j
ij ,,2,1,1

1




 (one person per job)

njx
n

i
ij ,,2,1,1

1




 (one job per person)

0ijx or njni ,,2,1;,,2,1,1   .

The assignment problem can be solved by using the TRANSPORT procedure with input the cost matrix and
vectors of n 1’s for both the supply and demand.

Example 1 – Minimization assignment.

Assignment of 4 persons to 4 jobs.

Cost matrix





















95612

36312

4113

5254

.

The solution is given below.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

According to this solution person 1 is assigned to job 1, person 2 to job 2, person 3 to job 4 and person 4 to
job 3.

Example 2 – Maximization assignment.

Four workers ( 4321 wwww are to be assigned to 4 machines  4321 mmmm
such that the productivity

is maximized. The productivity matrix is

914108

182257

13131112

141089

4

3

2

1

4321

w

w

w

w

mmmm

 .

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

44

Since the formulation is a minimization problem, the entries in the productivity matrix will be negative
(maximizing is the same as minimizing the negative productivity). With this productivity matrix and supply
and demand vectors of 1’s the solution is

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

According to this solution worker 1 is assigned to machine 4, worker 2 to machine 1, worker 3 to machine 3
and worker 4 to machine 2.

5.4 Assignment problem solution using the lp.assign function in lpSolve in R

Example 1 – Minimization problem

library(lpSolve)
assign.costs = matrix (c(4,5,2,5,3,1,1,4,12,3,6,3,12,6,5,9), 4, 4)
lp.assign (assign.costs)
Success: the objective function is 13
lp.assign (assign.costs)$solution
 [,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 0 1
[4,] 0 0 1 0

Example 2 – Maximization problem

library(lpSolve)
assign.prod = matrix (c(-9,-12,-7,-8,-8,-11,-5,-10,-10,-13,-22,-14,-14,-1
3,-18,-9), 4, 4)
lp.assign (assign.prod)
Success: the objective function is -58
lp.assign (assign.prod)$solution

 [,1] [,2] [,3] [,4]
[1,] 0 0 0 1
[2,] 1 0 0 0
[3,] 0 0 1 0
[4,] 0 1 0 0

The assignments are the same as those obtained by using the Pascal procedure TRANSPORT.

6 The Minimum Cost– Maximum Flow Solution to the Shortest Route
Problem

6.1 Shortest route problem

The solution approaches will be described by solving the following problem.

A cargo is to be transported from Los Angeles to St. Louis. As can be seen from the diagram below, there
are various possible routes between these two cities. The travelling times between cities (in hours) are

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

45

indicated on the diagram. The shortest route in terms of travelling time between these two cities is to be
determined.

Fig. 3. Travelling times between cities situated on routes from Los Angeles to St. Louis

In order to write a linear programming formulation of this shortest route problem the cities on the routes will
be labelled as follows.

Los Angeles-1, Salt Lake City-2, Phoenix-3, Denver-4, Des Moines-5, Dallas-6, St.Louis-7.

Let 1ijx or 0 depending on whether or not the route between cities i and j is included in the route

between Los Angeles to St. Louis. This problem can be formulated as the following linear programming
problem.

Minimize 675747464536342524141312 1481917142215251235916 xxxxxxxxxxxxz 

Subject to

1141312  xxx , 0252412  xxx , 0363413  xxx , 0474645342414  xxxxxx ,

0574525  xxx , 0674636  xxx , 1675747  xxx , 1ijx or 0 .

6.2 Shortest route solution using linear programming formulation in lpSolve

library(lpSolve)
Cities Los Angeles-1,Salt Lake City-2,Phoenix-3,Denver-4,Des Moines-5,
Dallas-6,St.Louis-7
variables x12 x13 x14 x24 x25 x34 x36 x45 x46 x47 x57 x67
 f.obj = c(16,9,35,12,25,15,22,14,17,19,8,14)
 f.con = matrix(c(1,1,1,0,0,0,0,0,0,0,0,0,
 1,0,0,-1,-1,0,0,0,0,0,0,0,
 0,1,0,0,0,-1,-1,0,0,0,0,0,
 0,0,1,1,0,1,0,-1,-1,-1,0,0,
 0,0,0,0,1,0,0,1,0,0,-1,0,
 0,0,0,0,0,0,1,0,1,0,0,-1,
 0,0,0,0,0,0,0,0,0,1,1,1),nrow=7,byrow=TRUE)
 f.dir = c(rep("=",7))
 f.rhs = c(1,rep(0,5),1)
 lp ("min", f.obj, f.con, f.dir, f.rhs)
Success: the objective function is 43
 lp ("min", f.obj, f.con, f.dir, f.rhs)$solution
 [1] 0 1 0 0 0 1 0 0 0 1 0 0

The solution is 1,1,1 473413  xxx with all other variables 0. This means that the shortest route is Los

Angeles-Phoenix-Denver-St. Louis with a total time of 9 + 15 + 19 = 43 hours.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

46

6.3 Shortest route solution using SOLVER in excel

Below is the excel spreadsheet showing the SOLVER solution (see column D) to the shortest route problem
for the distances shown in Fig. 3.

Table 10. SOLVER solution to the shortest route solution for the network in Fig. 3

 B C D E F G H
2 from to flow Cities Net flow Flow cons. Time
3 1 2 0 1 1 1 16
4 1 3 1 2 0 0 9
5 1 4 0 3 0 0 35
6 2 4 0 4 0 0 12
7 2 5 0 5 0 0 25
8 3 4 1 6 0 0 15
9 3 6 0 7 1 1 22
10 4 5 0 14
11 4 6 0 17
12 4 7 1 19
13 5 7 0 8
14 6 7 0 14
15
16 min time 43

Cities: Los Angeles-1, Salt Lake City-2, Phoenix-3, Denver-4, Des Moines-5, Dallas-6, St.Louis-7.

Explanation of obtaining Table 7 entries.

Columns B and C show the labels of the cities “from” and “to”.

Column D shows the values of the decision variables (0’s or 1’s). Initially all the values are 0. The final
values shown above are calculated by the solver program.

Column E shows the labels of the 7 cities.

Column F defines the net flows for each of the cities. These are obtained from the column D flows as
follows.

Net flow – City 1(F3): =D3+D4+D5
 City 2(F4): =D3-D6-D7
 City 3(F5): =D4-D8-D9
 City 4(F6): =D5+D6+D8-D10-D11-D12
 City 5(F7): =D7+D10-D13
 City 6(F8): =D9+D11-D14
 City 7(F9): =D12+D13+D14

Column G shows the flow conservation constraints (1’s for cities 1 and 7, 0’s for cities 2 to 6).

Column H shows the travelling times between the cities.

The minimum time is calculated in cell E16 by using the formula SUMPRODUCT(D3:D14,H4:H14).

When using SOLVER the objective cell is E16, the objective Min, the changing variable cells D3-D14, the
constraints F3-F9 = G3-G9 and the Solving Method is Simplex LP. The “Make Unconstrained Variables
Non-Negative” box is ticked.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

47

The solution 1,1,1 473413  xxx with all other variables 0 is the same as that obtained from using

lpSolve.

7 The Minimum Cost–Maximum Flow Solution to the Caterer Problem

7.1 Caterer problem description

The solution approaches will be described by solving the following problem.

A caterer has to provide food for meals in the next 8 days. The number of cloth napkins that are to be used in
the meals for these 8 days are 90, 140, 84, 95, 130, 170, 155 and 200 respectively. New napkins cost 5. Dirty
napkins can be washed at a laundry and used on subsequent days. The following types of laundry are
available: A fast laundry charges 1.20 per napkin and will deliver for use on the second day, while a slow
laundry charges 0.80 per napkin and can deliver for use on the third day. The problem is to find the least cost
“purchase and use” plan for the caterer.

7.2 Transportation problem solution of the caterer problem

The caterer problem can be formulated as a transportation problem. The table below shows a summary of the
supply, demand and costs in such a formulation.

Table 11. Transportation formulation of caterer problem

 Supply Source
 Costs 5 5 5 5 5 5 5 5 0 1064 1
 M M 1.2 0.8 0.8 0.8 0.8 0.8 0 90 2
 M M M 1.2 0.8 0.8 0.8 0.8 0 140 3
 M M M M 1.2 0.8 0.8 0.8 0 84 4
 M M M M M 1.2 0.8 0.8 0 95 5
 M M M M M M 1.2 0.8 0 130 6
 M M M M M M M 1.2 0 170 7
Demand 90 140 84 95 130 170 155 200 709
Day 1 2 3 4 5 6 7 8 Surplus

Explanation of table entries:

1 Big M entries. M is taken as a cost per napkin which is much larger than the known costs (in this case
5, 1.2 and 0.8). These cost entries appear in cells where transport from source to demand cannot be
done.

2 Supply sources. Source 1 refers to the option of supplying new napkins every day i.e. the total supply
of new napkins is 90+140+84+95+130+170+155+200=1064. Sources 2 to 7 refer to using washed
napkins on days 3 to 8. For these sources the costs are entered by taking into account the days on
which these washed napkins would become available.

3 Surplus. This is the difference between the total supply and total demand i.e.
90+140+84+95+130+170=709. A dummy demand of 709 with 0 costs is created to balance the
transportation supplies and demands.

 library(lpSolve)
 costs = matrix(c(5,5,5,5,5,5,5,5,0,
 100,100,1.2,0.8,0.8,0.8,0.8,0.8,0,
 100,100,100,1.2,0.8,0.8,0.8,0.8,0,
 100,100,100,100,1.2,0.8,0.8,0.8,0,

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

48

 100,100,100,100,100,1.2,0.8,0.8,0,
 100,100,100,100,100,100,1.2,0.8,0,
 100,100,100,100,100,100,100,1.2,0),nrow=7, byrow=TRUE)
 row.signs = rep ("<=", 7)
 row.rhs = c(1064,90,140,84,95,130,170)
 col.signs = rep (">=", 9)
 col.rhs <- c(90,140,84,95,130,170,155,200,709)
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)
 Success: the objective function is 2466.2
 lp.transport (costs, "min", row.signs, row.rhs, col.signs, col.rhs)$solution

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 90 140 84 41 0 0 0 0 709
[2,] 0 0 0 54 36 0 0 0 0
[3,] 0 0 0 0 94 46 0 0 0
[4,] 0 0 0 0 0 84 0 0 0
[5,] 0 0 0 0 0 40 55 0 0
[6,] 0 0 0 0 0 0 100 30 0
[7,] 0 0 0 0 0 0 0 170 0

From the above output the following solution can be written down.

Table 12. Solution of caterer problem

Supply/day 1 2 3 4 5 6 7 8 Total Cost per napkin
new 90 140 84 41 355 5
fast 40 100 170 310 1.2
slow 54 130 130 55 30 399 0.8

Total cost = 2.24668.03992.13105355  .

7.3 Solution of the caterer problem using solver in excel

The caterer problem can be formulated as a linear programming problem and solved using SOLVER in
excel. The formulation is given below.

Let ijx be the quantity transported from supply i to demand j .

Minimize

)(2.1)(5 7867564534231817161514131211 xxxxxxxxxxxxxxz 

484746383736352827262524(8.0 xxxxxxxxxxxx )685857 xxx 

Subject to

10641817161514131211  xxxxxxxx

90282726252423  xxxxxx

1403837363534  xxxxx

8448474645  xxxx

95585756  xxx

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

49

1306867  xx

17078 x

9011 x

14012 x

842313  xx

95342414  xxx

13045352515  xxxx

1705646362616  xxxxx

155675747372717  xxxxxx

20078685848382818  xxxxxxx

0ijx

Table 13. SOLVER solution to the caterer problem

 B C D E F G
 supply demand quantity cost net flow flow cons
2 1 1 90 5 355 1064
3 1 2 140 5 90 90
4 1 3 84 5 140 140
5 1 4 5 5 84 84
6 1 5 0 5 95 95
7 1 6 36 5 130 130
8 1 7 0 5 170 170
9 1 8 0 5 90 90
10 2 3 0 1.2 140 140
11 3 4 0 1.2 84 84
12 4 5 0 1.2 95 95
13 5 6 40 1.2 130 130
14 6 7 100 1.2 170 170
15 7 8 170 1.2 155 155
16 2 4 90 0.8 200 200
17 2 5 0 0.8
18 2 6 0 0.8
19 2 7 0 0.8
20 2 8 0 0.8
21 3 5 130 0.8
22 3 6 10 0.8
23 3 7 0 0.8
24 3 8 0 0.8
25 4 6 84 0.8
26 4 7 0 0.8
27 4 8 0 0.8
28 5 7 55 0.8
29 5 8 0 0.8
30 6 8 30 0.8
31
32 cost 2466.2

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

50

Explanation of obtaining Table 8 column entries.

1 Supply and demand. These show the supply source and demand day numbers as they appear in
Table 8.

2 Quantity. These are the decision variables i.e. amounts of napkins to be bought/cleaned. Initially
these values are all 0.

3 Cost. These show the costs per napkin as they appear in the objective function.
4 Net flow. These are the left hand sides of the constraints in the linear programming formulation.

These are obtained from the column D quantities as follows.

F2: = SUM(D2:D9)
F3: = D10+SUM(D16:D20)
F4: = D11+SUM(D21:D24)
F5: = D12+SUM(D25:D27)
F6: = D13+SUM(D28:D29)
F7: = D14+D30
F8: = D15
F9: = D2
F10: = D3
F11: = D4+D10
F12: = D5+D16+D11
F13: = D6+D17+D21+D12
F14: = D7+D18+D22+D25+D13
F15: = D8+D19+D23+D26+D28+D14
F16: = D9+D20+D24+D27+D29+D30+D15

5 Flow conservations. These are the right hand sides of the constraints in the linear programming
formulation.

When using SOLVER the objective cell is E32, the objective Min, the changing variable cells D2-D30 and
the constraints F2-F8 <= G2-G8 and F9-F16 <= G9-G16. The Solving Method is Simplex LP and the
“Make Unconstrained Variables Non-Negative” box is ticked.

When written in matrix form, the SOLVER solution shown in the above table is as shown below.

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 90 140 84 5 0 36 0 0 709
[2,] 0 0 0 90 0 0 0 0 0
[3,] 0 0 0 0 130 10 0 0 0
[4,] 0 0 0 0 0 84 0 0 0
[5,] 0 0 0 0 0 40 55 0 0
[6,] 0 0 0 0 0 0 100 30 0
[7,] 0 0 0 0 0 0 0 170 0

From the above output the following solution can be written down.

Table 14. Costs for SOLVER solution

Supply/day 1 2 3 4 5 6 7 8 Total Cost per napkin
new 90 140 84 5 36 355 5
fast 40 100 170 310 1.2
slow 90 130 94 55 30 399 0.8

Total cost = 2.24668.03992.13105355  .

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

51

The SOLVER solution is slightly different to the transportation solution obtained from lpSolve. However the
costs for these two solutions are the same. This shows that the optimal solution for the caterer problem is not
necessarily unique.

8 Conclusion

The maximum flow and minimum cost - maximum flow problems were defined and formulated as linear
programming problems. Each of the problems considered was motivated by examples in the form of short
explanations of published applications. A review of the algorithms used to solve the above mentioned
problems was conducted. This included presentations (in the form of tables) of the complexity of the various
algorithms.

The major part of the article was devoted to the practical implementation of the above mentioned methods.
This involved explanations (using data obtained from given problems) of each of the following.

1 A manual solution of the maximum flow problem using the labelling algorithm.
2 A manual solution of the minimum cost-maximum flow problem using the Busacker-Gowen

minimum-cost flow algorithm.
3 Solutions of the maximum flow and minimum cost-maximum flow problems using (i) R packages

(ii) Pascal programs and (iii) SOLVER in an excel spreadsheet.
4 The minimum cost-maximum flow solutions to the assignment and transportation problems by (i)

formulating them as linear programming problems and using R and (ii) using a Pascal program to
find the solution.

5 The minimum cost – maximum flow solution to the shortest route problem by (i) formulating it as a
linear programming problem and using R to find the solution and (ii) solving it using SOLVER in
an excel spreadsheet.

6 The minimum cost – maximum flow solution to the caterer problem by (i) formulating this problem
as a transportation problem and solving it with the use of R and (ii) using SOLVER in an excel
spreadsheet.

Acknowledgements

The author expresses a word of thanks to anonymous reviewers for helpful suggestions that improved the
quality of the article.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Abdullah N, Hua TK. The application of the shortest path and maximum flow with bottleneck in

traffic flow of Kota Kinabalu. Journal of Computer Science & Computational Mathematics.
2017;7(2):37-43.

[2] Kaanodiya KK, Rizwanullah M. Minimize traffic congestion: An application of maximum flow in
dynamic networks. Journal of Applied Mathematics, Statistics and Informatics (JAMSI). 2012;8(1):
63-74.

[3] Schwartz BL. Possible winners in partially completed tournaments. SIAM Review. 1966;8(3):302-
308.
DOI: 10.1137/1008062

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

52

[4] Winston WL. Operations research applications and algorithms. 4th Ed. Belmont CA, USA,
Brooks/ColeThomson Learning; 2004.

[5] Dantzig GB. Linear programming and extensions. Princeton University Press, Princeton, NJ; 1963.

[6] Kuhn HW. The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 1955;
2(1-2):83-97.
Available:CiteSeerX10.1.1.228.3906
DOI: 10.1002/nav.3800020109

[7] Lone MA, Mir SA, Wani MS. An application of assignment problem in agriculture using R. Journal
of Scientific Research & Reports. 2017;13(2):1-5.

[8] Hultberg TH, Cardoso DM. The teacher assignment problem: A special case of the fixed charge
transportation problem. European Journal of Operation Research. 1997;101:463-473.

[9] Feiyang Chen, Nan Chen, Hanyang Mao, Hanlin Hu. An application of bipartite matching in
assignment problem. Chuangxinban Journal of Computing. 2018;1-2.
Available:https://arxiv.org/pdf/1902.00256.pdf

[10] Demaine E, Goldwasser S. Introduction to algorithms. Massachusetts Institute of Technology Hand
Out 25; 2004.

[11] Szwarc W, Posner ME. The caterer problem. Operations Research. 1985;33(6):1215-1224.

[12] Ahuja RK, Magnanti TL, Orlin JB, Reddy MR. Applications of network optimization. Chapter in
Handbooks in OR & MS, Elsevier. 1995;7.

[13] Harris TE, Ross FS. Fundamentals of a method for evaluating rail net capacities. Research
Memorandum, Rand Corporation; 1955.

[14] Ford LR, Fulkerson DR. Maximal flow through a network. Canadian Journal of Mathematics.
1956;8:399-404.

[15] Dinitz Y. Algorithm for solution of a problem of maximum flow in a network with power estimation.
Doklady Akademii Nauk SSSR. 1970;11:1277-1280.

[16] Edmonds J, Karp JM. Theoretical improvements in algorithmic efficiency for network flow problems.
Journal of the ACM. 1972;19(2):248-264.

[17] Goldberg AV, Tarjan RE. A new approach to the maximum flow problem. Journal of the ACM.
1988;35(4):921-940.

[18] Goldberg AV, Rao S. Beyond the flow decomposition barrier. Journal of the ACM. 1998;45(5):783-
797.

[19] King V, Rao S, Tarjan R. A faster deterministic maximal flow algorithm. Journal of Algorithms.
1994;17:447-474.

[20] Orlin JB. Max flows in O(nm) time, or better. STOC '13 Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing. 2013;765–774.
Available:CiteSeerX10.1.1.259.5759
DOI: 10.1145/2488608.2488705
ISBN: 9781450320290

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

53

[21] Sherman J. Nearly maximum flows in nearly linear time. Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science. 2013;263-269.

[22] Malhotra VM, Pramodh-Kumar SN, Maheshwari SN. An algorithm for finding maximum flows in
networks. Information Processing Letters. 1978;7(6):277-278.

[23] Ahmed Faruque, Al-Amin Khan Md, Rahman Khan Aminur, Ahmed Syed Sabbir, Sharif Uddin Md.
An efficient algorithm for finding maximum flow in a network-flow. Journal of Physical Sciences.
2014;19:41-50.

[24] Orlin JB. Max flows in)(mnO time, or better; 2018.

Available:https://dspace.mit.edu/openaccess-disseminate/1721.1/8820

[25] Wikipedia maximum flow problem.
Available:https://en.wikipedia.org/wiki/Maximum_flow_problem

[26] Fulkerson DR. An out-of-kilter method for minimal cost flow problems. Journal of the Society for
Industrial and Applied Mathematics. 1961;9(1):18-27.

[27] Busacker RG, Gowen PG. A procedure for determining a family of minimum cost network flow
patterns. Operations Research Office Technical Report 15, John Hopkins University, Baltimore; 1961.

[28] Klein M. A primal method for minimum cost flows with applications to the assignment and
transportation problems. Management Sci. 1967;14(3):205-220.

[29] Engquist M. A successive shortest path algorithm for the assignment problem. Research Report,
Center for Cybernetic Studies (CCS) 375, University of Texas, Austin; 1980.

[30] Carpaneto G, Toth P. Primal-dual algorithms for the assignment problem. DAM. 1987;18:137-153.

[31] Orlin JB. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming. 1997;78(2):109–129.

[32] Eroglu E. An application of the network simplex method for minimum cost flow problems. Balkan
Journal of Mathematics. 2013;1:117-130.

[33] Tarjan RE. Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm.
Mathematical Programming. 1997;78:169-77.

[34] Orlin JB. A faster strongly polynomial minimum cost flow algorithm. Operations Research.
1993;41(2):338-350.

[35] Parpalea Mircea. Interactive tool for the successive shortest paths algorithm in solving the minimum
cost flow problem. Bulletin of the Transilvania University of Brasov, Series III: Mathematics,
Informatics, Physics. 2009;2(51):255-262.

[36] Sokkalingam PT, Ahuja RK, Orlin JB. New polynomial-time cycle-cancelling algorithms for
minimum cost flows. Networks. 2000;36:53–63.

[37] Goldberg AV, Tarjan LE. Efficient maximum flow algorithms. Communications of the ACM.
2014;57:82-89.

[38] Syslo MM, Deo N, Kowalik JS. Discrete optimization algorithms with Pascal programs. Englewood
Cliffs, New Jersey: Prentice-Hall; 1983.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

54

[39] Moore EF. The shortest path through a maze. Proc. Int. Symp. On the Theory of Switching, Part II;
1957.

[40] Bellmann RE. On a routing problem. Quart. Appl. Math. 1958;16:87-90.

[41] Pape U. Algorithm 562: Shortest path lengths. ACM Trans. Math. Software. 1980;5:450-455.

[42] Panyotova G, Slavona SL. Modelling network flow by excel solver. Trakia Journal of Sciences.
2009;8(3):12-15.

Appendix

A1 Input and output code for MAXFLOW program

Programming: Pascal code

Program maxflow(input,output);

CONST N = 11;

 MAX = 60;

TYPE ARRNN = ARRAY[1..N,1...N] OF INTEGER;

 ARRN = ARRAY[1..N] OF INTEGER;

 ARRMAX = ARRAY[1..MAX] OF INTEGER;

VAR S1,T1,I,J : INTEGER;

CAPA1,FLOW1 : ARRNN;

The main body of the program succeeding the procedure is given below. This part is need for data entry and
writing the results.

BEGIN (* MAIN PROGRAM*)

 S1 := 1;

 T1 := N;

 WRITELN(‘ENTER CAPACITIES’);

 FOR I := 1 TO N DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘CAPACITY ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘ ’);

 READLN(CAPA1[I,J])

 END;

 END;

 MAXFLOW(N,S1,T1,MAX,CAPA1,FLOW1);

 WRITELN(‘THE FLOW IS’);

 FOR I := 1 TO N DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘ ’,FLOW1[I,J])

 END;

 WRITELN

 END;

END.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

55

A2 Input and output code for BUSACKER program

Programming: Pascal code

Program minimum_cost(input,output);

CONST N = 5;

TYPE ARRNN = ARRAY[1..N,1...N] OF INTEGER;

 ARRN = ARRAY[1..N] OF INTEGER;

VAR S1,T1,INF1,TARDETFLOW1,TOTALCOST1,I,J : INTEGER;

 COST1,CAPA1,FLOW1 : ARRNN;

The main body of the program succeeding the procedure is given below. This part is need for data entry and
writing the results.

BEGIN (*MAIN PROGRAM*)

 S1 := 1;

 T1 := N;

 INF1 := 9999;

 TARGETFLOW1 := 31;

 WRITELN(‘ENTER CAPACITIES AND COSTS’);

 FOR I := 1 TO N DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘CAPACITY ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘ ’);

 READLN(CAPA1[I,J])

 END;

 END;

 FOR I := 1 TO N DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘COST ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘ ’);

 READLN(COST1[I,J])

 END;

 END;

 BUSACKER(N,S1,T1,INF1,TARGETFLOW1,COST1,CAPA1,FLOW1,TOTALCOST1);

 WRITELN(‘THE MIN COST FLOW IS’);

 FOR I := 1 TO N DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘ ’, FLOW1[I,J])

 END;

 WRITELN

 END;

 WRITELN(‘THE TOTAL COST IS ’, TOTALCOST1);

END.

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

56

A3 Input and output code for TRANSPORT program

Programming: Pascal code

program transport(input,output);

CONST M=4;

 N=4;

TYPE ARRMN = ARRAY[1..M,1...N] OF INTEGER;

 ARRM = ARRAY[1..M] OF INTEGER;

 ARRN = ARRAY[1..N] OF INTEGER;

VAR INF1 : LONGINT;

 I,J,KO1 : INTEGER;

 A1 : ARRM;

 B1 : ARRN;

 C1,X1 : ARRMN;

The main body of the program succeeding the procedure is given below. This part is needed for data entry
and writing the results.

BEGIN (* MAIN PROGRAM *)

 INF1 := 1000;

 WRITELN(‘COSTS’);

 FOR I := 1 TO M DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘COST ’, ‘ I=’,I:2, ‘ J=’, J:2, ‘ ’);

 READLN(C1[I,J])

 END;

 END;

 FOR I := 1 TO M DO

 BEGIN

 WRITE(‘SUPPLY ’, ‘ I=’,I:2, ‘ ’);

 READLN(A1[I])

 END;

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘DEMAND ’, ‘ J=’,J:2, ‘ ’);

 READLN(B1[J])

 END;

 TRANSPORT(M,N,INF1,A1,B1,C1,X1,KO1);

 WRITELN(‘OPTIMAL SOLUTION’);

 FOR I := 1 TO M DO

 BEGIN

 FOR J := 1 TO N DO

 BEGIN

 WRITE(‘ ’, X1[I,J]:6)

 END;

 WRITELN

 END;

Moolman; AJPAS, 7(3): 28-57, 2020; Article no.AJPAS.55184

57

 WRITELN(‘THE OPTIMAL COST IS ’,KO1);

END.

© 2020 Moolman; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://www.sdiarticle4.com/review-history/55184

