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Abstract

We design an approximation algorithm for maximizing α-bisubmodular function with matroid constraint,
where the α-bisubmodular function is a generalization of a bisubmodular function. The concept of α-
bisubmodularity is provided by Huber, Krokhin, and Powell [[1], 2014], rank function of delta-matroids and
the cut capacity of directed networks have α-bisubmodularity. We consider the two cases of the problem,
monotone and non-monotone objective function, respectively. We also show that the running time is
polynomial.
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1 Introduction

Let E denote a finite nonempty set with size n and 3E := {(X1, X2)|X1, X2 ⊆ E,X1 ∩ X2 = ∅}. A function
f : 3E → R is called α-bisubmodular if for any x = (X1, X2) and y = (Y1, Y2) in 3E ,

f(x) + f(y) ≥ f(x u y) + αf(x t y) + (1− α)f(xṫy)

where
x t y = (X1 ∪ Y1\(X2 ∪ Y2), X2 ∪ Y2\(X1 ∪ Y1))

x u y = (X1 ∩X2, Y1 ∩ Y2)

xṫy = (X1 ∪ Y1, X2 ∪ Y2\(X1 ∪ Y1))

f is bisubmodular function iff α = 1.

Submodular function has been studied for decades and there is a beautiful line of research in this area, we
just name a few here. Fisher, Nemhauser and Wolsey presented a sequence of papers [[2, 3, 4], 1978], showing
that maximizing a monotone submodular function under cardinality constraint by greedy method could achieve
1− 1/e approximation ratio to the optimum. Feige [[5], 1998] showed the hardness of approximation is 1− 1/e.
Later, inspired by these results, Sviridenko in [[6], 2004] designed a simple algorithm based on greedy method also
achieving 1− 1/e ratio for knapsack constraint. As a natural generalization for cardinality constraint, matroid
constraint was considered by Calinescu et al. [[7], 2011] via continuous greedy and multilinear extension, also
achieving the same ratio as the cardinality constraint’s.

In recent years, k-submodular has draw much attention and been widely covered. The extension of submodular
function is k-submodular function in that any input is required to partition into k subsets. For unconstraint
case, Ward and Živný[[8], 2016] first gave a deterministic greedy algorithm with approximation ratio of 1

3
,

and a randomized version with 1

1+max{1,
√

k−1
4
}
. Iwata et al. [[9], 2016] followed the framework of randomized

algorithm in [[8]], achieving 1/2 approximation ratio which is tight for large k. If f is restricted to monotone,
Ward and Živný [[8], 2016] provided a 1/2 approximation algorithm. Iwata et al.[[9], 2016] further proved
that there exists a k

2k−1
-approximation algorithm. Oshima [[10], 2021] used the algorithm from [[9], 2016]

with different probability distribution, presented a k2+1
2k2+1

-approximation algorithm with sophisticated analysis.
Many results for nonnegative k-submodular maximization problem with constraints were also covered. Ohsaka
and Yoshida [[11], 2015] considered the total size constraint and individual size constraint, presenting 1/2 and
1/3-approximation algorithm, respectively. Sakaue [[12], 2017] presented a 1/2-approximation algorithm with
a matroid constraint. Tang et al. [[13], 2022] designed a combinatorial algorithm for maximizing monotone

k-submodular with a knapsack constraint and its approximation ratio is 1−1/e
2

. Huber et al. [[1], 2014] first
provided α-bisubmodular as a generalization of bisubmodular function, where bisubmodular is 2-submodular. α-
bisubmodular was called skew bisubmodualr in [[1], 2014], they investigated the structures of α-bisubmodular.
Fujishige et al. [[14], 2014]demonstrated the relationship between the skew bisubmodularity and a convex
extension over rectangles. Fujishige and Tanigawa [[15], 2018] gave a polynomial combinatorial algorithms for
α-bisubmodular function minimization.

For the maximization of α-bisubmodular problem, Iwata et al. [[9], 2016] extended their algorithm to α-

bisubmodular, providing a solution within a factor of 2
√
α

(1+
√
α)2

. Combining this result with another simple

algorithm based on the structure of bisubmodular, the ratio can be improved to 8
25

for any α ∈ [0, 1]. Iwata
et al. [[16], 2013] studied the inapproximability result for the α-bisubmodular function maximization, they
derived that any algorithm which can return a more than 0.5 approximation ratio solution would requires an
exponential number of queries in the value oracle model.. Shi et al.[[17], 2021] studied maximization of α-
bisubmodular function subject to individual constraint, by using decreasing threshold method from [[18], 2013],
achieving 1− 1/e− ε-approximation with running O(n

ε
log n

ε
) time.

In this paper,we extended the method from [[12], 2017] to devise an approximation algorithm for maximizing
non-negative α-bisubmodular function with matroid constraint. Matroid constraint is a generalization of the
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individual constraint from [[17], 2021]. Matroid is a pair of (E, I), where I ⊆ 2E and is called the family of
independent sets such that the following condition holds:

1. ∅ ∈ I
2. If A ⊆ B ∈ I then A ∈ I
3. If A,B ∈ I and |A| < |B|, then there exists element e ∈ B\A such that A ∪ {e} ∈ I

We call a set A independent is A belongs I and maximal if no B ∈ I satisfies A * B. The set of all maximal
sets in I is denoted by B. Let r be the number of elements of a maximal set. By the third condition of matroid
definition, it easily see that all maximal sets have the same number of elements. Many structures can be viewed
as special cases of matroid, we name a few here:

1. Suppose that E is a finite set and I := {I ⊆ E||I| ≤ k}, where k is a nonnegative integer.

2. E is the set of columns of a matrix and I is family set of linearly independent columns of E.

3. Let E be the set of edges of an undirected graph G, and I is the family set of forests of G.

2 Preliminaries

Given any two elements x = (X1, X2) and y = (Y1, Y2) in 3E , an empty set is defined 0 = (∅, ∅). We define
supp(x) := {e ∈ E|e ∈ X1 ∪ X2}. If e ∈ Xi, we write x(e) = i, and if e is not contained in X1 and X2, then
x(e) = 0, i is called the position of e. We use x t (e, i) to represent the addition of e to Xi if e /∈ X1 ∪ X2.
Suppose that a partial order � is defined on 3E and x � y iff X1 ⊆ Y1 and X2 ⊆ Y2.

The marignal gain is the value of the addition of e to the i-th set of x, that is,

∆e,if(x) := f(Xi t (e, i), Xj)− f(Xi, Xj)

where i, j ∈ [2] and i 6= j. It is not hard to see that α-submodular function f possesses orthant submodularity,
that is,

∆e,if(x) ≥ ∆e,if(y), for any x, y ∈ 3E with x � y, e /∈ Y1 ∪ Y2

We say f has monotonicity if and only if f(x) ≤ f(y) for any x � y.

By the above properties, we can deduce the α-pairwise monotonicity of α-bisubmodular:

Theorem 2.1. If f is a α-bisubmodular function, α-pairwise monotonicity is α∆e,1f(x) + ∆e,2f(x) ≥ 0, for
any e /∈ supp(x).

Proof. According to the definition, we have f(X1 ∪{e}, X2) + f(X1, X2 ∪{e}) ≥ f(X1, X2) +αf(X1, X2) + (1−
α)f(X1 ∪ {e}, X2), which is identical to α∆e,1f(x) + ∆e,2f(x) ≥ 0.

An instance of maximizing α-bisubmodular subject to matroid constraint is described as follows. Given an
α-bisumodular function f : 2E → R+, and a matroid (E, I), solve

max f(S)

s.t. S ∈ I
(2.1)

Before introducing the algorithm, we propose two important lemmas which will be used later.

Lemma 2.2. Let A ∈ I and B ∈ B such that A ( B. Then, for any e /∈ A satisfying A ∪ {e} ∈ I, there exists
e′ ∈ B\A such that B\{e′} ∪ {e} ∈ I.

Proof. Let S = (A ∩B) ∪ {e}. Since A ∪ {e} ∈ I, from the second condition of the matroid definition, we have
S ∈ I. |S| < r holds because of A ( B. By the third condition from the matroid definition, we can add elements
from B to the set S until |S| = r and S ∈ I. Then S consists of e and r − 1 elements from B, following the
truth that B ∈ B. Thus we have S = B\{e′} ∪ {e} ∈ I. Finally, let e′ be the element of B\S, then we can
obtain e′ ∈ B\A since A ∩B ∈ S.
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Lemma 2.3. Any maximal solution for problem (2.1) has size r.

Proof. Let o be a maximal optimal solution with |supp(o)| < r. Suppose that x is an element of 3E satisfying
that supp(x) = r. By the third condition of definition of matroid, an element e ∈ supp(x)\supp(o) must exist
and have supp(o) ∪ {e} ∈ I. Since f is α-bisubmodular, we have

α∆e,1f(o) + ∆e,2f(o) ≥ 0

It implies that both ∆e,1f(o) and ∆e,2f(o) equal to 0, since o is an optimal solution. Then we can add e to
arbitrary i ∈ [2], this operation does not change the optimal value. Hence we can add some elements to supp(o)
until its cardnality is r.

We consider the two cases of problem (2.1), Case 1: f is monotone and Case 2: f is non-monotone. Both
cases use the GREEDY algorithm. The algorithm is described as follows. In the first step, algorithm initialize
an zero vector s. In step 2, the algorithm requires r. If |supp(s)| < r, there exists at least one element can be
added to supp(s), since the α-pariwise monotonicity of f and the third condition of the definition of matroid.
At step 3, let I(s) denote all the element e ∈ E\supp(s) such that supp(s) ∪ {e} ∈ B. At step 4, the marginal
gain ∆e,if(s) is computed for all elements in I(s) and i ∈ {1, 2}. In the next step, the element e will be added
to supp(s) and assigned the label i corresponding to the maximal margin gain. At the end of algorithm, it
easily see that the final vector would satisfy the matroid constraint. We also show that our algorithm incurs
O(rn(IO+EO)) computation cost, where IO and EO represent the time for independence oracle of the matroid
and the evaluation oracle of the α-bisubmodular function, respectively. The GREEDY algorithm:
step 1: s ← 0
step 2: for j = 1 to r do
step 3: Construct I(s) using the independence oracle
step 4: ∆e,if(s)← maxe∈E\supp(s){∆e,1f(s),∆e,2f(s)}
step 6: s(e)← i
step 7: Endfor
step 8: Return s

3 Monotone Case

In this section, let f be monotone, then we will prove that the GREEDY algorithm returns a 0.5-approximate
solution and ends in polynomial time. The following is the main theorem:

Theorem 3.1. Let f : 2E → R+ be a monotone α-bisubmodular function. The GREEDY algorithm is a
0.5-approximation algorithm for problem (2.1) with running time O(rn(IO + EO).

Proof. First we need to define some notations. Suppose that (ej , ij) is the pair chosen at the jth iteration, and
sj is the current solution after the jth iteration. Note that s0 = 0 and sr = s. Let o be the optimal solution of
the problem. In the following, we will construct a sequence of vectors o0 = o,o1, . . . ,or such that sj � oj and
supp(oj) ∈ B for all j ∈ [r]. These notations will be used in the analysis of the algorithm.

Now we describe how to construct oj from oj−1. Assume that oj−1 has been constructed and satisfy the above
property. In the j-th iteration, ej is chosen into the current set supp(sj−1) and supp(sj−1)∪{ej} ∈ I. Then
there must exist an element e′ ∈ supp(o) such that supp(o)\{e′}∪{ej} ∈ B by the Lemma (2.2). Let oj = e′, we

define oj−
1
2 by assigning 0 to the the position oj of the oj−1. And oj is defined by assigning ij to the position

of ej of oj−
1
2 . The vector thus constructed, and

supp(oj) = supp(oj−1)\{oj} ∪ {ej} ∈ B

We can also verify that

sj−1 � oj−
1
2 ,
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and oj have the following property:
sj � oj ,

if j = 0, 1, . . . , r − 1, and sr = or = s. In the following, we give the analysis of the GREEDY algorithm for
maximizing monotone α-bisubmodular functions subject to matroid constraint.

The core of our proof is the following inequality for j ∈ [r]:

f(oj−1)− f(oj) ≤ f(sj)− f(sj−1) (3.1)

Since sj−1 � oj−1 and supp(oj−1) ∈ B, thus we have supp(sj−1)∪{oj} ∈ B. It means oj is a candidate member
to be selected in the jth iteration of the GREEDY algorithm, so we have ∆oj ,oj−1(oj)

f(sj−1) ≤ ∆ej ,ijf(sj−1)
by the greedy rule.

Using the above property, we have

f(oj−1)− f(oj) = f(oj−1)− f(oj−
1
2 )− [f(oj)− f(oj−

1
2 )]

= ∆oj ,oj−1(oj)
f(oj−

1
2 )−∆ej ,ijf(oj−

1
2 )

≤ ∆oj ,oj−1(oj)
f(oj−

1
2 )

≤ ∆oj ,oj−1(oj)
f(sj−1)

≤ ∆ej ,ijf(sj−1)

= f(sj)− f(sj−1)

where the first inequality holds since f is a monotone function, it implies that ∆ej ,ijf(oj−
1
2 ) ≥ 0. The second

inequality is true from the orthant submodularity. Third inequality follows the greedy rule of the algorithm By
the formulation (3.1), we have

f(o)− f(s) =

r∑
j=1

(f(oj−1)− f(oj) ≤
r∑
j=1

(f(sj)− f(sj−1)) = f(s)

it is implies that f(s) ≥ f(o)
2

. Thus the approximation ratio for monotone case is proved, the only thing left is to
show the running time. As we can see that the for loop runs r iterations. In each iteration, the algorithm access
independence oracle at most n times in step 3, and evaluate f at most 2n times. Thus, GREEDY algorithm
runs in O(rn(IO + EO) time

4 Non-monotone Case

In this section, we show that GREEDY algorithm produces a (2+ 1
α

)-approximation solution for non-monotone
case with the polynomial running time.

Theorem 4.1. Let f : 2E → R+ is a non-monotone α-bisubmodular function, then there exists a (2 + 1
α

)-
approximation algorithm for problem (2.1) with running time O(rn(IO + EO)..

Proof. We give a new similar inequality of formulation (3.1) using for the proof of Theorem (4.1). For j ∈ [r],
we have

f(oj−1)− f(oj) ≤ (1 +
1

α
)(f(sj)− sj−1) (4.1)

To prove the inequality, we study two cases by the value of ij . First we assume that ij = 1, according to the
α-pairwise monotonicity, we have

α∆ej ,ijf(oj−
1
2 ) + ∆ej ,2f(oj−

1
2 ) ≥ 0
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thus we have ∆ej ,ijf(oj−
1
2 ) ≥ − 1

α
∆ej ,2f(oj−

1
2 ). When ij = 2, we have

∆ej ,ijf(oj−
1
2 ) ≥ −α∆ej ,1f(oj−

1
2 )

It is suffice to prove (4.1). Using the above inequality, when ij = 1,

f(oj−1)− f(oj) = f(oj−1)− f(oj−
1
2 )− [f(oj)− f(oj−

1
2 )]

= ∆oj ,oj−1(oj)
f(oj−

1
2 )−∆ej ,ijf(oj−

1
2 )

≤ ∆oj ,oj−1(oj)
f(sj−1)−∆ej ,ijf(oj−

1
2 )

≤ ∆ej ,ijf(sj−1)−∆ej ,ijf(oj−
1
2 )

≤ ∆ej ,ijf(sj−1) +
1

α
∆ej ,2f(oj−

1
2 )

≤ ∆ej ,ijf(sj−1) +
1

α
∆ej ,2f(sj−1)

≤ (1 +
1

α
)∆ej ,ijf(sj−1)

When ij = 2,

f(oj−1)− f(oj) ≤ ∆ej ,ijf(sj−1)−∆ej ,1f(oj−
1
2 )

≤ ∆ej ,ijf(sj−1) + α∆ej ,1f(oj−
1
2 )

≤ ∆ej ,ijf(sj−1) + α∆ej ,1f(sj−1)

≤ (1 + α)∆ej ,ijf(sj−1)

Since α ∈ (0, 1], 1 + α ≤ 1 + 1
α

, we can combine two cases and deduce

f(oj−1)− f(oj) ≤ (1 +
1

α
)[f(sj)− f(sj−1)]

Hence,

f(o)− f(s) =

r∑
j=1

(f(oj−1)− f(oj)) ≤
r∑
j=1

(1 +
1

α
)(f(sj)− f(sj−1)) = (1 +

1

α
)f(s)

which means f(s) ≥ α
2α+1

f(o). When α = 1, then f is bisubmodular function and the approximation ratio is 1
3

which matches the result of [[11]]. It is easy to see that the running time of the non-monotone case is the same
as the monotone case.

5 Conclusion

In this manuscript, we study the maximization of α-bisubmodular function subject to matroid constraint,
designing 1

2
and α

2α+1
for monotone and non-monotone cases, respectively. We also give that the running

time of proposed algorithm is O(rn(IO + EO)) for both cases.
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