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Abstract 

 
This study examines the effect of viscosity and magnetic field on a non-isothermal cylindrical channel flow.  

This work considered a model of convective-thermal-diffusion with constant viscosity and magnetic field. 

The governing model equations are nondimensionalized using the dimensionless quantities and then  solved 

analytically using power series method of Frobenius type so as to tackle the singularity in the model 

equations. Furthermore, the analytical solutions are displayed via graphs to show the effects of the flow 

parameters on the flow velocity, temperature and concentration profiles. The graphical results show that 

increase in viscosity, magnetic field and solutal Grashof number parameters retard the fluid flow. While 

increase in thermal Grashof number enhances the flow velocity. Thermal conductivity and solute injection 

parameters increase the fluid temperature and concentration respectively while the cooling and diffusive 

parameters decrease the fluid temperature and concentration respectively. Further studies can be carried out 

for a multi-directional flow as against the unidirectional flow and in a vertical channel in place of horizontal 

channel  as studied in this paper. 
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Nomenclatures 

 
𝑢∗ ≔ Dimensional velocity components   

𝑢0 (𝑟) ∶= Dimensionless velocity 

𝑢(𝑟) ∶= Velocity profile of the fluid    

𝛽 ≔ coefficient of volumetric expansion 

𝜃0(𝑟) ∶= Dimensionless temperature   

𝑞𝑟
∗ ≔ Radiative heat flux 

𝜃(𝑟) ∶= Temperature profile     

𝛼 ≔ Concentration injection parameter 

𝐶0(𝑟) ∶= Dimensionless concentration   

𝜆 ≔ Temperature cooling parameter 

𝐶(𝑟) ∶= Concentration profile    

𝜃𝑤 ≔ Temperature boundary parameter 

𝐺𝑟 ≔ Grashof number 

𝑇∞
∗ ≔ Free stream temperature    

𝐶𝑤 ≔ Temperature boundary parameter 

𝑧∗ ≔ Dimensional axisymmetric flow of channel  

𝐺𝑟 ∶= Grashof number 

𝑟∗ ≔ Dimensional radius      

𝑃:= Pressure gradient 

𝑡∗ ≔ Dimensional time 

𝑇∗ ≔ Dimensional fluid temperature 

𝑇𝑤
∗ ≔ Dimensional wall temperature 

𝜌 ≔ Fluid density 

𝑀 ≔ Magnetic field parameter 

𝑘 ≔ Thermal conductivity 

𝑔 ≔ Acceleration due to gravity 

𝜇 ≔ fluid viscosity 

𝜎 ≔ Electrical conductivity 

𝐶𝑝 ≔ Heat capacity 

 

1 Introduction 

 
Fluid flow with nonconstant change in temperature is referred to as non-isothermal flow. Such flow has its 

applications in heat transfer, convection and radiation in solid, porous and surface to surface media. Activities 

associated to a non-isothermal flow are industrial processes, heat exchangers and coating activities [1]. Several 

studies have addressed problem on a non-isothermal channel flow [2,3]. For example, a work on non-isothermal 

flow absorption in a cylindrical tube was investigated and an analytical solution was obtained for mass fraction 

and temperature distribution within the fluid by Conlisk et al. [4]. Duffy and Wilson [5] examined a two 

dimensional gravitational driven and viscous-temperature - dependent flow in a heated or cooled stationary 

horizontal cylinder. While a numerical study on a pressure driven non-isothermal flow was done by Pinarbasi 

and Imal [6] with a discovery that for a certain range of flow the pressure gradient is monotonic. Adegbie and 

Alao [7] solved numerically the problem of viscous steady flow in a heated channel so as to investigate the 

impact of viscosity and viscous dissipation resulting to high rate of flow and discovered that the solution is zero 

when the viscous heating parameter is zero. Sahu et al. [8] numerically examined a coupled energy and 

convective-diffusive pressure-driven non-isothermal miscible displacement flow in a viscous heating horizontal 

channel. Another study on the effect of heat transfer variation and thermoviscosity in and out of the atmosphere 

layer was displayed by Leslie and coworkers [1]. 

 

Using a euler-lagrange approach of modelling Jazcscur [9] carried an investigation in a fully developed non-

isotherml flow packed with particles and find out that particle’s mean temperature is very much affected with 

increase in particle concentration near the walls. While Subhakar and others [10] who took into consideration 

constant viscosity and thermal conductivity of the work of [11]. Furthermore, Nwaigwe & Makinde [12] 

considered a coupled effect of energy dependent viscosity alongside with specie dependent diffusivity in a non-

isothermal pressure driven and unsteady flow. Also, Misyura [13] investigated on a nonisothermal flow in salty 

solution taking into account the effect of temperature and concentration in the solution. A two-dimensional 

nonisothermal flow over a square cylinder submerged in a channel was studied by Santos [14], hence, 

comparing results in terms of Reynold number, drag and lift coefficient values with other researchers to 

ascertain his numerical computational model. Nwaigwe and coworkers [15] investigated the flow of a thermal 

radiating fluid with temperature-dependent thermal and constant viscous dissipation. It was realized that 

increase in the movement of wall channel increases the fluid velocity. While Ahmed and his team [11] worked 

on the MHD mass transfer on a moving nonisothermal flow considering variable viscosity and thermal 

conductivity presuming the variation viscosity as  inverse linear function of temperature . Nwaigwe [16] 

numerically carried out a work on mass and heat diffusion in a two parallel stationary walls and discovered that 

the thermal Grashof number and other parameters increase flow velocity of the fluid. 



 

 
 

 

Ize et al.; J. Adv. Math. Com. Sci., vol. 38, no. 2, pp. 32-47, 2023; Article no.JAMCS.95988 
 

 

 
34 

 

Bunonyo and Amos [17] also a solved blood related problem in a cylindrical inclined channel with magnetic 

field and considered the effect of mass transfer in the blood flow to discovered that increase in the magnetic 

field retards the blood flow velocity. The work of Nwaigwe and Amadi [18] examined an analytical solution to a 

Newtonian fluid transport problem within a cylinder. Their flow was assumed to be axisymmetric and 

dominated by the channel axis. 

 

Salahuddin et al. [19] worked on the heat and mass transfer incorporating  induced magnetic field in an 

incompressible Williamson fluid having variable thermo-physical properties such as viscosity.  

 

The purpose of this work is to extend the work Nwaigwe and Amadi [18] by infusing a specie  concentration, 

constant viscosity, thermal conductivity and mass diffusive parameter to the fluid in the cylindrical channel. The 

dimensional and nondimensionless model equations are presented in section 2 and similar method of solution in 

the extended work is used to tackle singularity in the model section 3. While the graphical results and discussed 

are displayed in section 4 with conclusion in section 5.   

 

2 Mathematical Formulation 

 
An incomprehensible Newtonian flow of a viscous fluid is assumed to be in a horizontal cylindrical duct in the 

 , ,r z  
 coordinates. The flow is considered to be unidirectional only along the  z −axis with no variation 

along that axis that is (
* 0u   on 

* 1r  ). The fluid is viscous with no- slip condition effect. The walls of the 

channels are stationary. The fluid velocity, temperature and concentration are 
* * *, ,u T C . Below is the diagram 

of the fluid flow, assuming  
*r  to be the distance from the centre of the channel towards the wall and 

* *(0,0, )u u   is the velocity vector. 

 

 
 

Fig. 1. Physical Representation of the Channel Flow 

 

Further, we assume that, the flow is axi-symmetric, convective-thermal-diffusive with a constant viscosity. The 

flow is also assumed to be steady and fully developed with a constant pressure gradient.  

 

2.1 Momentum Equation 

 
*

*
0zu

z





                           (1) 

*r
 

*z
 

Stationary Channel Wall 

Stationary Channel Wall 

*u
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   
2 ***

* * * * * 0

* * * *

1
0zz

f T C

B uuP
r g T T g C C

z r r r


  

 
 

   
         

    
     (2) 

 

2.2 Energy equation 

 

 
*

* * * *

0* * *

1
0

T
r Q T T

r r r
 

   
    

   
         (3) 

 

2.3 Mass concentration equation 

 

 
*

* * *

0 1* * *

1
0

C
D r Q C C

r r r


   
    

   
          (4) 

 

The corresponding boundary conditions are 

 
* * *

*

* * *

* * * * * *

0, 0, 0   at  0

0, ,C        at  1w w

du dT dC
r

dr dr dr

u T T C r


    


    

         (5) 

 

Where 
*u is the fluid velocity component along z  direction, 

f is the viscosity, 𝜌 is the density of the fluid, 

g
.
 

is the acceleration due to gravity, 
T is the volumetric expansion coefficient for temperature, 

*T . 

is the fluid temperature, 
*T

is the free stream temperature, 
c  is the volumetric expansion coefficient for 

concentration, 
*C is the fluid concentration, 

*C
is the free stream concentration, is the electrical conductivity 

of the fluid. 
2

0B is the uniform magnetic intensity, 
*  is the fluid thermal conductivity. 

 

2.4 Dimensionless parameters 

 
* 2 * 2 2* * * *

2 0

* * 2 2

0 0 0

* * 2* * 2 *
2 1

02 *

0 0 0 0

* *

0

* *

0 0

, , , , ,

, , , , , 1 ,

, 1 , , ,

T w C w

w w

ez
w

w

f

w

w

g T a g C a Q aT T C C
C Gr Gc

T C

u a C Q az r a P
z r u P M B a C

a a C D

DT P
D p

T D z

 
 

  




  

 
  

 

 





 
     




        


      

 
     

(6) 

 

The dimensionless parameters in equation (6) are applied to give the dimensionless governing equations as 

follow: 

 

2
2

2

1u u
M u p Gr CGc

r r r
 
  

     
  

          (7) 
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2
2

2

1
0

r r r

 
  
  

   
  

            (8) 

 

2
2

2

1
0

C C
D C

r r r


  
   

  
            (9) 

 

The corresponding boundary conditions: 

 

0, 0, 0   at  0

0, ,        at  1w w

u C
r

r r r

u C C r



 

   
    

   
    

        (10) 

 

where 𝜇  is the viscous term, 𝜅 is the thermal conductivity, 𝐷 is the diffusive term,  𝑝 is the pressure term, 𝑀 is 

the magnetic field parameter, 𝛼 is the injection term, 𝜆 is the cooling term, Gr is the thermal Grashof  number 

and Gc is the solutal Grashof number. 

 

Since u is a function of r only, the system of ordinary of differential equations are obtained as below : 

 

2
2

2

1d u du
M u p Gr CGc

dr r dr
 
 

     
 

        (11) 

 

2
2

2

1
0

d d

dr r dr

 
  
 

   
 

          (12) 

 

2
2

2

1
0

d C dC
D C

dr r dr


 
   

 
          (13) 

 

The corresponding boundary conditions: 

 

0, 0, 0   at  0

0, ,        at  1w w

du d dC
r

dr dr dr

u C C r



 


    


    

        (14) 

 

3 Method of Solution 

 
To solve equations (11), (12),(13) and (14), unique solutions of the forms are assumed below: 

 

0 0 1 1( ) ( ) ( )u r A u r Au r 
         (15) 

 

2 0 3 1( ) ( ) ( )r A r A r            (16) 

 

4 0 5 1( ) ( ) ( )C r A C r A C r 
        (17) 
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where 
0 ( )u r , 

1( )u r , 𝜃0(𝑟) , 𝜃1(𝑟), 
0 ( )C r  and 

1( )C r  are two linearly independent solutions with 
0A , 

1A , 

2A , 
3A , 

4A and 
5A as arbitrary constants. Hence, to obtain 

0 ( )u r , 𝜃0(𝑟)   and 
0 ( )C r , a  power series 

solution of Frobenius type is employed as follow: ( see Nwaigwe and Amadi [15]). 

 

   0

0

;p m

p

p

u r a r






            (18) 

 

 0

0

;p m

p

p

r a r






           (19) 

 

 0

0

;p m

p

p

C r a r






  m constant        (20) 

 

where ,p pa a , and pa  are constants to be determined. 

 

To solve for equations (11) – (13), equations (18) – (20) are first differentiated twice and substituted into 

equations (11) - (13) to obtain : 

 

 
       

 

2 22 2
2 4 6 80 62 4

0 2 2 2 2

0
2

108

2

2 4 6 8

...
10

m

M a aM a M a
a r r r r

m m m m
u r r

M a
r

m



   



        
           

                  
  

  
   
       

(21) 

 

 
       

 

2 22 2
2 4 6 80 62 4

0 2 2 2 2

0
2

108

2

2 4 6 8

...
10

m

a aa a
a r r r r

m m m m
r r

a
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m

  

   






        
           

                  
  

  
   
       

(22) 

 

 
       

 

2 22 2
2 4 6 80 62 4

0 2 2 2 2

0
2
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m

a aa a
a r r r r

m D m D m D m D
C r r

a
r

m D

  



        
           

                  
  

  
   
    

 (23) 

 

where the even values 'p sa  are only displayed, leaving out the odd values ( 1)'p sa  since they are all zeros. 

Therefore rewriting equations (21), (22) and (23) in terms of 
0a , the results are shown as : 
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 
           
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(24) 
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   
     
       
                  

  (25) 
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(26) 

 

To obtain 
1( )u r , 

1( )r   and 
1( )C r  in equations (15) – (17), equations (24), (25) and (26) are differentiated 

with respect to m to obtain: 
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Hence, for 0m   in equations (21) – (29) taking along the arbitrary constants in equation (15) – (17) the 

unique solutions for velocity, temperature and concentration are expressed as: 
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            (32) 

where 
1 3 5 7 9 0B B B B B    

. 

 

Applying boundary conditions in equation (14) to equations (30) – (32)  and setting
1 3 5 0A A A    due to 

boundedness the following results are obtained: 
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4 Results 

 
The graphical results of the analytical solutions for  flow velocity, energy and mass concentration are presented 

in this section varying different parameters such as viscosity,thermal Grashof, solutal Grashof, magnetic field, 

thermal conductivity, heat source, solute injection and diffusivity. 

 

 
 

Fig. 2. Velocity Profile against r for the values of Gc=0.5, Gr=0.5,α=0.6,κ=0.3.D=5,M=5, λ=6, P=1.0, 

varying viscosity parameter 
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Fig. 3. Velocity Profile against r for the values of Gc=0.5,α=0.6,κ=0.3.D=5,M=6, μ=0.1, λ=3, P=1.0, varying 

Thermal Grashof Number 

 

 
 

Fig. 4. Velocity Profile against r  for the values of Gr=0.5,α=0.6,κ=0.3.D=5,M=6, μ=0.1, λ=0.2, P=1.0, 

varying solutal Grahof Number 

 

 
 

Fig. 5. Velocity Profile against r for the values of Gc=0.5, Gr=0.5, α=0.6, κ=0.3, D=5, μ=0.1, λ=3, P=1.0, 

varying magnetic field parameter 

 

 
 

Fig. 6. Temperature Profile against r  for the values of θw = 0.1, λ= 4 varying thermal conductivity 

parameter 
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Fig. 7. Temperature Profile against r  for the values of θw = 0.1, κ = 1.0 varying heat source parameter 

 
 

Fig. 8. Concentration Profile against r  for the values of Cw = 0.1, α = 1.0, D=1.0, varying Diffusive 

parameter. 

 

 
 

Fig. 9. Concentration Profile against r for the values of Cw = 0.1, D = 1.0 varying solute injection 

parameter 

 

5 Discussion 

 
Having displayed the graphical results in section 4, the discussions for each graph is shown below: 
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In Fig. 2, the effect of viscosity parameter on flow velocity is shown. The  result depicts that,  flow velocity 

decreases as the viscous parameter increases. This is due to the that fact that there is always flow resistance at 

the wall of flow as a result of no slip between the wall and the fluid. 

 

Since Thermal Grashof determines the flow regime of a boundary layer, it is discovered that as Thermal Grashof 

number increases in Fig. 3, the fluid velocity increases. This result is in line with Bunonyo et al. [12], Prakash et 

al. [20], Makinde and Chinyoka [21]. 

 

Fig. 4 illustrates the outcome of solutal Grashof number on the fluid velocity distribution. As the solutal Grashof 

number rises the fluid velocity decreases.  Also, at any particular value of solutal Grashof number , flow 

velocity generally decreases towards the boundary wall. The result indicates that at higher value of solutal 

Grashof number the lesser the flow velocity. The finding is in agreement with Idowu et al. [22]. 

 

Fig. 5 shows the influence of magnetic field on the velocity profile. It is discovered that increase in magnetic 

field decreases the fluid velocity. This is due to Lorentz force which causes a drag in the flow as magnetic field 

increases. This is in agreement with the work of Nwaigwe [17]. 

 

For the case of Fig. 6 the effect of thermal conductivity parameter on fluid temperature is shown, it is seen that 

as thermal conductivity parameter increases, fluid temperature increases. It is agreement with the work of Idowu 

et al. [22]. 

 

As the heat sink parameter increases in Fig. 7, the fluid temperature decreases. This is physically true when heat  

is taken away from a system, this is due to boundary layer thickness. See (Nwaigwe and Amadi [18]. 

 

Fig. 8 shows the effect of mass diffusive parameter on fluid concentration and it is discovered that as the  

diffusive parameter increases the fluid concentration decreases. This is physically true that concentration 

reduces with increase in the rate of diffusion. 

 

The more the solute injection parameter increases the more the increase in fluid concentration in Fig. 9 see also 

the work of Nwaigwe and Amadi [18]. 

 

6 Conclusion 

 
Having studied the effect of mass concentration on a non-isothermal cylindrical channel flow  the following 

conclusions are drawn: 

 

 Increase in viscous parameter decreases flow velocity. 

 Flow velocity reduces with increase in magnetic field parameter. 

 Increase in Thermal Grashof number increases velocity profile.  

 Increase in Thermal Conductivity parameter increases fluid temperature . 

 Increase in Mass Diffusivity parameter decreases concentration 

 

Further works can be done by considering multi-directions flow, vertical channel and different flow type such as 

compressible or inviscid flow. 
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