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ABSTRACT 
 

The Dagum distribution is a great tool for survival analysis as well as representing the distribution 
of actuarial, meteorological, and income data. Additionally, it is frequently thought to be the best 
option when compared to the other three parameter distributions. The inverse Burr distribution is a 
generalised Beta distribution that is produced from generalised beta-II by taking shape parameter 
one into consideration. The many characteristics and several techniques for estimating the 
unknown parameters of parameter Dagum distribution are covered in this article. Although we are 
able to estimate the parameter of the Dagum distribution using Bayesian methods with both 
informative and noninformative priors, the methods used to produce the estimators are different. 
Risk functions are used to compare these estimators. 
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1. INTRODUCTION 
 

Camilo Degum [1] suggested the Dagum 
distribution as an alternative to the Pareto and 
log-normal models for modelling personal income 
data. This distribution has been widely used in a 
variety of domains, including survival analysis, 
reliability, meteorological data, and income and 
wealth statistics. In the actuarial literature, the 
inverse Burr XII distribution, often referred as the 
Dagum distribution, is frequently used. The 
upside-down bathtub, bathtub, and then upside-
down bathtub can all be possible geometries for 
the hazard function of the Dagum distribution [2-
4]. For further information, see Domma (2002). 
Several authors have studied the model in 
various domains as a result of this behaviour. In 
reality, the Dagum distribution has recently been 
examined from the perspective of reliability and 
used to assess survival data. Domma et al. [5] as 
well as Domma et al. [6]. The Dagum model's 
history and uses were thoroughly reviewed by 
Kleiber and Kotz [7] and Kleiber [8]. With 
censored samples, Domma et al. [5] computed 
the Dagum distribution's parameters. TL-
moments were employed by Shahzad and 
Asghar [9] to estimate this distribution's 
parameter. The class of weighted Dagum 
distributions and associated distributions were 
introduced by Oluyede and Ye [10]. This study 
examines the Bayesian and classical analyses of 
the Dagum distribution for the entire sample. 
Under various priors and with various loss 
functions, the maximum likelihood and Bayes 
estimators are derived. 
 
The cumulative density function (cdf) is defined 
as follows for every random variable X that 
follows the Dagum distribution: 
 

                                               

 
The probability density function is: 
 

                                
                                             

 
Where   is the scale parameter and the shape 

parameters are  ,  .  

 

2. SOME MATHEMATICAL AND 
STATISTICAL PROPERTIES 

 
2.1 Hazard Function 
 

The hazard rate (HR) function is one of the 
fundamental tools for studying a system's ageing 

and reliability characteristics. The HR                  
provides the system failure rate immediately 
following time t. The following equation 
represents the hazard rate function of the Dagum 
distribution: 
 

      
    

      

  
                   

    

               
                                     

 

 

2.2 Mean Residual Lifetime 
 

                 
 

          
        

 

 

  

                                                         
 

2.3 The Mean Residual Lifetime Function 
of X is Given By 

 

     
                

    
  

 

 

            
                

 

 

3. METHODS OF ESTIMATION 
 
3.1 Method of Maximum Likelihood 
 
The most popular technique for estimating 
parameters is maximum likelihood. The method's 
popularity is definitely due to its many desirable 
qualities, such as consistency, asymptotic 
efficiency, invariance, and just its intuitive appeal. 
Let (x1, . . ., xn) be a random sample of size n 
from the D(β, λ, δ) distribution with parameters 
“β, λ and δ”. 
 

                  
           

   
    

    

 

   

 

 
log-likelihood function is:  
 
                          

   
          

                 
              

 

3.2 Method of Moments 
 
The Method moments of the three-parameter 
distribution can be obtained by equating the first 
three theoretical moments of (1) with the sample 
moments  
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3.3 Method of L-Moments 
 
The L-moments estimators are presented in this 
subsection and can be produced as linear 
combinations of order statistics. Hosking (1990) 
first introduced the L-moments estimators, and it 
has been found that they are more reliable than 
the traditional moment estimators. Similarly, to 
how ordinary moment estimators are obtained, 
the L-moment estimators are similarly                       
obtained by equating the sample L-moments              
with the population L-moments. Although some 
higher moments may not exist, L-moment 
estimation offers a different approach to 
estimation that is similar to conventional 
moments. It is also highly resistant to the effects 
of outliers and has the advantage of existing 
whenever the distribution's mean exists 
(Hosking, 1994). 
 
Let the order statistics of a random sample of 
size n drawn from the Dagum distribution be (X1:n 

<…< Xn:n ). From Hosking (1990), the first, 
second, and third sample L-moments are, 
respectively: 
 

   
 

      
               

 

   

 

   
 

           
                

 

   

 
 

      
               

 

   

 

 
The first, second, and third population Lmoments 
of (θ=(β,λ,δ)) respectively, are obtained by the 
quantile function of the Dagum distribution as 
described in (3). 
 

                       
 

 

     
 

 
   

 

 
 
 

                              
 

 

 

    
 

 
   

 

 
       

 

 

                          
 

 

             
 

 
   

 

 
     

    
 

 
     

 

 
 

      
 

 
   

 

 
  

 

 
The L-moments estimators      

,      
 and      

 

of the parameters β, λ and δ can be obtained by 
solving numerically the equations: 
 

                         

                         

                         

 

4. BAYESIAN ESTIMATORS USING 
DIFFERENT PRIOR AND LOSS 
FUNCTIONS 

 
Types of loss functions: - 
 
If    represent of estimator for the shape 

parameter  , then for: 
 

1. K-Loss Function (KLF) defined 
as:(2011) 

 

          
        

   
            

      

        
 

 

 
2. Entropy loss function (ELF): ELF 

defined as: (2011) 
 

          
  

 
 

 

     
  

 
 

 

           

           
 
 
  

 

 

4.1 The Posterior Distributions with 
Extension Jeffery’s Prior 

 
the posterior density function of the shape 
parameter   is: 

 

        
           

              
 

 

                                     
 

 
For “Bayesian estimation”, we describe two 
distinct posterior distributions under complete 
samples, and two distinct prior distributions for 
the shape parameter. 



 
 
 
 

Kumari et al.; Curr. J. Appl. Sci. Technol., vol. 41, no. 48, pp. 129-134, 2022; Article no.CJAST.95897 
 

 

 
132 

 

  Extension Jeffery’s priors 

     
 

 
              

 

 

     
         

 

 

 

4.2 Bayes Estimators using Loss 
Functions KLF, ELF 

 
Using KLF, the risk function of       using K-loss 

function is given by 
 

                           

  
         

  
  

 

 
  

 

 
 

    

         
 
 

 
         

     
   

 

         
 
 

 
Using ELF, the risk function of       using entropy 

loss function is given by 
 

                           

  
       

 
  

 

 
                     

 

 

5. SIMULATION STUDY 
 
In this section, we perform numerical calculations 
to assess the performance of the estimators 
proposed in previous sections. It is simple to 
obtain the generation of the Dagum distribution 

using the inverse transformation, where U is a 
uniform on (0, 1). We take into account two 
options for the shape parameter, “β = 1, 2” as 
well as (n = 20, 60, 80, and 100). We consider 
the values λ = 1 and δ = 4 in both circumstances. 
We calculate the bias and the root mean square 
error (RMSE), respectively, for each estimate as 
follows: 
 

     
 

 
        

 

   

 

          
 

 
        

  

   

 

 

6. REAL APPLICATION 
 

For the purpose of comparing the estimators 
provided in this work, we employed a single data 
set. The data set, which consists of 100 
observations on the breaking stress of carbon 
fibres, was collected by Nichols and Padgett [11]. 
(in Gba). Data include: 
 

(3.7, 2.74, 2.73, 3.11, 3.27, 2.87, 4.42, 2.41, 
3.19, 3.28, 3.09, 1.87, 3.75, 2.43, 2.95, 2.96, 2.3, 
2.67, 3.39, 2.81, 4.2, 3.31, 3.31, 2.85, 3.15, 2.35, 
2.55, 2.81, 2.77, 2.17, 1.41, 3.68, 2.97, 2.76, 
4.91, 3.68, 3.19, 1.57, 0.81, 1.59, 2, 1.22, 2.17, 
1.17, 5.08, 3.51, 2.17, 1.69, 1.84, 0.39, 3.68, 
1.61, 2.79, 4.7, 1.57, 1.08, 2.03, 1.89, 2.88, 2.82, 
2.5, 3.6, 1.47, 3.11, 3.22, 1.69, 3.15, 4.9, 2.97, 
3.39, 2.93, 3.22, 3.33, 2.55, 2.56, 3.56, 2.59, 
2.38, 2.83, 1.92, 1.36, 0.98, 1.84, 1.59, 5.56, 
1.73, 1.12, 1.71, 2.48, 1.18, 1.25, 4.38, 2.48, 
0.85, 2.03, 1.8, 1.61, 2.12, 2.05, 3.65). 

 
Table 1. Average bias and RMSE of parameters   = 1,     ,        

 

n        

20 method bias RMSE bias RMSE bias RMSE 

 MLE 0.0762 0.4291 0.1049 0.6225 0.0355 0.3187 

 MME -0.0165 0.0809 -0.0077 0.0925 0.0037 0.1228 

 LME -0.0017 0.0187 -0.0078 0.0502 -0.0005 0.0187 

50 MLE 0.0076 0.0937 0.0068 0.1186 0.0030 0.0960 

 MME -0.0050 0.0403 -0.0021 0.0432 0.0003 0.0581 

 LME -0.0004 0.0048 -0.0030 0.0237 -0.0007 0.0058 

80 MLE 0.0076 0.0937 0.0068 0.1186 0.0030 0.0960 

 MME 0.0050 0.0403 -0.0021 0.0432 0.0003 0.0581 

 LME -0.0004 0.0048 -0.0030 0.0237 -0.0007 0.0058 

100 MLE 0.0021 0.0443 0.0020 0.0601 0.0011 0.0555 

 MME -0.0028 0.0284 -0.0008 0.0308 0.0007 0.0449 

 LME -0.0002 0.0025 -0.0018 0.0184 -0.0004 0.0045 
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Table 2. Average bias and RMSE of parameters   = 1,     ,        

 

n        

20 Methods bias RMSE bias RMSE bias RMSE 

MLE 0.1475 0.4291 0.1047 0.6226 0.0357 0.3186 
MME -0.0165 0.0806 -0.0077 0.0924 0.0036 0.1227 
LME -0.0015 0.0188 -0.0077 0.0501 -0.0005 0.0189 

50 MLE 0.0076 0.0937 0.0068 0.1186 0.0030 0.0960 
MME -0.0050 0.0403 -0.0021 0.0432 0.0003 0.0581 
LME -0.0004 0.0048 -0.0030 0.0237 -0.0007 0.0058 

80 MLE 0.0076 0.0937 0.0068 0.1186 0.0030 0.0960 
MME 0.0050 0.0403 -0.0021 0.0432 0.0003 0.0581 
LME -0.0004 0.0048 -0.0030 0.0237 -0.0007 0.0058 

100 MLE 0.0021 0.0443 0.0020 0.0601 0.0011 0.0555 
MME -0.0028 0.0284 -0.0008 0.0308 0.0007 0.0449 
LME -0.0002 0.0025 -0.0018 0.0184 -0.0004 0.0045 

 

Table 3. Posterior estimates (  ) and risks R (  ) under extended Jeffreys prior 

 

n  b a M = 0.5 MSE M=1.3 MSE M = 3.0 MSE 

20       3.0 1.4 12.690 0.0519 11.648 0.0594 9.434 0.1428 

      2.5 1.5 6.031 0.0519 5.536 0.0594 4.483 0.1428 

      3.0 1.4 12.369 0.0260 11.327 0.0298 9.114 0.0683 

      2.5 1.5 5.878 0.0260 5.383 0.0298 4.331 0.0683 

50       3.0 1.4 11.629 0.0203 11.253 0.0214 10.454 0.0317 

      2.5 1.5 7.147 0.0203 6.916 0.0214 6.425 0.0317 

      3.0 1.4 11.512 0.0101 11.136 0.0107 11.136 0.0157 

      2.5 1.5 7.075 0.0101 6.844 0.0107 6.353 0.0157 

100 
 

      3.0 1.4 9.848 0.0100 9.689 0.0103 9.353 0.0127 

      2.5 1.5 6.651 0.0100 6.544 0.0103 6.316 0.0127 

      3.0 1.4 9.798 0.0050 9.640 0.0051 9.304 0.0063 

      2.5 1.5 6.617 0.0050 6.510 0.0051 6.283 0.0063 

 
Performance of Bayes estimates under the 
Jeffreys prior extension for the scale (  ) 

parameter of the Dagum distribution. The 
procedure is repeated 1000 times, and the 
resulting average is shown in the tables below. 
The simulation study makes use of the VGAM 
package. We select n = 20, 50, and 100 to 
symbolise various sample sizes. The results for 
various values of b = 3, 2.5, a = 1.4, and 1.5 are 
summarised in Table 3. The hyper-parameter 
values chosen are m = (0.5, 1.3, 3.0). The MLE 
values in R software are used to select these 
values. In order to determine if the estimators are 
admissible under various loss functions, their 
relative risks are computed. 
 

7. CONCLUSION 
 
We give explicit representations of various 
distributional features in this article. In addition to 
using classical and Bayesian inference, 
estimation techniques are used to estimate the 

model parameters. We have performed an 
extensive simulation study to compare these 
methods. We have compared estimators with 
respect to bias and mean-squared error. We 
have also compared estimators using a real data 
application.  
 
Tables 2 to 3 exhibit the findings of the 
simulation study and real data example for 
various values of n, a, b, and hyper-parameters. 
It has been noted that 
 

1. As the hyper-parameter values rise, so do 
the risk values of the under and extension 
of Jeffreys' previous. 

2. The risk functions are constant with 
respect to the parameter, i.e., Given that 
there is no influence to increase the 
parameter's true values under the Dagum 
distribution, the Bayes estimators are 
minimax estimators for the parameter. The 
risk functions never change. In other 
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words, raising the parameter's true values 
has no effect, which suggests that, in the 
case of the Dagum distribution, the Bayes 
estimators are minimax estimators for the 
parameter. 

3. Using ELF, there is minimal risk based on 
both priors, therefore it is acceptable for all 
sample sizes. 

4. The risks are also seen to decrease as 
sample size increases.  
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