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ABSTRACT 
 

Near-surface remote sensing has been used to document seasonal growth patterns (i.e. phenology) 
for plant communities in diverse habitats. Phenology from this source may only apply to the area 
within the images. Meanwhile ecosystem models can accommodate variable weather and 
landscape differences to plant growth, but accuracy is improved by adding ground-truthed inputs. 
The objective of this study was to use PhenoCam data, image analysis, and Beer’s law with 
established extinction coefficients to compare leaf area index (LAI) development in the ALMANAC 
model for diverse plant types and environments. Results indicate that PhenoCam time series 
imagery can be used to improve leaf area development in ALMANAC by adjusting parameter values 
to better match LAI derived values in new diverse environments. Soybeans, mesquite, and maize 
produced the most successful match between the model simulations and PhenoCam data out of the 
eight species simulated. This study represents, to our knowledge, the first independent evaluation of 
the ALMANAC process-based plant growth model with imagery in agroecosystems available from 
the PhenoCam network. The results show how PhenoCam data can make a valuable contribution to 
validate process-based models, making these models much more realistic and allows for expansion 
of PhenoCam influence. 
 

 

Keywords:  PhenoCam Network; ALMANAC model; ImageJ; phenology; green chromatic coordinate; 
Leaf Area Index (LAI) 

 

1. INTRODUCTION  
 

Analysis of time series photography allows us to 
track changes in ecosystems over time enabling 
us to extrapolate data and measure occurring 
changes. Plant phenology, specifically, the 
development of leaf area cover over time, is a 
primary determinant of plant productivity for all 
plants in all environments. The seasonal growth 
curve, beginning with spring greenup, through 
maximum leaf area cover (often near anthesis), 
and finally, at the end of the growing season 
(senescence) determines the amount of plant 
biomass produced, the amount of water 
transpired, and is the driver for many 
environmental aspects. Two parallel approaches 
to quantifying plant phenology have been direct 
measurement by daily color pictures and the 
simulation by process models relying on plant 
parameters, soils data, and weather data. Our 
goal is to quantify how much green is in 
photographs of specific plants and to calculate 
leaf area index (LAI) and relate it to values from 
model simulations. Ideally, both the LAI 
calculation and the model should show similar 
phenological seasonality and have similar LAI 
values for the plants.  
 

The PhenoCam Network is a series of over 600 
high-resolution digital cameras installed at 
locations in North America which take photos 

every thirty minutes and transmit them to an 
open access repository 
(https://phenocam.sr.unh.edu/webcam/). 
 

 Although the project began as a way to monitor 
forests in the northeastern United States, they 
now function as “a continental-scale phenological 
observatory, spanning as wide a range of 
biogeoclimatic zones and vegetation types as 
possible” [1]. This near-surface remote sensing 
provides several advantages to conventional 
remote sensing, including being nearly 
continuous in time and being free of obstructions 
like clouds or atmospheric effects. Thus, it has 
been studied and applied to many research 
concepts like green up [2–4] and canopy cover 
[5,6] in habitats from deciduous forests to cold 
deserts to rice paddies and arid ecosystems. 
Data from PhenoCams, including non-
photographic data such as Green Chromatic 
Coordinate (GCC) and Regions of Interest 
(ROIs), are used to link field and satellite 
observations of landscape phenology. These 
data have been used to constrain model 
parameters in North American grasslands but it 
could theoretically be used to bolster modelling 
techniques in a multitude of ecosystems [7,8].  
 
The ALMANAC model has already been applied 
to a wide variety of crops, grasses, and woody 
vegetation. ALMANAC, or Agricultural Land 
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Management Alternative with Numerical 
Assessment Criteria, can simulate plant growth, 
competition, light interception by leaves, biomass 
accumulation, partitioning of biomass into grain, 
water use, nutrient uptake, and growth 
constraints such as water, temperature, and 
nutrient stresses [9]. Light interception by the leaf 
canopy is simulated with Beer’s law [10] and the 
LAI. The greater the value of the extinction 
coefficient k, the more light will be intercepted at 
a given LAI. The fraction (Fraction) of                 
incoming solar radiation intercepted by the leaf 
canopy is 

 
Fraction = 1.0 - exp (k * LAI ).                    (1) 

 
The extinction coefficient (k) is the only fitted 
variable. 
 
ALMANAC requires inputs of soil, weather, 
tillage, and plant parameters, utilizing these real-
world data improves its accuracy [9]. It is 
common to use default ALMANAC plant 
parameters for new simulations that have been 
derived from years of field measurements, but 
adjustments for degree days for the growing 
season (PHU) are typically applied when moving 
to new sites. The direct method of measuring LAI 
and other parameters can take considerable time 
and resources to establish by visiting sites 
throughout the growing season across several 
years. Plant growth parameters based on these 
initial collections are calibrated and validated and 
added to the model’s database. Plant parameters 
transferred to different growing conditions 
sometimes requiring a few additional modeling 
adjustments such as the planting density or 
speed of the growth curve for LAI. Being able to 
model plant growth is extremely beneficial for 
addressing questions in management, site 
selection, climate change, phenology, and yield. 
Collecting data can be costly in terms of time and 
travel so PhenoCams can help optimize the 
model for new areas with less costs. This study 
shows how LAI derived from PhenoCams can 
increase the accuracy of the model by providing 
accurate timing of plant phenology from new 
distant sites. Thus, ALMANAC will have field 
data to compare without intense trials, as 
baseline plant parameters have already been 
established and only need minor adjustments to 
new locations. Likewise, PhenoCams are only 
accurate for the plants seen within the photo, but 
with the ALMANAC model’s help, seasonal 
changes can be extrapolated for a much larger 
landscape. 
 

Linking these two systems, the PhenoCam 
Network and the ALMANAC model, advance 
quantification of plant phenology. Just as 
PhenoCam images are ostensibly available for 
each day, the ALMANAC model runs on a daily-
timestep allowing for a consistent and simple 
comparison. The model, while simulating early 
season greenup, late season senescence, and 
maximum leaf area cover (via leaf area index), 
benefits from having actual field data for 
validation and improvement. The PhenoCam 
network benefits by having a simulation tool to 
expand the results to large areas with diverse 
soils, weather, and plant types. It has been 
established that for some ecosystems the use of 
near-surface remote sensing provides a 
satisfactory tool for assessing and projecting the 
status of vegetation. However, there is no 
established or routine protocol for doing so 
[4,11,12].  
 

In this study, we selected diverse sites, then ran 
simulations in ALMANAC, and compared its leaf 
area index (LAI) values to color analyses results 
from ImageJ software using images from the 
PhenoCam Network. The selected sites are part 
of the Long-Term Agroecosystem Research 
(LTAR) Network, which is managed by the 
United States Department of Agriculture’s 
Agricultural Research Service in partnership with 
local institutions. It represents a range of different 
agroecosystems and climatic conditions with the 
intention of applying experimental research 
findings to the sustainable intensification of US 
agriculture [13]. Methods from this study can be 
applied to other sites in the LTAR network as 
well as other observation networks in the 
PhenoCam network. 

 
The objective of this study was to use 
PhenoCam data, image analysis, and Beer’s law 
with established extinction coefficients to 
determine the LAI of the photograph and 
compare it with the LAI simulated in the 
ALMANAC model for diverse plant types and 
diverse environments. We present data from 
PhenoCam images analyzed in ImageJ [14] 
using the L*A*B* color space to determine the 
green leaf area, results from ALMANAC 
simulations run for appropriate plants using site 
specific weather and soil data, and finally the 
comparison of LAI estimated from imagery and 
modeled from ALMANAC. This study shows the 
potential when linking the ALMANAC model and 
the PhenoCam system. Using these combined 
tools, more accurate simulations can be 
achieved nationwide, expanding the benefit of 
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Table 1. A brief overview of the sites, their locations, crops [15], and soil [16] 
 

Site name County State Latitude Longitude Vegetation Soil Name 
Archboldpnotx Highlands Florida 27.1807 -81.2007 Bahiagrass  

(Paspalum notatum) 
Oldsmar fine sand,  
0-2% slopes 

Tworfaa Falls Texas 31.4777 -96.8882 Maize 
(Zea mays),  
Alfalfa 
(Medicago sativa) 

Heiden clay,  
1-3% slopes 

Arsmorris1 Stevens Minnesota 45.6167 -96.1269 Maize,  
Soybeans (Glycine max) 

Aazdahl-Balaton clay  
loams, 0-2% slopes 

Arsmorris2 Stevens Minnesota 45.6270 -96.1270 Wheat  
(Triticum aestivum) 

Flom-Aazdahl-Hamerly 
complex, 0-2% slopes 

Ibp Doña Ana New Mexico 32.589 -106.847 Black Grama  
(Bouteloua eriopoda)  

Wink-Harrisburg association,  
1-5% slopes 

Jernort Doña Ana New Mexico 32.619 -106.788 Honey Mesquite  
(Prosopis glandulosa) 

Onite-Pintura complex- 
Sandy, 1-5% slopes 

Jerbajada Doña Ana New Mexico 32.5799 -106.6338 Creosote Bush  
(Larrea tridentata) 

Dona Ana-Chutum complex,  
1-10% slopes 

Jersand Doña Ana New Mexico 32.515 -106.798 Creosote Bush Onite-Pajarito association,  
1-5% slopes 

 
Table 2. Crops and their threshold metrics 

 
Site Crop A* 
Archboldpnotx Bahiagrass 120 
Tworfaa Maize, Alfalfa 120 
Arsmorris1 Maize, Soybeans 120 
Arsmorris2 Wheat 120 
Ibp Black Grama 127 
Jernort Honey Mesquite 127 
Jerbajada Creosote Bush 140 
Jersand Creosote Bush 140 

*Within the L*A*B* color space, A* was adjusted to these levels in order to best highlight the green growth within the PhenoCam images 
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PhenoCams even where they are not installed, 
and allowing for more accurate modeling to 
occur.  
 

2. MATERIAL AND METHODS 
 
Eight sites (Table 1) were selected for their 
diverse locations, contrasting species, and 
amount of and quality of available information. 
Each site underwent several steps: data 
acquisition for images and GCC, image analysis 
in ImageJ, simulation in ALMANAC, then a 
transformation and analysis. Simulations were 
completed through 2019, the last full year of 
data.  

 
2.1 Data Acquisition for Images and GCC 
 
Green Chromatic Coordinate (GCC) measures 
green light relative to red light and blue light and 
can be plotted as a time series. It can be 
expressed as: 
 

GCC = DNG / ( DNR+ DNG + DNB),  (2) 
 
where DN represents digital numbers ranging 
from 0-255 in the red, green, and blue image 
bands [17]. It has been successfully used to 
measure phenology and gross primary 
productivity in diverse habitats like forests and 
deserts [11,15,18–20]. When using GCC to 
measure the health of vegetation, one operates 
under the assumption that healthy plants will 
reflect more green light than unhealthy plants 
[2,18]. However, it is better at controlling for 
varying illumination in photographs than other 
methods of quantifying color [17]. Although this 
method has its benefits, a notable limitation of 
using GCC includes that it cannot compensate 
for how much vegetation greenness varies by 
plant species, canopy structure, and foliar 
nitrogen [21]. For example, GCC has been found 
to be in good agreement with start-of-season and 
end-of-season indicators for honey mesquite, but 
not black grama; for both species it correlated 
well with canopy greenness [22]. However, [5] 
and [23] have found there is not a reliable direct 
correlation between LAI and GCC. 
  
The PhenoCam Network serves as a repository 
and server for derived data such as GCC at 1- 
and 3-day time steps as well as the daily digital 
images and region of interest (ROI) mask files. 
The ROI is the specific area of each PhenoCam 
field of view over which the pixel values are 
summarized to compute GCC. GCC is derived 
for the ROI at each site at both hourly time 

increments and as a total daily value in the 
daylight hours. GCC data, photographs, and ROI 
files were downloaded from the PhenoCam 
Network’s website [1]. Although multiple GCC 
datapoints are available for most days, GCC data 
was filtered by time and date to include only one 
measurement per day, specifically the one 
nearest to noon as the image analysis used in 
the next step needed to reduce the effect of 
shadows. To match the daily GCC value with LAI 
from a single daily image from each PhenoCam, 
we selected the daily image closest to noon 
during the first available clear day of each month 
during the growing season. Photographs were 
also used from the 15th of the month for the 
Minnesota sites as these had a shorter growing 
season and more data were needed to make the 
analysis more robust. 
 

2.2 Image Analysis in ImageJ 
 
Instead of using all daily images, only a few were 
needed to compare the resulting values with 
GCC values, and compare ImageJ values 
converted to LAI with ALMANAC’s LAI values to 
see if seasonal trends were similar, thus 
reducing the time spent downloading and 
processing images. ImageJ is a java-based 
image analysis software which has found uses in 
a wide variety of fields [14]. Selected PhenoCam 
images were analyzed to quantify percent 
greenness in ImageJ based on the ROI masks 
for each PhenoCam to ensure the same area is 
analyzed in each image. This was accomplished 
by using the Image Menu to adjust the color 
threshold. The L*A*B* color space was used 
instead of H*S*V*, R*G*B*, or Y*U*V* to take 
advantage of its ability to distinguish between 
similar colors and its device independency [24]. 
Device independency ensures that the ability to 
identify a color by coordinates does not change 
with different equipment. A*, the coordinate that 
reflects a color’s position between magenta and 
green, was adjusted. Different crops required 
different threshold metrics to accurately capture 
leaf area from the image as not every species 
will be the same shade of green (Table 2). The 
threshold for A* was determined visually using 
the photo from maximum leaf area and adjusting 
the value until the green leaves were selected.  
 
Once the threshold was applied to the image, the 
ROI from the PhenoCam was overlaid (Image 1) 
to ensure the same image pixels were used in 
GCC and ImageJ calculations. This was done 
using the Edit menu, then using Select and 
Image to Selection to make the ROI file “zero 



transparent”, then overlaid it onto the image of 
the sites [14,25]. The Analyze Menu’s Analyze 
Particle function was used to find Percent Area 
Fraction. The resulting number represents the 
green area within the ROI of the photo. 
 

2.3 Simulation in ALMANAC 
 
In ALMANAC, simulations were created using 
site specific weather files, soil and crop 
information. Data from weather stations nearest 
each site were used [26–31] (Table 3), and soils 
were obtained from NRCS WebSoilSurvey [16] 

Image 1. An image acquired 8/15/2018 from arsmorris1 PhenoCam of maize growing in 
Minnesota (left) and then the same image (right) with the A* color threshold 0
overlaid. The red shading indicates t

with the total ROI to determine green leaf area index.
 

Table 3. Weather data used in simulations
 

Site Years 
archboldpnotx 2018-2019 
tworfaa 2018-2019 
arsmorris1 2018-2019 
arsmorris2 2018 
ibp 2015-2019 
jernort 2006-2019 
jerbajada 2014-2019 
jersand 2014-2019 
*Years correspond to those used for the simulations for which we had PhenoCam imagery and weather data.

*Weather variables are: Solar Radiation (SR), Minimum Temperature and Maximum 
Precipitation (P), Relative Humidity (H), and Wind Speed (W).

*The source lists where the weather data was from and the name of the site used. Four sources were used 
NOAA [26], LTER [27
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transparent”, then overlaid it onto the image of 
the sites [14,25]. The Analyze Menu’s Analyze 
Particle function was used to find Percent Area 

e resulting number represents the 
green area within the ROI of the photo.  

In ALMANAC, simulations were created using 
site specific weather files, soil and crop 
information. Data from weather stations nearest 

31] (Table 3), and soils 
were obtained from NRCS WebSoilSurvey [16] 

(Table 1). The simulated LAI v
ALMANAC generated using default parameters 
indicated that changes needed to be made to the 
plant parameters or to the management 
scenario. Again, this is typical and expected 
when moving growth parameters from their site 
of origin to a new location and with different 
management scenarios, minor changes to the 
simulation will be needed as not all species were 
grown in the same conditions. Management 
dates were primarily determined by observing 
changes in the PhenoCam images. Such 
changes are documented in Table 3. 

 

 
Image 1. An image acquired 8/15/2018 from arsmorris1 PhenoCam of maize growing in 

Minnesota (left) and then the same image (right) with the A* color threshold 0-120 and the ROI 
overlaid. The red shading indicates the green leaf area that will be measured and compared 

with the total ROI to determine green leaf area index. 

Table 3. Weather data used in simulations 

Variables Source: Site Name 
T, P NOAA: USC00080236 
SR, T, P, H, W USDA-ARS: Riesel 
T, P NOAA: USC00215638 
T, P NOAA: USC00215638 
T, P, H, W LTER: G-IBPE 
T, P, H NOAA and LTER: USC00294426 and M
T, P, H NRCS SCAN: 2168 
SR, T, P, H, W LTER: C-SAND 

*Years correspond to those used for the simulations for which we had PhenoCam imagery and weather data.
*Weather variables are: Solar Radiation (SR), Minimum Temperature and Maximum Temperature (T), 

Precipitation (P), Relative Humidity (H), and Wind Speed (W). 
*The source lists where the weather data was from and the name of the site used. Four sources were used 

NOAA [26], LTER [27–29], NRCS SCAN [30], and USDA-ARS [31]. 
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when moving growth parameters from their site 
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Image 1. An image acquired 8/15/2018 from arsmorris1 PhenoCam of maize growing in 
120 and the ROI 

he green leaf area that will be measured and compared 

NOAA and LTER: USC00294426 and M-NORT 

*Years correspond to those used for the simulations for which we had PhenoCam imagery and weather data. 
Temperature (T), 

*The source lists where the weather data was from and the name of the site used. Four sources were used 
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Plant parameters for ALMANAC adjusted for this 
study consisted of those that affect leaf area 
index (LAI) over the growing season. Plant 
parameters were adjusted to match the 
simulated LAI values with those calculated from 
the PhenoCam image results. Once the crop 
category was set (annual warm season crop, 
deciduous woody species, evergreen woody 
species, or perennial warm season grass), the 
sum of degree days (PHU) for a year from 
planting or greenup to maturity was set (using 
the already established base and optimum 
temperatures for the plant species). The potential 
leaf area index (DMLA) was the first parameter 
adjusted. The fraction of the growing season (in 
degree days) when maximum LAI occurred 
(DLAI) was adjusted next. Two parameters for 
the “S” curve for leaf area index increase are 
DLAP1 and DLAP2. These are each two-part 
parameters. The number to the left of the 
decimal is the fraction of the season and the 
number to the right of the decimal is the fraction 
of maximum LAI. Thus, if DLAP1 and DLAP2 are 
10.05 and 50.95, plants reach 5% of potential 
LAI at 10% of seasonal degree days (PHU) and 

95% of potential at 50% of PHU. Two more two-
part parameters are PPL1 and PPL2. PPL1 is 
plant population (plants/m2) at a lower density 
and the number after the decimal is the fraction 
of maximum LAI reached at that density. The 
same goes for PPL2 but it is at a higher density. 
A parameter important for multi-year runs with 
perennials is the CHTYR, that is the number of 
years until plants reach their potential LAI. The 
rate of leaf area decline late in the season 
(RLAD) can be linear, or curvilinear depending 
on whether RLAD is 1.0, or above or below 1.0. 
Finally, a dormancy parameter (DORMNT) 
defines how perennial plants go dormant as the 
photoperiod approaches the minimum for the 
year.  
 
Adjustment of plant parameters followed a logical 
sequence. First, the height of the LAI curve from 
the PhenoCam results was matched by adjusting 
the potential LAI in ALMANAC (DMLA). 
Secondly, the timing for when maximum LAI is 
during the season (DLAI, fraction of the season’s 
PHU) was adjusted to match the ALMANAC 
simulated values with those from the PhenoCam

 

 
 

Image 2. Image from archboldpnotx PhenoCam taken on July 1st, 2017 
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Table 4. ALMANAC plant parameter changes made based on PhenoCam inputs 
 
Crop Site DMLA DLAI DLAP1 DLAP2 CHTYR RLAD DORMNT 

Alfalfa Default - - 15.01 50.95 - - - 
 tworfaa* - - 55.18 86.83 - - - 

Bahiagrass Default 2 0.7 22.12 54.62 0 - - 
 Archboldpnotx 1.25 0.25 1.13 11.76 1 - - 

Black Grama Default 1.5 0.35 - 30.07 0 0.1 - 
 Ibp 2 0.53 - 40.72 1 0.9 - 

Creosote Bush Default 2.75 0.93 41.88 92.98 - - 0 
 jerbajada* 1.2 0.86 2.7 49.86 - - 0.75 
 jersand* 1.2 0.86 2.7 49.86 - - 0.75 
Honey Mesquite Default 4 - - - 0 - - 
 jernort* 1 - - - 15 - - 

Maize Default 6 0.5 - 50.95 - 0.75 - 
 arsmorris1 3 0.52 - 35.82 - 0.75 - 
 Tworfaa - - - - - 1 - 

Soybeans Default 10 0.8 - 50.92 - 1 - 
 arsmorris1 3.8 0.73 - 61.8 - 0.75 - 

Wheat 
 

Default 5 0.6 31.07 57.95 - - - 
arsmorris2 5.3 0.47 26.19 42.67 - - - 

* Dashes represent that no change was made to the default ALMANAC plant parameter. 
* This site had an additional minor parameter changed which may include CLAIYR, DMPHT, IDC, PPL1, PPL2, or TG. 



results. Next, to get the buildup of LAI prior to 
DLAI, DLAP1 and DLAP2 were adjusted to get 
closer agreement between ALMANAC and 
PhenoCam results. The rate of decline of LAI in 
the later part of the season was matched 
adjusting RLAD in ALMANAC. Finally, for 
creosote bush only, we adjusted the length of the 
dormant period in the winter (DORMNT) to match 
ALMANAC output with the PhenoCam results. 
See Table 4 and the site details for specific 
changes. 
 
The archboldpnotx site is a field that is 
sometimes grazed but was not grazed during the 
period of the measurements within the Archbold 
Biological Station in Florida.  Bahiagrass was 
simulated in 2018 and 2019. While bahiagrass is 
a perennial, and has been simulated as such 
within ALMANAC in Texas [32], challenges with 
simulating its dormancy in this subtropical area in 
Florida were handled by simulating each year of 
grass growth separately. For the simulations, 
bahiagrass was planted on April 1 2018 and 
2019, with a PHU of 3000, and a plant population 
density (POP) of 50. During both years 
bahiagrass was hay harvested and killed on 
December 1. Although the field had bee
growing there before PhenoCam data was 
 

Image 3. Image taken by PhenoC
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results. Next, to get the buildup of LAI prior to 
DLAI, DLAP1 and DLAP2 were adjusted to get 
closer agreement between ALMANAC and 
PhenoCam results. The rate of decline of LAI in 
the later part of the season was matched by 
adjusting RLAD in ALMANAC. Finally, for 
creosote bush only, we adjusted the length of the 
dormant period in the winter (DORMNT) to match 
ALMANAC output with the PhenoCam results. 
See Table 4 and the site details for specific 

site is a field that is 
sometimes grazed but was not grazed during the 
period of the measurements within the Archbold 

Bahiagrass was 
simulated in 2018 and 2019. While bahiagrass is 
a perennial, and has been simulated as such 
within ALMANAC in Texas [32], challenges with 
simulating its dormancy in this subtropical area in 
Florida were handled by simulating each year of 

ass growth separately. For the simulations, 
bahiagrass was planted on April 1 2018 and 
2019, with a PHU of 3000, and a plant population 
density (POP) of 50. During both years 
bahiagrass was hay harvested and killed on 
December 1. Although the field had been 
growing there before PhenoCam data was 

available and grazed prior to the simulation 
years, ALMANAC needed this management 
scenario to mimic the natural life history of 
bahiagrass. See Table 4 for plant parameter 
refinements from the default values.
 
At the tworfaa site in central Texas, maize and 
alfalfa were rotated for two years in 2018 and 
2019. In 2018 maize was planted on February 
15, with PHU of 1700 and POP of 7, and then 
harvested on July 25. Alfalfa was planted 
September 26, with PHU of 1590 and 
and then hay harvested and killed on March 18, 
2019. Maize was planted again on March 27, 
2019, with PHU of 1700 and POP of 4, and then 
harvested on August 26. Alfalfa was planted 
October 28, with PHU of 1590 and POP of 22. 
For TWORFAA there was not camera data 
available for the maize planting in 2018, so 
assumptions were made based off typical 
practices in this region. Lower POP was used for 
maize in 2019 based on the gaps seen between 
plants in the PhenoCam images. Plant parameter 
refinements are listed in Table 4 with one 
addition, alfalfa’s IDC (crop category) was 
changed from 2 (cold season annual legume) to 
5 (cold season annual). 
 

 
Image 3. Image taken by PhenoCam of tworfaa on June 1st, 2018 
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Image 4. Image taken by PhenoCam of arsmorris1 on September 1st, 2018 
 

 
 

Image 5. Image taken by PhenoCam of arsmorris2 on July 1st, 2018 
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At the arsmorris1 site, viewed from the south 
tower of the ARS Morris LTAR site in Minnesota, 
maize and soybeans were rotated for two years 
in 2018 and 2019. During 2018, maize was 
planted on April 10 with a PHU of 1470 and a 
POP of 7, and then harvested on September 16. 
During 2019, soybeans were planted on June 10 
with a PHU of 1120 and a POP of 50, and then 
harvested on October 6 of the same year. See 
Table 4 for plant parameter refinements from the 
default values. 
 
At the arsmorris2 site, viewed from the north 
tower of the ARS Morris LTAR site in Minnesota, 
wheat was simulated in 2018. Wheat was 
planted on April 1 with 1800 PHU and 125 POP, 
then harvested on September 30 of the same 
year. See Table 4 for plant parameter 
refinements from the default values. 
 
At the ibp site within Jornada Experimental 
Range in New Mexico, black grama was 
simulated from 2015 to 2019. In 2015, black 
grama was initially planted on April 1, with PHU 
of 2020 and POP of 2.2. Each year a harvest 
operation was set to remove 90% of the above 
ground black grama on December 31. Although 

the field is unmanaged and had been growing 
there before PhenoCam data was available, 
ALMANAC needed this management scenario to 
simulate the natural life history of black grama. 
See Table 4 for plant parameter refinements 
from the default values.  
 
At the jernort site within Jornada Experimental 
Range in New Mexico, honey mesquite was 
simulated from 2006 to 2019. The model had to 
begin in 2006 to obtain adequate growth before 
the years of analysis (2015-2019). This is often 
done in modeling simulations for woody species. 
Jernort had two weather sources (Table 3). 
2006-2014 temperature and precipitation were 
from NOAA. 2015-2019 temperature, 
precipitation, and humidity were from LTER. 
LTER site was at the field location and occurred 
during the period of analysis, but data precluding 
the station was needed. For the simulations, 
mesquite was planted on January 1, 2006 with 
PHU of 2530 and POP of 10. For all years, 32% 
of above ground biomass was cut and allowed to 
drop to the ground on June 22, July 20, and 
August 17. Although the field is unmanaged and 
had been growing there before PhenoCam data 
was available, ALMANAC needed this

 

 
 

Image 6. Image taken by PhenoCam of ibp on October 1st, 2015 
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Image 7. Image taken by PhenoCam of jernort on October 1st, 2018 
 

 
 

Image 8. Image taken by PhenoCam of jerbajada on June 1st, 2018 
 
management scenario to simulate the natural life 
history of honey mesquite. Plant parameter 

deviations from the default values are listed in 
Table 4 along with these additions: PPL1 was 
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changed from 1.98 to 1.14, PPL2 was changed 
from 2.99 to 5.95, IDC was changed from 7 (for 
evergreen plants) to 8 (for deciduous plants), 
CLAIYR (year to maximum LAI) was changed 
from 8 to 15, and DMPHT (multi-year perennial 
parameter meaning minimum grams of biomass 
per meter of height) was changed from 0.75 to 0. 
 
The jerbajada site within Jornada Experimental 
Range in New Mexico, creosote bush was 
simulated from 2014 to 2019. The first year of the 
simulation was used to reach the amount of 
growth reflected in the images and was not used 
in the analysis. In 2014, creosote bush was 
planted on January 1 with a PHU of 2700 and a 
POP of 23. Then the crop was sequentially 
harvested every two weeks, beginning August 
26th to November 31st, to simulate late season 
leaf drop. The override of harvest index (ORHI) 
was set at 0.04, and the harvest efficiency (HE) 
was set at 0.01. These two parameter changes 
implement a 4% harvest of the aboveground 
biomass being dropped on the ground for each 
harvest operation. Although the field is 
unmanaged and had been growing there before 
PhenoCam data was available, ALMANAC 
needed this management scenario to simulate 

the natural life history of creosote bush. In order 
to simulate a similar creosote bush, we used 
parameters from [33] for a small bush, which 
recommended PPL1 20.01, and PPL2 35.03. To 
customize the crop parameters further we 
changed PPL1 to 20.2, PPL2 to 35.99, TG (base 
temperature for plant growth) from 15 to 10, and 
the remaining changes are listed in Table 4. 
 
At the jersand site in New Mexico, creosote bush 
was simulated from 2014 to 2019. The first year 
of the simulation was not used in the analysis as 
this period allowed the woody plant a closer 
approximation to the growth reflected in the 
images. Parameters and management were the 
same as listed above in the jerbajada site except 
POP was set to 25. This minor deviation in POP 
was implemented after comparing the ROI for the 
two sites both visually and with the GCC 
converted to LAI. 
 

2.4 Data Analyses 
 

To reiterate, GCC does not equal LAI and 
therefore cannot be directly compared with 
ALMANAC. As such, ImageJ is used to analyze 
the photos so that GCC can be converted to LAI

 

 
 

Image 9. Image taken by PhenoCam of jersand on December 1st, 2019 
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on a site by site basis. GCC is used because this 
data is reported daily, so once conversions are 
done for a few days with ImageJ, time and labor 
is saved by not doing image analysis for 
everyday of the year and instead using the 
conversion for GCC. This is done by initially 
comparing PhenoCam’s GCC to ImageJ’s 
Percent Area Fraction of green. At each site the 
PhenoCam GCC and the ImageJ Percent Area 
Fraction of green areas were transformed and 
plotted as a regression (Fig. 1). The GCC 
transformation (Equation 3) ensured the lowest 
recorded GCC would be treated as the minimum 
value and the range from minimum to maximum 
was taken into account. This was important on a 
site by site basis as the GCC values differ very 
little. For example, at archboldpnotx the GCC 
min and max were 0.330 and 0.474 respectively. 
The Percent Area Fraction transformation 
(Equation 4) allowed for a zero to one scale for 
the regression. This regression shows how 
closely our image analysis corresponded to the 
PhenoCam.  
 

Transformed GCC = (GCC – Minimum GCC) 
/ (Maximum GCC – Minimum GCC)         (3) 
 
Transformed %area fraction = (%area 
fraction) * 0.01                                   (4) 

 
Transformed ImageJ results were converted with 
Beer’s law to LAI to be plotted against 
ALMANAC’s simulated LAI values (top graphs 
Figs. 2-9). Only a few ImageJ points were 
needed to see that LAI results were trending in 
the same direction. This cut down on image 
processing time as opposed to processing 
images for every day of the year. With ImageJ’s 
Percent Area Fraction quantifying how much of 
the photo is green, this corresponded to actively 
photosynthesizing leaf area. As such, the values 
can be converted to LAI using Beer’s law and 
then compared with ALMANAC. If the ALMANAC 
simulations appeared to follow the infrequent 
image analysis, we proceeded with the 
regression of ImageJ and GCC (Fig. 1). This 
bridged the gap between GCC values and 
derived values for Percent Area Fraction The 
resulting regression was then used to convert 
GCC to LAI, by inputting transformed GCC into 
the regression equation (converting it to ImageJ 
greenness) (Equation 5), and then that result into 
Beer’s law (converting it to LAI) (Equation 6). For 
Beer’s law, the plant extinction coefficient (k) 
used was listed in ALMANAC and was different 
for each plant species. This working LAI value 
was compared with ALMANAC’s simulated LAI 

(bottom graphs Figs. 2-9), and further ALMANAC 
refinements were implemented as necessary. 
 

Converted GCC = (MAX (regression 
equation with Transformed GCC as x), 0)  (5) 
 
LAI of PhenoCam = (ln (1 - Converted GCC)) 
/ (plant extinction coefficient)                      (6) 

 

3. RESULTS AND DISCUSSION 
 
ImageJ versus GCC regressions R

2
 values were 

all greater than 0.5 except for the IBP site (0.39). 
Individual site regressions along with the 
equations used in later calculations are shown in 
Fig. 1, while R2 values for species are displayed 
more clearly in Table 5. Judging by the R

2
, 

soybeans (0.84), mesquite (0.76), and maize 
(0.75) produced the most successful match 
between the GCC and PhenoCam data (Table 
5). Black grama and creosote bush had the 
weakest correlation with R

2
 of 0.39 and 0.53 

respectively.  
 

Table 5. Average R2 values sorted by crop 
 

Crop R2 
Average 

Crop  R2 
Average 

Alfalfa 0.66 Maize 0.75 
Bahiagrass 0.66 Mesquite 0.76 
Black Grama 0.39 Soybeans0.84 
Creosote 
Bush 

0.53 Wheat 0.73 

 

The following results are organized by site with 
Figs. 2-9 indicating (top graphs) the LAI of 
ALMANAC vs LAI of Percent Area (green) from 
ImageJ, and (bottom graphs) the LAI of 
ALMANAC vs LAI of converted GCC from 
PhenoCams. 
 

3.1 ARCHBOLDPNOTX, FL: BAHIA- 
GRASS 

 
The ImageJ versus GCC regression has an R

2
 of 

0.65 (Fig. 1). The ALMANAC simulations with the 
adjusted parameters much more realistically 
simulated the PhenoCam LAI values (Fig. 2). 
The ALMANAC LAI compares well with the GCC 
converted to LAI. ALMANAC follows the 
seasonality of the bahiagrass but does not reach 
as high LAI peak as the GCC LAI.  
 

3.2 TWORFAA, TX: MAIZE + ALFALFA 
 

The ImageJ versus GCC regression has an R
2
 of 

0.89 for maize and 0.66 for alfalfa (Fig. 1). Once 
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again, the ALMANAC simulated LAI values with 
the adjusted parameters was superior to the 
simulated values with the default parameters 
(Fig. 3). The ALMANAC LAI in the first and third 
years compares well with the GCC converted to 

LAI. ALMANAC is under predicting maize in 
2018, but is within reason. The comparison 
differs slightly towards the end of the alfalfa 
growing season, with ALMANAC plateauing and 
GCC increasing.  

 

 
 

Fig. 1. Visualizations of the regressions for each crop at each site 
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Fig. 2. Graphs of bahiagrass from archboldpnotx comparing the LAI from ALMANAC with 
image analyses results (top) and then the LAI from ALMANAC with the transformed GCC from 
the PhenoCam website and the LAI from ALMANAC using de

 
3.3 ARSMORRIS1, MN: MAIZE + 

SOYBEAN 
 
The ImageJ versus GCC regression has an R
0.6 for maize and 0.84 for soybeans (Fig. 1). The 
adjusted parameters greatly improve 
ALMANAC’s values (Fig. 4). The ALMANAC LAI 
compares well with the GCC converted to LAI but 
is slightly overpredicting maize’s peak LAI 
values. 
 

3.4 ARSMORRIS2, MN: WHEAT
 
The ImageJ versus GCC regression has an R
0.73 (Fig. 1). Both the default parameters and 
the adjusted parameters result in reasonable 
values for ALMANAC LAI (Fig. 5). The 
ALMANAC LAI compares well with the GCC 
converted to LAI. The PhenoCam records a fall 
growth of weeds that ALMANAC doesn’t s
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2. Graphs of bahiagrass from archboldpnotx comparing the LAI from ALMANAC with 
image analyses results (top) and then the LAI from ALMANAC with the transformed GCC from 
the PhenoCam website and the LAI from ALMANAC using default plant parameters (bottom)

ARSMORRIS1, MN: MAIZE + 

The ImageJ versus GCC regression has an R
2
 of 

0.6 for maize and 0.84 for soybeans (Fig. 1). The 
adjusted parameters greatly improve 
ALMANAC’s values (Fig. 4). The ALMANAC LAI 
compares well with the GCC converted to LAI but 
is slightly overpredicting maize’s peak LAI 

EAT 

The ImageJ versus GCC regression has an R
2
 of 

0.73 (Fig. 1). Both the default parameters and 
the adjusted parameters result in reasonable 
values for ALMANAC LAI (Fig. 5). The 
ALMANAC LAI compares well with the GCC 
converted to LAI. The PhenoCam records a fall 
growth of weeds that ALMANAC doesn’t show. 

At the end of the year, the image analysis picked 
up on winter weeds growing in the fallow field, 
while ALMANAC did not. ALMANAC can capture 
this additional growth if a cool season annual is 
planted. Since focus was put on the two crops 
growing, the authors choose not to amend the 
simulation. 
 

3.5 IBP, NM: BLACK GRAMA 
 
The ImageJ versus GCC regression has an R
0.39 (Fig. 1). The ALMANAC LAI values with the 
adjusted parameters shows only modest 
improvement as compared with the values with 
the default parameters (Fig. 6). The ALMANAC 
LAI with adjusted parameters compares fairly 
well with the GCC converted to LAI. In 2015 they 
were very close, 2016-2018 ALMANAC peaked 
early but with similar values. However, in 2019 
ALMANAC is underestimating the LAI.
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2. Graphs of bahiagrass from archboldpnotx comparing the LAI from ALMANAC with 
image analyses results (top) and then the LAI from ALMANAC with the transformed GCC from 

fault plant parameters (bottom) 
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improvement as compared with the values with 
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LAI with adjusted parameters compares fairly 
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2018 ALMANAC peaked 
early but with similar values. However, in 2019 
ALMANAC is underestimating the LAI. 



Fig. 3. Graphs of maize followed by alfalfa from tworfaa comparing the LAI from ALMANAC 
with image analyses results (top) and then the LAI from ALMANAC with the transformed GCC

from the PhenoCam website and the LAI from ALMANAC 
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3. Graphs of maize followed by alfalfa from tworfaa comparing the LAI from ALMANAC 

with image analyses results (top) and then the LAI from ALMANAC with the transformed GCC
from the PhenoCam website and the LAI from ALMANAC using default plant parameters 

(bottom) 
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3. Graphs of maize followed by alfalfa from tworfaa comparing the LAI from ALMANAC 
with image analyses results (top) and then the LAI from ALMANAC with the transformed GCC 

using default plant parameters 

 



Fig 4. Graphs of maize followed by soybean from arsmorris1 comparing the LAI from 
ALMANAC with image analyses results (top) and then the LAI from ALMANAC with the 

transformed GCC from the PhenoCam website and 

 

Fig. 5. Graphs of wheat from arsmorris2 comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 
PhenoCam website and the LAI from ALMANAC using default plant parameters (bottom).
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Fig 4. Graphs of maize followed by soybean from arsmorris1 comparing the LAI from 

ALMANAC with image analyses results (top) and then the LAI from ALMANAC with the 
transformed GCC from the PhenoCam website and the LAI from ALMANAC using de

parameters (bottom) 

 

 

5. Graphs of wheat from arsmorris2 comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 
PhenoCam website and the LAI from ALMANAC using default plant parameters (bottom).

 
 
 
 

; Article no.JEAI.69364 
 
 

 

Fig 4. Graphs of maize followed by soybean from arsmorris1 comparing the LAI from 
ALMANAC with image analyses results (top) and then the LAI from ALMANAC with the 

the LAI from ALMANAC using default plant 

 

 

5. Graphs of wheat from arsmorris2 comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 
PhenoCam website and the LAI from ALMANAC using default plant parameters (bottom). 



Fig. 6. Graphs of black grama from ibp comparing the LAI from ALMANAC with image analyses 
results (top) and then the LAI from ALMANAC with the transformed GCC from the PhenoCam 

website and the LAI from ALMANAC using de
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6. Graphs of black grama from ibp comparing the LAI from ALMANAC with image analyses 

results (top) and then the LAI from ALMANAC with the transformed GCC from the PhenoCam 
website and the LAI from ALMANAC using default plant parameters (bottom)
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6. Graphs of black grama from ibp comparing the LAI from ALMANAC with image analyses 
results (top) and then the LAI from ALMANAC with the transformed GCC from the PhenoCam 

fault plant parameters (bottom) 

 



Fig. 7. Graphs of honey mesquite from jernort comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

PhenoCam website and the LAI from ALMANAC using de
 

3.6 JERNORT, NM: HONEY MESQUITE
 
The ImageJ versus GCC regression has an R
0.76 (Fig. 1). The ALMANAC LAI values with the 
adjusted parameters are much improved as 
compared with the default values (Fig. 7). The 
ALMANAC LAI with adjusted parameters 
compares fairly well with the GCC converted to 
LAI. 2015 ALMANAC peaked early bu
similar values, and in 2019 ALMANAC is 
overestimating the LAI. 
 

3.7 JERBAJADA, NM: CREOSOTE BUSH
 

The ImageJ versus GCC regression has an R
0.55 (Fig. 1). The ALMANAC LAI with adjusted 
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7. Graphs of honey mesquite from jernort comparing the LAI from ALMANAC with image 

analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 
PhenoCam website and the LAI from ALMANAC using default plant parameters (bottom)

3.6 JERNORT, NM: HONEY MESQUITE 

The ImageJ versus GCC regression has an R2 of 
0.76 (Fig. 1). The ALMANAC LAI values with the 
adjusted parameters are much improved as 
compared with the default values (Fig. 7). The 
ALMANAC LAI with adjusted parameters 
compares fairly well with the GCC converted to 
LAI. 2015 ALMANAC peaked early but with 
similar values, and in 2019 ALMANAC is 

JERBAJADA, NM: CREOSOTE BUSH 

The ImageJ versus GCC regression has an R2 of 
1). The ALMANAC LAI with adjusted 

parameters compares very well with the GCC 
converted to LAI (Fig. 8). ALMANAC 
underestimates the LAI at only two points in 2017 
and 2019. 
 
3.8 JERSAND, NM: CREOSOTE BUSH
 
The ImageJ versus GCC regression has an R
0.52 (Fig. 1). The ALMANAC LAI with adjusted 
parameters compares well with the GCC 
converted to LAI (Fig. 9). ALMANAC is not 
capturing the extreme fluctuations as well and 
models more consistent LAI plateaus throughout 
the season. 
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7. Graphs of honey mesquite from jernort comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

fault plant parameters (bottom) 

parameters compares very well with the GCC 
8). ALMANAC 

underestimates the LAI at only two points in 2017 

3.8 JERSAND, NM: CREOSOTE BUSH 

The ImageJ versus GCC regression has an R2 of 
0.52 (Fig. 1). The ALMANAC LAI with adjusted 
parameters compares well with the GCC 
converted to LAI (Fig. 9). ALMANAC is not 
capturing the extreme fluctuations as well and 
models more consistent LAI plateaus throughout 

 



 

Fig. 8. Graphs of creosote bush from jerbajada comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

PhenoCam website (bottom). The LAI values from ALMANAC using default plant parameter
were not shown for this site due to simula

 

Fig. 9. Graphs of creosote bush from jersand comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the

PhenoCam website (bottom). The LAI values from ALMANAC using default plant parameters 
were not shown for this site due to simula

 
4. DISCUSSION 

 
We found that near surface remote sensing with 
PhenoCams can be used with ALMANAC 
simulations, Beer’s Law, and L*A*B* image 
analysis to mimic or correlate plant growth and 
senescence. The ALMANAC model can be 
validated and improved with information from 
PhenoCams. For example, at many of the sites, 
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8. Graphs of creosote bush from jerbajada comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

PhenoCam website (bottom). The LAI values from ALMANAC using default plant parameter
were not shown for this site due to simulation errors when they were used

 

 

9. Graphs of creosote bush from jersand comparing the LAI from ALMANAC with image 
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We found that near surface remote sensing with 
PhenoCams can be used with ALMANAC 
simulations, Beer’s Law, and L*A*B* image 
analysis to mimic or correlate plant growth and 
senescence. The ALMANAC model can be 
validated and improved with information from 

enoCams. For example, at many of the sites, 

management activities were not reported, but 
could be derived based on the photographs, as 
could senescence. This advancement provides 
benefits as it elaborates on ways to utilize 
previously established uses for 
technology for studies on plant phenology. For 
example, true color cameras have been 
established as more effective than infrared 
cameras for monitoring plant condition [17]. 

 
 
 
 

; Article no.JEAI.69364 
 
 

 

8. Graphs of creosote bush from jerbajada comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

PhenoCam website (bottom). The LAI values from ALMANAC using default plant parameters 
tion errors when they were used 

 

 

9. Graphs of creosote bush from jersand comparing the LAI from ALMANAC with image 
analyses results (top) and then the LAI from ALMANAC with the transformed GCC from the 

PhenoCam website (bottom). The LAI values from ALMANAC using default plant parameters 
tion errors when they were used 

management activities were not reported, but 
could be derived based on the photographs, as 
could senescence. This advancement provides 
benefits as it elaborates on ways to utilize 
previously established uses for digital camera 
technology for studies on plant phenology. For 
example, true color cameras have been 
established as more effective than infrared 
cameras for monitoring plant condition [17]. 
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Other studies have applied PhenoCams to 
questions involving plant cover, flower count, and 
biomass, among others [34].  
 
Each site provided unique challenges and insight 
into developing this analysis technique. For 
example, Minnesota’s long winters led us to limit 
image analyses to the growing season, but fewer 
data points ultimately led to the decision to 
include more frequent image analyses. Winter 
weeds were not projected with our models but 
showed up on the GCC measurements and 
image analyses in Minnesota. Also, the highly 
variable weather of New Mexico meant we 
needed customized, hyper-localized weather 
data. Other PhenoCam sites were considered 
but deemed unsuitable for this first attempt due 
to grazing livestock or missing data; these could 
be other obstacles to overcome in the future.  
 
Furthermore, the GCC data’s ambiguity provided 
more challenges. PhenoCams are not calibrated 
images. The GCC reported by the PhenoCam 
Network only varied by 0.144 at most, so 
adjustments had to be made by site as to what 
appropriate values to use for maximum 
greenness and as a baseline for zero greenness 
or least green in the case of evergreen species. 
In addition, PhenoCams are subject to some 
atmospheric conditions that can alter the color 
channel brightness [34]). Due to the variations in 
color photos and the color variations among plant 
species, ImageJ greenness values were also 
altered to each specific plant species. This 
makes scaling the project up to include more 
sites a challenge, but it is attainable now that 
procedures have been established. Choosing a 
single image per day could also create noisy 
data if lighting is poor, whereas using the GCC 
values compiled from an entire day may reduce 
this by accounting for more lighting variations. 
Sonnentag et al. [20] recommended the use of 
the 90th percentile gcc value for a 3-day period, 
available online as GCC_90. However, using the 
compiled GCC value would not make a good 
comparison with ImageJ analysis.  
 
In a 2020 study, Aasen et al [23] determined 
there was not a clear correlation between GCC 
and LAI however, they were able to track LAI 
development using the PhenoCams. While we 
agree there is no universal GCC and LAI 
relationship, our methods adapted to each site 
and species do allow for LAI to be determined 
using PhenoCams. The study would be improved 
by using our methods with a field experiment to 
determine LAI error. However, the LAI we report 

is already within the expected range for the 
plants listed in this study.  
 
These results indicate that PhenoCam imagery 
can be used to improve process-based models 
such as ALMANAC in diverse environments. 
Using PhenoCams to take a picture, then image 
analysis to determine greenness, then Beer’s law 
to determine LAI we compare photo LAI with 
model LAI. This results in a reasonable match 
between LAI values, therefore the other outputs 
from ALMANAC, such as yield, can be used. =. 
Using the photos saves Ftime, travel, and labor 
to directly measure plants when the pictures 
provide enough information to amend current 
parameters. This new approach will expand on 
already ground-truthed parameters by allowing 
photo truth for validation of new sites This 
research shows promise for other areas of 
remote sensing, agroecology, and environmental 
sciences where process based models are 
valuable tools for technology transfer. Future 
applications of this knowledge may include 
improving models other than ALMANAC or using 
other types of sensors with a similar protocol. 
 
The Environmental Policy Integrated Climate 
Model (EPIC) has already been supported with 
remote sensing imagery in a 2020 study from 
[35]. They used data acquired from Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
to assess if modelled LAI to support air quality 
models for retroactive and future meteorological 
assessments. They found that EPIC LAI 
simulations and MODIS LAI collections 
“compared favorably”, although some data 
collections were more successful than others 
[35]. This shows that data from simulations, 
particularly LAI, can be used to supplement other 
remote sensing projects. On the other hand, the 
USDA’s Forest Service have used PhenoCam 
data to validate a new remote sensing project, 
called Phenomap [36]. It is a weekly assessment 
of land surface “greenness” using Normalized 
Differential Vegetation Index (NDVI) data derived 
from MODIS satellite data. In order to validate 
their data, they used GCC_90 data from 54 non-
agricultural sites and found that PhenoCams 
could be used to validate their satellite data but 
with varying reliability depending on biome. For 
example, Pearson’s R values for open and 
closed needle leaf forests (four and two 
respectively) were low compared to deciduous 
forests and grasslands (fifteen and sixteen 
respectively). Using data collected from different 
perspectives illuminated the distinct advantages 
of near-surface and satellite remote sensing 
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data. Notably, they found that the NDVI data was 
noisier than GCC_90 data acquired from 
PhenoCams and, in deciduous ecosystems, 
NDVI lagged behind during greenup and 
senescence [36].  
 
For LTAR sites with available eddy covariance 
data, a similar concept could be applied to 
identify a possible relationship between 
atmospheric conditions, observed plant growth, 
and simulated plant growth. Since sites were 
utilized only if they were not grazed, had GCC in 
a reasonable range, and were in different 
environments there is a lot of room for 
expansion. The impact of this research can be 
increased as the methods are refined further. 
 
5. CONCLUSION 

 
Our goal was to find if ALMANAC simulations, in 
conjunction with Beer’s Law, image analysis, and 
data provided by the PhenoCam network could 
be used to simulate phenology of vegetation. By 
using remote sensing to validate models, not 
only will the models themselves be more precise, 
land managers and researchers would benefit 
from more accurate and timely knowledge of 
plant growth and senescence. Ultimately each 
site and its plant species were unique, and 
therefore required custom parameters and 
yielded results with varying precision. Although 
there are surely improvements to be made upon 
this methodology in the future, each site’s 
simulation was improved by incorporating 
information from the PhenoCams. The 
knowledge and techniques gained during this 
study can be scaled up, applied to new sites in 
other regions, validated with different modelling 
software, or used with different simulated data. 
Continuing to hone these skills will provide more 
knowledge and awareness of vegetation growth 
in a changing world. 
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