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The Painlevé integrability of the higher-order Boussinesq equation is proved by using the standard Weiss-Tabor-Carnevale (WTC)
method. The multisoliton solutions of the higher-order Boussinesq equation are obtained by introducing dependent variable
transformation. The soliton molecule and asymmetric soliton of the higher-order Boussinesq equation can be constructed by the
velocity resonance mechanism. Lump solution can be derived by solving the bilinear form of the higher-order Boussinesq
equation. By some detailed calculations, the lump wave of the higher-order Boussinesq equation is just the bright form. These

types of the localized excitations are exhibited by selecting suitable parameters.

1. Introduction

The soliton molecule as a boundary state is comprised by a
balance of repulsive and attractive forces between solitons
caused by the nonlinear and dispersive effects [1]. The char-
acteristics of the soliton molecule in both experiment and
simulation have attracted considerable attention [2-4]. The
soliton molecules are first discovered by theoretical analysis
of the nonlinear Schréinger equation [5] and the complex
Ginzburg-Landau equation [6]. The theoretical frameworks
to address the soliton molecule have been proposed [7, 8].
Recently, Lou proposed the velocity resonance mechanism
to form the soliton molecule [9]. The high-order dispersive
terms play a key role in the velocity resonance mechanism
[10]. The velocity resonance mechanism is developed to
some integrable systems, the (2+1)-dimensional fifth-order
Korteweg-de Vries (KdV) equation [11], the complex modi-
fied KdV equation [12], the (3+1)-dimensional Boiti-Leon-
Manna-Pempinelli equation [13], and so on [14-16].
Combining the Darboux transformation and the variable
separation approach, some interactions between soliton mol-
ecules and breather solutions and between soliton molecules
and dromions are explored [11-15, 17]. In addition to the
soliton molecule, lump solutions are a kind of rational func-
tion solutions which have become a hot field in nonlinear

systems [18-22]. Lump solutions will decay polynomially in
all directions of space [23]. The Hirota bilinear method is a
useful method to find lump solutions. Lump waves of the
nonlinear systems have been validated by the Hirota bilinear
method [24-29]. In this paper, our objective is to explore a
higher-order Boussinesq equation which is considered as
the combination between the fourth-order and sixth-order
Boussinesq forms. We get lots of interesting results for the
higher-order Boussinesq equation, such as the multisoliton,
the soliton molecule, and lump solution. Particularly, the sol-
iton molecule of the higher-order Boussinesq equation is not
valid for just the fourth-order Boussinesq equation or the
sixth-order Boussinesq equation.
The higher-order Boussinesq equation reads

+30u u

XXXX X TTXXX

Uy + Py = & (U + 6> + 6uu,,) — B(15uu

2 2 2 -
+ 150, +45u U, + 90Ut + ) =0,

(1)

where «, 3, and y are arbitrary constants. The higher-order
Boussinesq equation (1) will become the fourth-order Bous-
sinesq equation and the sixth-order Boussinesq equation
with =0 and « =0, respectively. The higher-order Boussi-
nesq equation (1) can describe the propagation of long waves
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in shallow water. The integrability of the fourth-order Bous-
sinesq equation was handled by the inverse scattering trans-
form method [30]. The group-invariant solutions of the
fourth-order Boussinesq equation were obtained by similar-
ity reductions [31]. The high-dimensional Boussinesq equa-
tions can be constructed by means of the fourth-order
Boussinesq equation [32]. The N-soliton solutions for the
fourth-order [33] and the sixth-order Boussinesq equations
[34] were obtained by the Hirota bilinear method.

This paper is organized as follows. In Section 2, the Pain-
levé integrability of the higher-order Boussinesq equation is
proved by the standard Weiss-Tabor-Carnevale (WTC)
approach. In Section 3, the higher-order Boussinesq equation
can be transformed to the bilinear form by the dependent
variable transformation. The Hirota’s bilinear method is
employed to derive the multisoliton by handling the bilinear
form of the higher-order Boussinesq equation. The soliton
molecule of the higher-order Boussinesq equation is con-
structed by a new resonance condition. In Section 4, lump
solution of the higher-order Boussinesq equation is obtained
by solving the corresponding Hirota bilinear form. Finally,
the conclusions of this paper follow in Section 5.

2. Painlevé Analysis for the Higher-Order
Boussinesq Equation

According to the WTC approach [35], the solution of the
higher-order Boussinesq equation can be written as

o0

u= Z ujfj_a, (2)

=0

with § being a positive integer. The solution of the model is
single valued about the arbitrary movable singularity mani-
fold f. From the leading order analysis, we get

8=2,uy=-2f2. (3)

By inserting the expression
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into (1) and vanishing the coefficient term of /%, the poly-
nomial equation in j is derived as

(G+1DG-2)(-3)0-6)(-7)(-10)=0. (5
The corresponding resonances occur at
j=-1,2,3,6,7,10. (6)

The resonance at j=—1 corresponds to the fact that the
singularity manifold f(x,t) =0 is an arbitrary function. By
vanishing subsequent coefficient terms of f, we infer that
the number of arbitrary functions (f,u,, us, ug, us,u,,) is
the same as the number of resonances (-1,2,3,6,7,10).
The higher-order Boussinesq equation is thus the Painlevé
integrability in the sense of the WTC test.

3. Multisoliton and Soliton Molecule for the
Higher-Order Boussinesq Equation

To determine the multisoliton solutions of the higher-order
Boussinesq equation (1), the dependent variable transforma-
tion reads

u=2(Inf) . (7)

By substituting (7) into (1), the bilinear form of the
higher-order Boussinesq equation reads

(Df +yD; - aD;, - BDS)f - f =0, (8)
where D is bilinear derivative operator [36].
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The N-soliton solutions of the higher-order Boussinesq
equation can be calculated as

N N
f= Z exp (z Hil; In (Aij) + Z P‘i’7i>> (10)
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where ¥, is the summation with possible combinations
of u;=0,1(i=1,2,---,N) and , = k;x + w;t + ¢;. By substitut-
ing (7) and (10) into (1), the phases shift Ay and the disper-
sion relation read as
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W2 +yk? — ok - BK° =0, (12)
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FIGURE 1: (a) Soliton molecule of the higher-order Boussinesq equation with the parameters (15). (b) Density plot of the corresponding

soliton molecule.
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FIGURE 2: (a) Asymmetric soliton of the higher-order Boussinesq equation with the parameters (16). (b) The wave propagation pattern along

x-axis by selecting different time t = =50, t = 0, t = 50.

We shall study the soliton molecule with a new resonance
condition. The new resonance condition (k; # k;) of velocity

. Y R
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By solving the above condition (13), the velocity resonant
condition becomes

resonance reads

_ kl?
kj:i%. (14)

A soliton molecule and an asymmetric soliton can be
constructed by selecting appropriate parameters in (13) or
(14). We take two-soliton (N =2) in (10) and the new reso-

nance condition to describe these phenomena. For the
Figure 1, the parameters are selected as

5 1
%’a=_§$ﬁ=3’y=_l,cl=0,C2=10. (15)

For the Figure 2, the parameters are selected as

k, =

’kzzﬁ’
6

1
az—i,ﬁ=3,y=—1,c1=0,c2=—3.

(16)
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The soliton molecule and the asymmetric soliton are
described in Figures 1 and 2, respectively. Two solitons in
molecule are different amplitude, while two solitons in mole-
cule possess the same velocity simultaneously.
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FIGURE 3: (a) The three-dimensional plot of a lump wave of the higher-order Boussinesq equation with the parameters (21). (b) The

corresponding density plot.
4. Lump Solution of the Higher-Order
Boussinesq Equation

To obtain lump solution of the higher-order Boussinesq
equation (1), we take a quadratic function f as

f=(ayx+ast+ay)’ + (asx +agt +a,)* +a,. (17)
By substituting (17) into the Hirota bilinear form (8) and

balancing the different powers of x and ¢, the parameters are
constrained as

3a(a? + a?
a, = ¥,a3:\/)7“5'“6:_\/7a2’ (18>

The function of u can be localized in (x, t)-plane with the
parameters satisfying

a>0,y>0. (19)
By substituting (17) into (7), a lump wave of (1) is generated

u=%—4(A9;7;LB)2, (20)

with a3 + a2 = A, a,a, + asa, = B. To describe the lump wave
of the higher-order Boussinesq equation (1), the parameters
are selected as

a=16,y=1,a,=1,a,=2,a;=3,a,=2. (21)

The spatiotemporal structure and the corresponding den-
sity of a lump wave are described in Figures 3(a) and 3(b),
respectively. The critical point of the lump wave can be calcu-
lated by solving

au(x,t)_ au(x,t)_
=0, =0, (22)

By solving the above condition (22), we find that the func-
tion u reaches the maximum value at the point (a,a, — a a5/

\/YA,~B/A) and the minimum values at two points ((a,a; —

aas/\/yA), /¥B £ 3,/aA). By substituting the above three
points values into (20), the maximum and minimum values of
the function u are 4y/3a and —4y*(A*B*y* - 3yaA* + 2A°B
Y*2(3\/aA2 + B) +12A2(3\/aA® + B)")/(A 2B%)® + 3yad® +

2ABy*2(3,/aA? + B) + y(3/aA? + B)*)%, respectively. We
can only get the bright lump form of the higher-order Boussi-
nesq equation by the above detail analysis.
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5. Conclusion

In summary, the Painlevé property, the soliton molecule, and
the lump solution of the higher-order Boussinesq equation
(1) are studied by the standard WTC and the Hirota bilinear
methods. The multisoliton solutions of (1) are obtained by
introducing dependent variable transformation. The soliton
molecule and the asymmetric soliton are constructed by the
velocity resonance mechanism. The lump solution can be
derived by using a positive quadratic function. By detail cal-
culations of the maximum and minimum values of the func-
tion u, lump wave of the higher-order Boussinesq equation is
just the bright form.

In this paper, the higher-order Boussinesq equation
which possesses Painlevé integrability is constructed by
introducing the Hirota bilinear operator DS based on the
fourth-order Boussinesq equation. Similar introducing
high-order Hirota bilinear operator procedure, we propose
one equation

(o= o Jros-o

i=1

with «; being arbitrary constants. The integrability-
properties and nonlinear excitations of (23) are worthy to
study further.
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