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ABSTRACT 
 

Background: The pathogenesis and effects of maternal diabetes on their infants is still not entirely 
understood, but it's likely to have several teratogenic mechanisms. The fetal heart is 
anatomically and physiologically altered by diabetes mellitus. About 400 genes are thought to be 
involved in the etiology of congenital heart disease such as DAW1, DNAI1,DRC1, 
PDE2A,CCDC39,TMEM67, and ICAM. Endothelial cells and immune system cells exhibit the cell 
surface glycoprotein CD54, also known as intercellular adhesion mollecule-1 (ICAM-1), which is 
thought to contribute to atherogenesis by increasing monocyte accumulation within the artery 
intima. In adult individuals with unexplained cardiac dysfunction as well as animals with 
myocarditis, ICAM-1 expression has been seen on cardiac myocytes. So, the aim of our review is 
to explore variant genetic aspects implicated in development of congenital heart diseases (CHD) in 
infants of diabetic mothers and the possible effect of diabetes mellitus. 
Conclusion: Genes that were highly enriched in cell adhesion molecules (CAMs) were found to be 
among the many differentially expressed genes (DEGs) in embryonic heart tissues from diabetic 
mothers, including ICAM-1, which had the greatest connection degree in the protein-protein 
interaction (PPI) of both upregulated DEGs and shared DEGs and are major determinants in 
development of CHD among infant born to diabetic mothers. 
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1. INTRODUCTION 
 

One in every 1,000 newborns is born with 
congenital heart disease (CHD), a type of birth 
defect [1]. Heart defects can be produced by a 
number of environmental teratogen exposures, 
but the high recurrence risk and familial forms of 
the illness, as well as the well-described link 
between CHD and chromosomal aberrations, 
strongly suggest a genetic basis for CHD [2-4]. 
 

1.1 Genes Implicated in Development of 
Congenital Heart Diseases 

 

CHD etiology is thought to be connected with 
400 genes at the most. Cell type cell 
type specification, differentiation, and patterning 
are all critical in the formation of the heart's 
structure and function, and they can all be 
disrupted by mutations in genes encoding 
transcription factors, cell signaling transducers, 
and chromatin modifiers. Disease may be linked 
to an extensive network of interactions between 
these genes' proteins since many of them 
operate together or are related by functional 
networks [5,6]. 
 

Mesodermal differentiation and heart 
development appeared to be disrupted in 
experimental models of maternal diabetes 
mellitus [7]. 
 

1.1.1 Intercellular adhesion molecule-
1structure 

 

Antibodies and T-cell receptors belong to the 
immunoglobulin superfamily, which also includes 
ICAM-1. It has a single transmembrane domain 
and a carboxy-terminus cytoplasmic domain with 
an amino-terminus extracellular domain and a 

single transmembrane domain. Disulfide bridges 
throughout the protein form many loops in the 
extracellular domain of ICAM-1, which is 
characterised by high glycosylation. The beta 
sheet is the protein's predominant secondary 
structure, prompting researchers to assume that 
ICAM-1 contains dimerization domains [8].  
 
1.1.2 Intercellular adhesion molecule-1gene 
 
The expression of certain gene variations has 
been linked to functional or quantitative changes 
in ICAM-1 protein in various diseases. Exons 4 
and 6 of this gene have been shown to contain 
two single-base polymorphisms that affect codon 
241 and 469. Both alter amino acids and may 
have various interactions with ICAM-1 ligands 
depending on how they are metabolized. 
Rheumatoid arthritis, inflammatory bowel illness, 
and giant cell arteritis, all have been linked to a 
variation in codon 241 [9-11]. Bechet's 
syndrome, chronic renal allograft failure, and 
multiple sclerosis have been linked to a codon 
469 polymorphism [12-14]. 
 
1.1.3 Function of Intercellular adhesion 

molecule-1 
 
In order to attach to the other cells or the 
extracellular matrix, cells need adhesion 
molecules [15,16]. In order for cells to engage 
and move, adhesion mechanisms are necessary. 
Embryonic development (cell contact and 
migration), immunology (leukocyte migration and 
activation) and hematopoiesis (the production of 
blood cells) are all affected by them 
(differentiation of hematopoietic cells). For 
immunology, three major classes of cell adhesion 
molecules have been identified [17].  

 
Table 1. Genes and alleles implicated in CHD risk (31) 

 

Gene Symbol (mouse) Gene Symbol (human) Mouse CDS (bp) # Alleles Recovered 

Daw1 DAW1 933 2 

Dnai1 DNAI1 2,106 2 

Drc1 DRC1 2,262 2 

Pde2a PDE2A 2,808 2 

Ccdc39 CCDC39 2,814 3 

Tmem67 TMEM67 2,988 2 

Armc4 ARMC4 3,114 l
a
 

Adamts6 ADAMTS6 3,351 l
b
 

Pcsk5 PCSK5 5,634 2 
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Table 2. ICAM-1 and autoimmune diseases 
 

References Autoimmune diseases 

Macchioni et al. [9] ICAM‐1 gene polymorphisms 
Salvarani et al. [11] ICAM-1 polymorphism and polymyalgia 

rheumatica/giant cell arteritis 
Verity et al. [12] ICAM-1 polymorphism and Behcet’s disease 
Braun et al. [10] ICAM-1 polymorphism and Inflammatory bowel 

disease 

 
Table 3. Functions of ICAM-1 

 

References Functions 

Butcher [15] Leukocyte-endothelial cell recognition 
Takeichi et al. [16] Cadherin cell adhesion receptors and 

morphogenetic regulator 
Springer [17] Immune system adhesion receptors 

 
Antibody-like cell adhesion molecule (ICAM), 
which includes ICAM-1 (CD54), ICAM-2 and 
ICAM- 3 (CD50), as well as the 
neurons adhesion molecule (NCAM) and 
platelet/endothelial cell adhesion molecule 
(PECAM) [18-23]. ICAM-R and ICAM-3 are the 
same. There are three ICAMs (ICAM-I, II, and 
III) that share the same integrin receptor, as the 
leukocyte function associated antigen (LFA) 1 
[24,25]. 
 

1.1.4 Intercellular adhesion molecule 1 and 
cardiogenesis 

 

Protein-protein interaction (PPI) network of 
upregulated differentially expressed genes 
(DEGs) and PPI network of shared differentially 
expressed genes (DEGs) both showed ICAM1 to 
have the highest degree of connection. 
Endothelial cells and immune system cells 
usually express ICAM1 (CD54), a cell surface 
glycoprotein that is thought to have a role in 
atherosclerosis by encouraging monocyte 
accumulation in the artery intima [26,27]. 
 
Endothelial cells and circulating monocytes have 
been discovered to exhibit ICAM1, which may be 
essential for cell attachment to the vascular 
endothelium in earlier investigations [28]. Cardiac 
myocytes in both adults with unexplained cardiac 
failure and in animals with myocarditis have been 
shown to produce ICAM1[29-31].  
 

Staphylococcus aureus infection, CAMs, and 
interferon-Gamma (γ) signalling are all 
associated with ICAM1 via enhancing 
inflammatory state [32]. Type 2 diabetes is 
believed to have a pathophysiology including 
inflammation [33]. The development of 

inflammatory reactions depends on the 
upregulation of adhesion molecules such as 
ICAM1 [34]. ICAM1 may also have a role in the 
formation of the heart in embryos because of the 
pathogenic cross-talk between the inflammatory 
and profibrotic pathways which may result in 
autoimmune related congenital heart block 
(CHB) [35]. 
 

2. EFFECT OF DIABETES MELLITUS ON 
CARDIOGENESIS 

 

Glucose-induced abnormalities in left-right 
patterning, increased apoptosis as a result of 
oxidative stress, impairments in nitric oxide 
signaling, altered autophagy, and altered neural 
crest cell production and migration are all 
experimentally established pathways that may 
influence abnormal heart development [36-43]. 
 

Preliminary studies have shown that ex vivo 
models of heart development can serve as an 
accurate proxy for maternal diabetes because of 
the teratogenic propensity of glucose. It is yet to 
be determined how maternal glucose affects the 
development of cardiac metabolites such as 
beta-hydroyxbutyrate, but these metabolites are 
similarly impacted by maternal glucose 
fluctuations [44-46].  
 

Mesodermal differentiation and heart 
development are two more areas where 
canonical signaling pathways have been 
demonstrated to be altered in experimental 
models of maternal diabetes mellitus. A variety of 
cell models and molecular pathways, none of 
which are mutually exclusive, must be used to 
better understand how gestational diabetes 
mellitus influences foetal heart development [7]. 
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Table 4. ICAM-1 gene polymorphisms and disease risk 
 

References Diseases 

Buraczynska et al. [26] An ICAM-1 K469E mutation is seen in patients 
with advanced renal insufficiency. 

Toyozaki et al. [29] ICAM-1 and myocarditis 
Chong et al. [30] ICAM-1 and ICAM-2 expression upon Inflamed 

Pulmonary Epithelium 
Lin et al. [32] ICAM-1 gene polymorphism and congenital heart 

defects 
Duan et al. [34] ICAM-1 in HUVECs 

 
Table 5. Cardiogenesis defects induced by diabetes mellitus during embryogenesis 

 

References Cardiogenesis defects 

Helle et al. [36] Children who are born to obese or diabetic 
mothers are more likely to have congenital heart 
disease. 

Basu et al. [37] Maternal hyperglycemia and the risk of 
congenital heart disease are linked to epigenetic 
mechanisms. 

Engineer et al.[40] Heart malformations associated with sapropterin 
therapy 

Wang et al. [41] High glucose-induced cardiac tube malformation 
is caused by autophagy. 

Suzukietal. [42] In vitro, rat cranial neural crest cells are 
prevented from migrating when glucose levels 
are severely elevated. 

Basu et al. [7] Fetal heart development and maternal 
hyperglycemia 

 

2.1 Types of Congenital Heart Diseases in 
Infant of Diabetic Mother 

 
Pregnant women with gestational diabetes 
mellitus (GDM) are more likely to give birth to 
children with heart defects with a percentage of 
30%. Conotruncal abnormalities, such as 
transposition of the major arteries, chronic 
truncus arteriosus, visceral heterotaxia, and a 
single ventricle, account for almost half of all 
cardiovascular problems. These heart 
abnormalities are linked to high HbA levels in the 
first trimester. These findings point to an 
extremely early teratogenic influence on cardio 
genesis. Asymmetric septal hypertrophy, 
transient hypertrophic subaortic stenosis, and 
thicker myocardium are all possible 
complications ofType 1 and Type 2 diabetes-
induced cardiomyopathy (IDMs) [47]. 
 

3. CONCLUSION 
 
Maternal diabetes's teratogenic process is not 
yet entirely understood, and it is seems to be 
multifactorial. Diabetes mellitus affects the fetal 

heart both structurally and functionally. Genes 
that were highly enriched in cell adhesion 
molecules (CAMs) were found to be among the 
many differentially expressed genes (DEGs) in 
embryonic heart tissues from diabetic mothers, 
including ICAM-1, which had the greatest 
connection degree in the protein-protein 
interaction (PPI) of both upregulated DEGs and 
shared DEGs. We need more studies to             
explain the genetic aspects in congenital heart 
diseases. 
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