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Abstract

Persistently active neurons during mnemonic periods have been regarded as the mecha-

nism underlying working memory maintenance. Alternatively, neuronal networks could

instead store memories in fast synaptic changes, thus avoiding the biological cost of main-

taining an active code through persistent neuronal firing. Such “activity-silent” codes have

been proposed for specific conditions in which memories are maintained in a nonprioritized

state, as for unattended but still relevant short-term memories. A hallmark of this “activity-

silent” code is that these memories can be reactivated from silent, synaptic traces. Evidence

for “activity-silent” working memory storage has come from human electroencephalography

(EEG), in particular from the emergence of decodability (EEG reactivations) induced by

visual impulses (termed pinging) during otherwise “silent” periods. Here, we reanalyze EEG

data from such pinging studies. We find that the originally reported absence of memory

decoding reflects weak statistical power, as decoding is possible based on more powered

analyses or reanalysis using alpha power instead of raw voltage. This reveals that visual

pinging EEG “reactivations” occur in the presence of an electrically active, not silent, code

for unattended memories in these data. This crucial change in the evidence provided by this

dataset prompts a reinterpretation of the mechanisms of EEG reactivations. We provide 2

possible explanations backed by computational models, and we discuss the relationship

with TMS-induced EEG reactivations.

Introduction

A hallmark of the activity-silent working memory framework [1] is that memories stored

silently in synaptic traces through short-term synaptic plasticity can be reactivated through

nonspecific stimuli [1–5]. Evidence supporting activity-silent working memory has recently

emerged from human electroencephalography (EEG) [6,7], in particular from EEG reactiva-

tions of unattended memories induced by visual impulses [7]—the so-called visual pinging.
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Despite their relevance for upcoming memory-guided behavior, currently unattended memo-

ries could not be robustly decoded from raw EEG voltage traces [6,7] (Fig 1A, red). In view of

this, unattended memories resemble memories rendered behaviorally irrelevant by a contex-

tual cue (discarded, Fig 1B, dashed lines), but they differ from attended memories with similar

upcoming behavioral requirements, which are represented in sustained, active codes [6–8]

(Fig 1A and 1B, solid lines). This observation has been key in interpreting EEG reactivations in

pinging studies as evidence for activity-silent storage (see, e.g., recent reviews [8–14] or [2–

4,15] for explicit simulations of this interpretation of the data). Intriguingly, pinging-induced

increase in EEG decodability occurred exclusively for items that remained relevant for future,

memory-guided behavior, suggesting that only unattended but still relevant items were kept in

activity-silent traces. The mechanisms for such selective reactivation of activity-silent traces

are unclear, as in existing computational models of activity-silent storage [1,2,4,5,16,17] short-

term plasticity changes are induced by neuronal activity, regardless of its behavioral relevance.

Fig 1. Decoding from alpha power reveals an underlying, active working memory code. (A) Strength of stimulus

decoding from raw voltage traces as in [7]. As in the original study, unattended or (B) discarded memories cannot be

decoded from raw voltage traces. (C, D) Same as (A) and (B), but decoding from alpha power (Methods), which

reveals a sustained representation of the unattended stimulus. In (A) and (C), we analyze data from experiment 2 [7],

while in (B) and (D), data from experiment 1 [7]. Light gray bars mark stimulus presentation periods. Notice that data

immediately preceding pinging stimulus presentation are shown in this figure. Dashed lines mark the periods in which

memories are irrelevant for upcoming behavior, following an instruction cue (dark green). All error bars are

bootstrapped SEM, and color bars on the top mark the periods where bootstrapped 95% CI was above zero. Data from

Wolff and colleagues (2017) [7].

https://doi.org/10.1371/journal.pbio.3001436.g001
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Here, we reanalyzed EEG recordings of these influential pinging studies [7,18]. We found that

unattended memories, previously shown to be inaccessible from scalp EEG voltages despite

remaining behaviorally relevant [7], could in fact be decoded from raw EEG voltage and

robustly from alpha power signals. This reanalysis demonstrates that the original claim of a

silent representation of unattended memories is not supported by the data, which instead

show an active code and thus calls for a reinterpretation of pinging-induced increases in EEG

decodability. Finally, we argue that the increase in stimulus decodability following an unspe-

cific stimulus, seen in human [6,7,18–20] and monkey electrophysiological experiments

[21,22], can be explained by network models without short-term plasticity based on ongoing

active, not silent, neural representations.

Results

Attended and unattended working memories are robustly decoded from

alpha power

We realized that an earlier study had reported that (attended) spatial memories were decoded

more reliably from EEG total alpha power than from evoked activity [23]. Thus, we analyzed

alpha-power information content for attended, unattended, and no longer relevant orientation

memories in the publicly available dataset of the original publication by Wolff and colleagues

[7]. We found that a sustained alpha power code tracks the orientation of the items that remain

relevant for future behavior, whether attended or unattended (Fig 1C and 1D, solid lines, S1

Fig). This shows that working memory contents are maintained in an electrically active neural

code, even for items outside of the current attentional focus [24]. However, while attended

memories were decodable both in alpha power and voltage traces, unattended memories were

only robustly detected in alpha power. While this could reflect qualitative differences in what

these 2 neural signals represent [25–27], we will explore here the parsimonious possibility that

this stems from differential sensitivity of these 2 measures to the same underlying neural activ-

ity. Indeed, EEG voltage is known to lose decodability shortly following a reference baselining

due to slow electrical drifts [28], while oscillations could be more robust to these baseline

drifts. In this view, attended items would be represented by strong neural signals (represented

both in voltage and in alpha power), while unattended items would be kept in analogous but

weaker neural signals (picked only by alpha power). These neural dynamics could result from

competitive interactions between prioritized and unprioritized memory items, in line with

competing attractors in networks without activity-silent mechanisms [20,24,29].

Lack of statistical power suggests spurious evidence for silent

representations of unattended memories

In line with the hypothesis of an active but weaker representation of the unattended items,

recent studies [30,31] show that lack of decodability for unattended working memories can be

overcome by increasing statistical power (e.g., sample size). We wondered if a similar strategy

could improve decodability of unattended orientations from raw voltages in this dataset. We

addressed this tentatively in the current datasets with 2 complementary approaches. First, we

attempted to increase the statistical power by (1) smoothing the voltage traces with a 32-ms

kernel prior to decoding (instead of smoothing instantaneous decoding accuracies as done in

the original study [7]; Methods); (2) averaging decoding accuracies over an interval of 200 ms

before the pinging impulse; and (3) pooling trials from all sessions and subjects (Methods).

We found that discarded memories were still not decodable from raw voltage (p = 0.48,

t = −0.04, one-sided t test), but the decoding of unattended memories almost reached the
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typical statistical threshold (p = 0.06, t = 1.55, one-sided t test). We also varied the number of

sessions and trials included in the analyses to visualize how decoding depended on sample size

(Fig 2). This further suggested that our analyses were underpowered and motivated our second

approach, in which we reasoned that the low signal-to-noise ratio in this cohort could be due

to specific sessions with overall low decodability. Sessions with low decodability could reflect

technical issues during that particular session (e.g., EEG sensor placement) or specific subject

characteristics, such as skull thickness or hair density. We thus divided our full dataset using

cross-validation in high and low decoding sessions, based on the average decoding accuracy

during the early delay (“split period” in Fig 3, Methods). We found that unattended memories

could be robustly decoded during the whole delay (0.25–1.2 s, p = 0.002 randomization test,

Methods) and in particular immediately before pinging (250 ms window, p = 0.039, randomi-

zation test, Methods) from high-decoding sessions, while discarded memories could not (both

Fig 2. Average voltage decoding during 200 ms prior to the impulse as a function of trial and session numbers

[37]. Attended items could be robustly decoded from voltage, but not discarded items. Decoding of unattended items

suggested a possible underlying signal (p = 0.06, t = 1.55, one-sided t test, upper-right corner in second panel).

Subsampling of sessions and trials was done by randomly subsampling (n = 5,000) without repetition from the full

dataset (Methods). In white, contour lines for different p-value levels (one-sided t test). Data from Wolff and colleagues

(2017) [7].

https://doi.org/10.1371/journal.pbio.3001436.g002

Fig 3. Sessions with high early-delay (split period, Methods) voltage decoding have a sustained code for unattended

memories (left, red), but not for discarded memories (right). Replotting the reactivation period (inset), separately for

high and low early-delay decoding sessions shows that “reactivations” only occur for sessions with a sustained code

(left, red). Note that at time 0, the decoding strength is not actually zero (inset vs arrow). This is an artifact of

baselining during the delay period (see also S3 Fig). Error bars are sem. Decoding strengths from high-decoding

sessions were compared to the shuffle predictor (top black bars mark significant deviation, one-sided p<0.05,

Methods). Time course and data are similar to Fig 1A and 1B. Data from Wolff and colleagues (2017) [7].

https://doi.org/10.1371/journal.pbio.3001436.g003
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p>0.45, Fig 3). Finally, we show that sessions with high early-delay decoding (“split period” in

Fig 3) are also those that have “reactivations” in voltage seen in the original publication (Fig 3,

inset). Note that we used one-sided statistical tests (Figs 2 and 3), since negative decoding

strengths are not expected. Additionally, one-sided statistical tests represent a conservative

approach when claiming lack of decoding. These analyses, together with previous studies

showing robust decoding of unattended memory items [22,30,32–36], suggest that also in this

dataset, unattended items are not stored in activity-silent traces.

Two plausible explanations for the increase in decodability that do not

require activity-silent mechanisms

If there is an active EEG code for both attended and unattended stimuli prior to the visual

impulse, as our analyses suggest, then what is the interpretation of the observed increase in

EEG decodability [7,18]? We reasoned that EEG reactivation events may emerge from either

an increase in the signal about the stimulus (as assumed in the activity-silent interpretation) or

through a reduction in the across-trial variability (S3C Fig). In the data, we found that pinging

reduces across-trial variability of EEG voltage (Fig 4A), as expected for neural responses to

sensory stimuli [38]. In addition, we found that trials with stronger EEG decodability showed

lower across-trial variability than trials with weaker EEG decodability during pinging (Fig 4B),

demonstrating a link between trial-by-trial EEG variability and pinging-induced increase in

EEG decodability. We argue that a reduction of variability with an otherwise intact active

memory representation (Fig 3) is a parsimonious interpretation of the visual pinging effect.

Alternatively, there is another interpretation of pinging-induced increases in EEG decodability

consistent with our findings. Recent modeling work has shown how the enhancement of active

representations [20,21] is expected when pinging recurrent neural networks with no need for

activity-silent mechanisms [29,39]. An existing representation maintained in an attractor sup-

ported by recurrent and competitive interactions enhances its tuning when it is stimulated

unspecifically (attractor-boost model, S2 Fig). Also, this mechanism would be consistent with

these data, as it shows reduced variability (Fig 4C, gray), concomitant with boosted attractor

tuning (S2 Fig). While both of these possible interpretations do not exclude an interplay of

active representations with activity-silent mechanisms [5,17,40,41], they offer a parsimonious

view that renders activity-silent working memory an inadequate framework to understand

increases in decodability induced by nonspecific stimuli [7,18,20,21]. To further support this,

we sought to evaluate variability predictions from a computational model where reactivations

occur because of factual memory reactivation from silent, synaptic traces. We tested an avail-

able biophysical network model for (continuous) activity-silent working memory [5], which is

an extension of the canonical but discrete model of activity-silent working memory [1] (Meth-

ods). In these simulations, a nonspecific input induced reactivations in some trials, causing an

increase of across-trial variability (Fig 4C, black). This is because reactivations in such attractor

networks are an all-or-none phenomenon, and great variability is expected when triggering

them from weak, decaying activity-silent traces in noisy spiking networks. In sum, pinging

reveals an underlying active memory, perhaps by reducing noise (Figs 4A, 4B, and S3C) in the

presence of an active code (Figs 1 and 3) or by enhancing tuning in an active representation

(S2 Fig), but not by reactivating stimulus signals from silent traces.

Differential mechanisms for pinging- and TMS-induced reactivations

Increases of EEG decodability at the presentation of nonspecific impulses have been shown to

occur not only for visual impulses [7] but also for external perturbation with single-pulse tran-

scranial magnetic stimulation (TMS) [6]. Despite apparent similarities, TMS perturbations
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impact working memory performance [5,6,42–44], while pinging does not [7,45] (see also

chapter 4 of [46]). This suggested that these approaches could be interacting with fundamen-

tally different neural mechanisms [7,47]. Indeed, we found through the reanalysis of the data

of [6] that single-pulse TMS increases across-trial EEG variability (Fig 4D), in contrast to the

reduction observed upon visual pinging (Fig 4A). Such increase in across-trial variability is in

accordance with the activity-silent working memory model presented before (Fig 4C, black),

thus potentially supporting the interpretation of TMS EEG reactivations as signals recovered

Fig 4. Impulse-induced, across-trial variability change in human EEG and computational models. (A) Percentage

of variability change, relative to 0.2 s before the impulse, computed when the impulse was a visual stimulus in Wolff

and colleagues (2017) [7] in gray and Wolff and colleagues (2015) [18] in black. (B) Difference in variances computed

across trials with low vs high stimulus decoding (computed at the time of maximal decodability, black arrow) in Wolff

and colleagues (2015) [18]. Trials with strong memory decoding showed significantly lower across-trial variance than

trials with weak or absent memory decoding. We did not find a significant correlation in Wolff and colleagues (2017)

[7] possibly because of a weaker pinging stimulus, which may have contributed to weaker increase in EEG

decodability, not visible without baselining the data during the delay period (see S3 Fig). (C) Simulations of the

activity-silent working memory model with short-term plasticity (dark) predict an increase of across-trial variability

(Fano factor) following reactivations induced by a nonspecific drive. Simulations of the bump-attractor model without

short-term plasticity (light) predict a decrease in the Fano factor following a nonspecific drive. See also S3 Fig. (D)

Same as (A) but when the impulse was a single-pulse TMS (data from Rose and colleagues, 2016 [6]). Solid bars mark

where the change in variability was significant (two-sided t test, p< 0.005), and error bars are bootstrapped 95% CI of

the mean. Six out of 54 sessions had outlier TMS artifact variance (i.e., extremely high variance at the time of the

impulse) and were removed from this analysis. EEG, electroencephalography; TMS, transcranial magnetic stimulation.

https://doi.org/10.1371/journal.pbio.3001436.g004
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from activity-silent traces [5,6]. However, a note of caution is in order: The difficulty in pre-

cisely locating the TMS coil in different trials may contribute to increased EEG variability by

virtue of the long-lasting effect of the TMS pulse on neural excitability [48]. This could mask

EEG signals reflecting TMS-induced reactivations.

Discussion

Through the reanalysis of existing datasets, we provide here evidence that working memory

“reactivations” by visual pinging, considered prime evidence for activity-silent working mem-

ory [2–4,8–15], occur in the presence of active (not silent) ongoing memory representations in

the delay period. In addition, we verify that representations for unattended items are notably

weaker than for attended items, consistent with biased competition between active memories

[29]. Based on this substrate for working memory, visual pinging may increase EEG decodabil-

ity through (1) ping-induced reduction in across-trial variability; and/or (2) ping-induced

boosting of attractor tuning. We further compare visual pinging with TMS perturbations, and

we find qualitative differences suggesting different underlying mechanisms. Based on the dif-

ference in behavioral impact of these 2 perturbation protocols (visual pinging does not affect

working memory behavior, but TMS does), we speculate that visual pinging may increase EEG

decodability via reduced across-trial variability or by transient boosting of active attractors,

while TMS-induced reactivations would be supported by activity-silent mechanisms. Note that

temporarily boosting an active attractor should not have a strong impact on behavior beyond

the boosting period (unless additional long-lasting cellular mechanisms are engaged), while

true reactivations from activity-silent stores should have a long-lasting impact, as the silent

trace is refreshed.

We show here that relevant memories are stored in active codes and are thus decodable,

while irrelevant memories could not be decoded, therefore potentially discarded. This inter-

pretation sheds light on the intriguing ineffectiveness of pinging on discarded memories,

while being effective in “reactivating” unattended but still relevant ones [7]. The reactivation

effectiveness of pinging appears now to depend on whether memories are maintained in active

neuronal representations, decodable from EEG. In line with this, a recent study shows that

pinging reveals diffusing dynamics [45], a hallmark of active memories [45,49], instead of

decaying dynamics, as expected in the activity-silent framework [1,45]. Our data reconcile the

influential study by Wolff and colleagues [7] with recent works showing irrelevant or unat-

tended memories actively encoded in scalp EEG [32–34], in the activity of cortical association

areas using large-sample fMRI analyses [30] or intracranial recordings in monkeys [22,50],

and in neural activity in visual areas of rodents [36]. While there is extensive evidence for

long-lasting cellular and synaptic mechanisms in cortical neurons (“silent” mechanisms, e.g.,

[51]) that must coexist [52] with, or even support [17,40,53–55], active representations such as

those reported in this study, there is more scant evidence that working memory can be voli-

tionally stored without spiking activity [1,56].

Explicit evidence for activity-silent processes is difficult to obtain but is particularly con-

founded in the presence of active representations. A possible approach is to seek evidence for

activity-silent traces from previously memorized but already irrelevant items [5,57], for which

chance-decoding is expected in principle. There, too, it is hard to discard low-powered

designs, so positive evidence must be sought. Recently, it has been reported that, between con-

secutive trials—when the previous memory should be discarded, similarly to uncued memo-

ries in [7]—neurons fire more synchronously after having been engaged in active working

memory storage [5], suggesting that discarded memories can leave involuntary silent traces.

Importantly, selecting sessions based on good overall decodability (as in Fig 3) did not reveal
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decodability of these across-trial discarded memories (Fig 1 in [5]), supporting a true activity-

silent substrate. We argue that the effect of induced reactivations must be validated during

similar conditions in which memories are demonstrably discarded, presumably leaving an

activity-silent trace. Current evidence shows across-trial behavioral effects of TMS, as is

expected by reactivating previous, discarded memories [5,44], but not of visual pinging during

intertrial periods (chapter 4 of [46]). Also, the evidence in Fig 3 suggests that visual pinging

cannot reactivate putative activity-silent traces following a discarded item.

Finally, our results suggest that voltage and alpha power encode similar working memory

content. Previous work, however, shows that alpha and raw voltage play different roles in

working memory [25–27], in particular that alpha power tracks spatial attention instead of the

actual memory content. In principle, with the experimental design of Wolff and colleagues [7],

subjects could recode orientation as a spatial location, which would be tracked by alpha power

and by sustained voltages [25]. Future work with other experimental designs including inde-

pendent variation of orientation and attentional location [25] could clarify this point further.

Regardless of whether EEG is tracking orientation or a location recodification, we argue that

in these data, both signals are carrying analogous contents, with voltage being noisier.

In sum, our results add to previous literature showing robust decoding of unattended work-

ing memories from electrophysiological signals [22,30,32–36,50]. Our analyses reinforce the

idea that interpreting null decoding as evidence for storage in silent traces is not straightfor-

ward, because null results might result from weak signals in insufficiently powered analyses

[30,31].

Methods

EEG experiments

We analyzed 2 available datasets of visual pinging [7,18]. For decoding and EEG variability anal-

yses, we focused on both experiments from [7]. In experiment 1 (n = 30), subjects were cued for

which item was going to be probed (cued item, here also called attended, or uncued item, here

called discarded memory). In experiment 2 (n = 19), subjects had to alternate their attention

between 2 items (their early/late, here attended/unattended memory item). Experiment 1 con-

sisted of 1 session, while experiment 2 consisted of 2 sessions (separated by approximately 1 to 2

weeks) on the same set of subjects. For variability analyses, we also analyzed the experiment of

[18] (n = 24). In this experiment, the subjects had to memorize 1 item, thus always within the

focus of attention. Importantly, the item decodability from raw voltage never dropped to

chance. Additionally, we also analyze the voltage variance of the experiment 2 (n = 6) of a TMS

study [6]. We refer the reader to the original studies for extra details [6,7,18]. All these datasets

were made available in a fully anonymized format and had been approved by the corresponding

institutional review boards, as indicated in the original publications.

Data preprocessing

The data available online was epoched and baselined relative to the beginning of each epoch (S3

Fig). To revert this baselining, we computed trial-by-trial voltage difference between consecu-

tive epochs. We then added this voltage difference to the beginning of each baselined epoch,

effectively reverting all baselining effects. Additionally, for the variability analyses (see below),

we remove any signal drift caused by, e.g., moving electrodes using the python function scipy.

signal.detrend on each subject’s variability. Finally, for the decoding analysis (see below), we

also computed the alpha power. For this purpose, the data were Hilbert-transformed (using the

FieldTrip function “ft_freqanalysis.m”) to extract frequencies in the alpha-band (8 to 12 Hz),

and total power was calculated as the squared complex magnitude of the signal.
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Decoding analyses

We used freely available code to perform these analyses, so we will only briefly describe the

methodology here. For a detailed description of the decoding methods, please refer to the orig-

inal study [7]. As in the original study, we decoded from all the 17 posterior channels (P7, P5,

P3, P1, PO7, PO3, and O1 versus P8, P5, P6, P4, P2, PO8, PO4, and O2). Briefly, we collected

the Mahalanobis distance between all possible pairwise combinations of the orientations and

thus form a representational dissimilarity function. Finally, the decoding strength was calcu-

lated as the vector strength of this function. We decoded from raw voltage or alpha power with

the exact same code. The decoding strengths (Fig 1) were smoothed over time with a gaussian

kernel (SD = 10 ms).

Across-trial variability analyses

We computed variability as the variance (var) across trials of the raw voltage traces

(trials × sensors × time). Before averaging variances across sensors, we detrended them using

the function scipy.signal.detrend to account for any drift in the signal. Finally, we computed

the percentage of variability change (Δvar) relative to the baseline period of 2 s before the ping-

ing stimulus (b): Δvar = (var − b) / b � 100. This referencing to the baseline ensures that

changes in variability can be attributed solely to the pinging and not to other factors that are

common to both pre and after pinging, such as varying stimulus orientations. We computed

across-trial variability for each session separately, and then averaged variances across sessions.

This is important for the TMS experiment, in which TMS location was held fixed. This way,

our variance analysis is not capturing aspects of the design that vary from session to session

(e.g., spatial attention, TMS target location).

Fano factor

To compute the variability drop in the simulated spiking activity, we used the Fano factor [38],

which is defined as the variance of spike counts in a given window (100 ms) divided by their

mean. We then computed ΔFF, as the difference relative to the baseline period of 2 s before

pinging stimulus.

Phenomenological simulations of EEG trials

To study how single-trial baseline correction impacts pinging-induced increases in EEG

decodability, we applied our decoders to synthetic EEG data generated by a model where spu-

rious EEG reactivations are caused by a reduction in noise variability. First, we simulated 2

hypothetical delay maintenance EEG time series representing 2 independent experimental

conditions (i.e., grating oriented 0 0 versus 45 0; n = 200 each condition) using the following

Gamma function (f) as a single-trial waveform:

f tja; bð Þ ¼
ea� 1

½bða � 1Þ�
a� 1

ta� 1e� t=b

For each trial and condition, parameters a and b were drawn from a gaussian distribution

(condition 1, μa = 2, μb = 130 ms; condition 2, μa = 3, μb = 80 ms; all conditions with σa = 0.2,

σb = 0.5 ms). Each waveform was then scaled by 0.5 and 0.25, respectively, and the time onset

was set to time point 0.1 s.

Finally, for each single-trial and condition, gaussian noise was added (μ = 0, σ = 0.75). Dur-

ing the impulse period (1.3 s to 1.5 s), for each trial and experimental condition, we reduced

30% the variability of the noise (σ = 0.525).
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To use the same decoding method as the original publication, we generated a multichannel

time series. We created 2 sets of dipoles located around left (position [1.5–8.6 1.5] cm, orienta-

tion [–1 –1 –1]) and right (position [1.5–8.6 1.5] cm, orientation [1 –1 –1]) primary visual cor-

tex, and the simulated time courses were projected to the scalp via a forward model [58]. S3C

Fig plots decoding of these signals upon different conditions of EEG voltage baselining. The

Matlab code for these simulations is available on https://github.com/comptelab/reactivations.

Activity-silent network model

We used a previously proposed computational model [5] to simulate memory reactivations.

The model consists of a network of interconnected 2,048 excitatory and 512 inhibitory leaky

integrate-and-fire neurons [59]. This network was organized according to a ring structure:

Excitatory and inhibitory neurons were spatially distributed on a ring so that nearby neurons

encoded nearby spatial locations [60]. Excitatory connections were all to all and spatially

tuned, so that nearby neurons with similar preferred directions had stronger than average con-

nections, while distant neurons had weaker connections. All inhibitory connections were all to

all and untuned. Network parameters were taken from [5]. Simulation of “activity-silent”

mechanisms was done by simulating 2 presynaptic variables x and u, as described in [5]. Reac-

tivations were accomplished stimulating all excitatory neurons with a nonspecific external

stimulus [5].

Attractor-boost network model

For the attractor-boost model, we used a bump attractor model similar to the activity-silent

model described above, but without short-term plasticity. As in this other model, attractor

boosting was achieved with a nonspecific external stimulus to all excitatory neurons. The

Brian [61] code for this model is available on https://github.com/comptelab/reactivations.

Improving statistical power

Smoothing. To improve signal-to-noise ratio for our decoding analyses, we smoothed the

voltage traces using a gaussian kernel with σ = 32 ms. This was in contrast with the original

study that used instantaneous, nonsmoothed voltages for decoding and smoothed the resulting

decoding accuracies with σ = 16 ms.

Pooling all trials, across different sessions. We also pooled all trials across sessions and

subjects. Because all subjects and sessions consisted of a similar number of trials, we are not

biasing our analyses toward a specific subject. Note that we only pooled trials across sessions

for the analyses in Fig 2. We averaged across sessions for the other analyses.

Cross-validated median split. To simulate an increase of signal-to-noise ratio, we

removed sessions with low decodability. Importantly, to avoid circularity in our analysis, we

cross-validated this selection in the following way. For each session, we randomly split the sin-

gle-trial decoding accuracies in two-halves. With the first half, we sorted the sessions by their

average decoding accuracy during early delay [0.25 to 0.45] s, and we selected high and low

decoding sessions (median split). We then computed the average decoding accuracy in the sec-

ond half for low- and high-decoding sessions defined in the first half. We repeated this proce-

dure 2,000 times for different random half-splits of the data (split-folds). Finally, we

established the chance-level decoding accuracy (shuffle predictor) for high-decoding sessions

by averaging the decoding strengths of 1,000 shuffled decoders (i.e. permuting orientation

labels) analyzed with the same procedure (200 split-folds). For high-decoding sessions, we

considered the average decoding strength significant if at least 95% of the split-folds were

higher than the shuffle predictor.
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Supporting information

S1 Fig. A sustained alpha-power code tracks behaviorally relevant orientation memories.

Data from Wolff and colleagues (2017) [7].

(TIF)

S2 Fig. In an attractor-boost network model, a nonspecific stimulus increases tuning with-

out reactivation. Two example stimulations of a bump-attractor with (weak drive) and with-

out (no drive) a nonspecific drive at the end of the trial. Importantly, we did not include short-

term plasticity in either simulation; thus, reactivations are not possible. Right, tuning during

the last 0.5 s is higher for the trials in which a nonspecific drive was delivered (green), com-

pared to when no drive was delivered (black). Similar models have been put forward in previ-

ous publications [29] (see also [39]).

(TIF)

S3 Fig. Effect of EEG baselining on stimulus decoding analyses. (A) Original data from

Wolff and colleagues (2017) [7] was baselined twice. (B) For our analyses, we de-baselined the

second baselining of each trial so we could get continuity in EEG voltage traces through the

whole trial (early baseline). Importantly, the exact time of the baseline affects the strength of

“reactivations.” Note that data with early baselining do not show any visible increase in EEG

decoding. (C) Top: diagram outlining the computer simulation that generated the EEG syn-

thetic data, as if 2 current dipoles were placed within the visual cortex (yellow) to recreate arti-

ficial trials. Two different sets of trials (n = 200, blue and red), corresponding to 2 different

stimuli (e.g., 0˚, 45˚) were generated (Methods). We simulated 2 event-related potentials (elec-

trode “Oz”; white) followed by a drop in across-trial variability. Bottom: illustration of how a

similar signal-to-noise ratio increase (shown in “decoding” for the drop in variance case) can

result from a drop in variance or actual reactivation (signal increase). (D) Through simula-

tions, we show that the baselining procedure introduces spurious reactivations in data without

any true reactivation signal. By applying the decoding methods of Wolff and colleagues [7], we

observe that (as in the data) spurious reactivations are barely visible with a distant baseline

(early baseline) but are amplified for more proximal baselines (late baseline). These analyses

illustrate that baselining is problematic and should be avoided, as it has been previously

pointed out [28]. Darker lines mark the impulse period in the data and drop in variance in the

simulations. Data from Wolff and colleagues (2017) [7].

(TIF)
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