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We derive the off-shell nilpotent of order two and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST, and
(anti-)co-BRST symmetry transformations for the Christ-Lee (CL) model in one (0 + 1)-dimension (1D) of spacetime by
exploiting the (anti-)chiral supervariable approach (ACSA) to BRST formalism where the quantum symmetry (i.e., (anti-)BRST
along with (anti-)co-BRST) invariant quantities play a crucial role. We prove the nilpotency and absolute anticommutativity
properties of the (anti-)BRST along with (anti-)co-BRST conserved charges within the scope of ACSA to BRST formalism
where we take only one Grassmannian variable into account. We also show the (anti-)BRST and (anti-)co-BRST invariances of

the Lagrangian within the scope of ACSA.

1. Introduction

Gauge theories describe three (i.e., strong, weak, and electro-
magnetic) out of four fundamental interactions of nature
which are characterized by first-class constraints in the con-
text of Dirac’s prescription for the classification scheme of
constraints [1, 2]. The existence of the first-class constraints,
in a given system, is the key signature of a gauge theory.
Many interesting theories, in the domain of physics, are
expressed by the suitable Lagrangians that are invariant
under the gauge symmetry transformations. These symme-
tries are generated by the first-class constraints in a given
gauge theory. For the covariant canonical quantization of
the gauge theory, the Becchi-Rouet-Stora-Tyutin (BRST)
quantization procedure plays a decisive role where we
replace the infinitesimal local gauge parameter by ghost
and antighost fields [3-6]. Thus, in this formalism, we have
two fermionic-type global BRST (s,) and anti-BRST (s,)
transformations at the quantum level (for a given local gauge
symmetry transformation at the classical level). These sym-
metry transformations are endowed with two important
properties: (i) nilpotency of order two (ie., s} =0,s2,=0)
and (ii) absolute anticommutativity (i.e., s, 5., + Sz, S, =0).

The first property signifies that these quantum BRST and
anti-BRST symmetry transformations are fermionic in
nature whereas the second property shows that both symme-
try transformations are linearly independent of each other.
Besides the (anti-)BRST symmetry transformations, we have
two more fermionic and linearly independent symmetry
transformations which are christened as the co-BRST (s;)
and anti-co-BRST (s,;) symmetry transformations. The lat-
ter fermionic-type symmetry transformations are valid for
any D-dimensional p-form (p=1,2, 3, ---) gauge theories in
D =2p dimensions of spacetime. We point out that there
are some specific systems such as rigid rotor and Christ-
Lee (CL) model in one dimension (1D) that respect the
(anti-)co-BRST transformations along with the (anti-)BRST
transformations [7-10].

The geometrical interpretation and the emergence of
nilpotent (anti-)BRST symmetry transformations have been
shown within the ambit of Bonora-Tonin (BT) superfield
formalism [11-13] where the Grassmannian variables (9, 9
) and their corresponding derivatives (dy, dg) (with proper-
ties ¥ =9 =0,00=02=0 and 99+ 99=0,0, 05+ dy dy =
0) play a very important role. In BT-superfield approach,
we see the connections between the (anti-)BRST symmetry
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transformations (s(,),) (with properties st=s2,=0 and s,
Sap +Sap S, =0) and Grassmannian translational generators
(0g, 0g) because of the fact that both have the same algebraic
structure. In this formalism, any D-dimensional Minkows-
kian manifold is generalized onto the (D,2)-dimensional
supermanifold. This suitably chosen supermanifold is
denoted by the superspace coordinates (x*,9,9) where x#(
u=0,1,2,---,D—1) are the spacetime coordinates and (9,
9) are a pair of Grassmannian variables.

The CL model is one of the simplest examples of gauge-
invariant system which is described by a singular Lagrangian
[14]. Physically, the CL model represents the motion of a
point particle moving in a plane under the influence of a
central potential. The CL model has been studied at the clas-
sical and quantum levels in different perspectives [14-20].
This model is endowed with the first-class constraints in
the Dirac’s terminology for the classification scheme of con-
straints [1, 2]. This model is also quantized by using the
Faddeev-Jackiw quantization where all the primary and
derived constraints are treated on equal footing without
any type of further classification [20]. Within the framework
of BRST formalism, the CL model respects six independent
continuous symmetries (i.e, BRST, anti-BRST, co-BRST,
anti-co-BRST, ghost-scale, and bosonic symmetries) (see,
e.g., [9] for detail). The BT-superfield formalism has been
applied to obtain the absolutely anticommuting and off-
shell nilpotent (anti-)BRST as well as (anti-)co-BRST sym-
metry transformations where the techniques of celebrated
horizontality condition (HC) and dual horizontality condi-
tion have been used [10], respectively.

In our recent set of papers [21-25], we have used a newly
proposed formalism which has been called by us as the (anti-
)chiral superfield/supervariable approach (ACSA) to BRST
formalism. In this approach, we take into account only one
Grassmannian variable in the expression for the superfield/-
supervariable. Thus, the resulting superfield/supervariable
turns into (anti-)chiral version of the superfield/supervari-
able. In other words, in this formalism, any D-dimensional
Minkowskian manifold is generalized onto (D, 1)-dimen-
sional super-submanifolds of the most general (D,2)
-dimensional supermanifold. The proof of the absolute
anticommutativity property of Noether’s conserved charges
is obvious in the case of BT-superfield formalism where
the full super expansions of superfields/supervariables are
taken into account. In the case of ACSA, we have also been
able to show the nilpotency and absolute anticommutativity
properties of conserved charges despite the fact that we have
taken only one Grassmannian variable into account. In our
present endeavor, we derive the (anti-)BRST together with
(anti-)co-BRST symmetry transformations where some spe-
cific sets of (anti-)BRST and (anti-)co-BRST invariant
restrictions play a very important role. We also show the
absolute anticommutativity as well as nilpotency properties
of (anti-)BRST and (anti-)co-BRST conserved charges
within the realm of ACSA to BRST formalism.

Against the background of the above paragraph, it has
been found that the nilpotency of the /" =2 super charges
is true for any /=2 supersymmetric (SUSY) quantum
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mechanical models (see, e.g., [26-28]) within the ambit of
(anti-)chiral supervariable approach to BRST formalism.
However, the application of ACSA, in the realm of 4 =2
SUSY quantum mechanical model, does not lead to the
absolute anticommutativity of the /=2 super conserved
charges. Rather, it has been found that the anticommutator
of the above /=2 SUSY conserved charges leads to the
time translation of the variable on which it acts. Thus, it is
crystal clear that ACSA to BRST formalism does not lead
to the derivation of absolute anticommutativity of the
charges for all /=2 SUSY theories.

The different sections of our present paper are arranged as
follows. In Section 2, we discuss the (anti-)BRST and (anti-)co-
BRST symmetry transformations for the CL model and derive
the conserved charges. Our Section 3 deals with the ACSA to
BRST formalism where we derive the (anti-)BRST symmetry
transformations. Section 4 is devoted to the derivation of
(anti-)co-BRST symmetry transformations by using the ACSA
to BRST formalism where the super expansions of (anti-)chiral
supervariables are utilized in a fruitful manner. In Section 5,
we express the conserved (anti-)BRST and (anti-)co-BRST
charges on the (1,1)-dimensional super-submanifolds (of
the most general (1, 2)-dimensional supermanifold) on which
our theory is generalized and provide the proof of nilpotency
and absolute anticommutativity properties of the (anti-)BRST
along with (anti-)co-BRST charges within the ambit of ACSA
to BRST formalism. In Section 6, we discuss the (anti-)BRST
and (anti-)co-BRST invariances of the Lagrangian within the
scope of ACSA. Finally, we point out our key results and
discovery in Section 7 and mention a few future scopes for fur-
ther investigation.

2. Preliminaries: Symmetries and Their
Corresponding Generator for the Christ-
Lee Model

The first-order and gauge-invariant Lagrangian of the
Christ-Lee (CL) model [the other equivalent second-order
Lagrangian (L;) [14] associated with the Christ-Lee model
is L, = (1/2) # + (1/2) #* (¢ — z)* = V(r); but we choose only
the first-order Lagrangian L, in our present work because it
respects maximum symmetry transformations] in (0+ 1)
-dimension (1D) of spacetime in polar coordinates system
is given by [14, 16, 19]

_ - 1L, 1,
Lf_rpr+(qu)_Epr_ﬁpq)_zp(p_v(r)’ (1)

where 7 and ¢ are the generalized velocities, p, and p,
are their corresponding canonical momenta, respectively,
and z is a Lagrange multiplier which enforces a constraint
p, = 0. This Lagrangian explains that a two-dimensional par-
ticle moves under the influence of the central potential V(r)
bounded from below.
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The above system has a primary constraint as follows:

oL

= =1 =p, =0. )

The time derivative of the primary constraint @, leads to
the following secondary constraint:

do, _d (AL oo G)
F oda\az) T T TR

It is clear that both @, and @, are first-class constraints.
The gauge symmetry transformation generator can be writ-
ten in terms of first-class constraints as

G=x(1)D; + x(1)D,, (4)

where y(7) is an infinitesimal and time-dependent local
gauge parameter and (1) = dy/dr. Using the definition of a
generator

¢:r’pr’(p’p(p’z’ (5)

where ¢ is the generic variable that is present in the first-
order Lagrangian L;. We deduce the following local gauge

transformations by exploiting Equation (5), namely,
o(r) = (1),
¢(7) = x(7), (6)
8[r(x).p,(v).py (1), V(r)] =0.

8
é

It is elementary to check that, under the above local
gauge symmetry transformations, the Lagrangian under
consideration remains invariant (i.e., 6Lf =0).

The (anti-)BRST invariant Lagrangian for the (0+1)
-dimensional CL model containing the gauge-fixing and
Faddeev-Popov ghost terms is given by [15]

: . 1, 1,
L:rpr+(Pp<p_Epr_ﬁp(p_zp(p_v(r) (7)
+;W+@@+@+£chz

where the Nakanishi-Lautrup-type auxiliary variable 98
is used to linearize the gauge-fixing term and the Faddeev-
Popov (anti-)ghost variables (C)C are used to make the
Lagrangian BRST invariant. These fermionic variables (C)
C (with C*=C” =0, CC + CC = 0) have ghost numbers (1
) + 1, respectively. The above Lagrangian respects the follow-
ing off-shell nilpotent (ie., s7,, =5, ;=0) and absolutely

anticommuting (i.e., s;,5,, + S5, =0 and s;5,;+5,;75;=0)

(anti-)BRST along with (anti-)co-BRST symmetry transfor-
mations:

swz2=C,

sw2=C,

sa® =G,

55C = —19%B,

Sab [r, PPy B C| =0, (8)

s,2=C,
s =G,
5,C =i,

Sb |:r’ pr’ p(P) %) C = O)

5.a2=G,
Sad P = -G,
SadC = —lp(p,

Sad r’Pr’P(p’ ‘%’ C:| =0,
. (9)

Sd zZ= C,
sa¢=-C,
SdC = iptp’

Sy [r,p,,pq), B,C| =0.

It can be clearly checked that under the above (anti-
)BRST (Equation (8)) and (anti-)co-BRST (Equation (9))
symmetry transformations the Lagrangian (Equation (7))
remains quasi-invariant (i.e., modulo a total time derivative):

oL = % (¢),
k= 1o (3), "
syl = _di‘r (p(pC),

As a result, the action integral S= [ d7L remains invari-
ant under the (anti-)BRST as well as (anti-)co-BRST symme-
try transformations (i.e., S, S =0, 5(,)4S = 0). According to
Noether’s theorem, the invariance of the above Lagrangian
under the nilpotent (anti-)BRST together with (anti-)co-
BRST symmetry transformations leads to the following



(anti-)BRST charges [@,,] and (anti-)co-BRST charges |
@ 4)a)> namely,

@,y = BC+p,C=BC - BC,

. . (11)
@, = BC+p,C=BC - HBC,

Q4= BC—p,C=BC+BC,

. (12)
Qy=BC-p,C=BC+BC,

where the equivalent forms of the above charges are
written with the help of the equation of motion: p, = -%.

The above charges are nilpotent of order two (i.e., @fa)b =
@%a)d =0) and anticommuting in nature (ie., @,Q,, + @,
@, =0 and Q,Q,,+Q,;0Q,=0). The conservation law for
these charges (i.e., (d/d7)Q,, =0 and (d/d7)Q,, =0) can
be easily proven by using the following interesting Euler-
Lagrange equations of motion [besides these EOMs, we use

an equation B+ B =0 derived from the EOMs (13) to
prove the conservation law for the (anti-)BRST together with
(anti-)co-BRST conserved charges (Equations (11) and
(12))] (EOMs) derived from Lagrangian L of our theory
(Equation (7)), namely,

B+p,=0,

r3_ (13)

The (anti-)co-BRST and (anti-)BRST conserved charges
are the generators of the (anti-)co-BRST and (anti-)BRST
symmetry transformations, respectively. As one can easily
check that the following relationships are true:

SdE - _i[E’ Qd]i’
SadE - —1'[5, @ud +2 (14)
6 =—i[€, Q.

where £ denotes any generic variable present in the
Lagrangian L of our theory. The subscript (+) on the square
brackets denotes the (anti)commutator which depends on
the nature of generic variables & being (fermionic) bosonic
in nature.
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3. Nilpotent Quantum (Anti-)BRST Symmetry
Transformations: (Anti-)chiral
Supervariable Approach

In this section, we determine the nilpotent (anti-)BRST sym-
metry transformations (cf. Equation (8)) by using (anti-)chi-
ral supervariable approach (ACSA) to BRST formalism
where we shall use the (anti-)chiral super expansions of
supervariables. Towards this goal, first of all, we generalize
the ordinary variables of the Lagrangian (7) onto (1,1)
-dimensional antichiral super-submanifold (of the most
common (1, 2)-dimensional supermanifold) as follows:

z2(1) — Z(7,9) = 2(1) + 9, (1), (15)
(1) — (7, 9) =9(1) + I, (1), (16)
C(t) — F(r,9) = C(1) + i%, (1), (17)
C(r) — F(1,9) = C(1) +i9b,(), (18)
r(1) — R(1,9) = (1) + 9f;(7), (19)
(1) — P, (. 9) =p,(7) + 9,(7), (20)
Py(T) = Py (1,9) =p, (1) + 95 (1), (21)
B(1) — B(1,9) = B(1) + I{(7), (22)

where by, b, are the bosonic derived variables and f|, f,
» f35 fu> f55 f are the fermionic derived variables due to fermi-
onic nature of 9. We determine the precise value of these
derived variables in terms of the auxiliary and basic variables
present in the BRST invariant Lagrangian (7) by using the
BRST invariant quantities/restrictions.

According to the basic principles of ACSA, the BRST
invariant quantities must remain independent of the Grass-
mannian variable (9) when they are generalized onto the (
1, 1)-dimensional antichiral super-submanifold. The BRST
invariant quantities are the specific combinations of the var-
iables present in Lagrangian (7). These are given as follows:

Sy (r,pr,pq,, B, C) =0,

S (ZC) =0,
Sb((PC) =0, (23)

Sp (%’z + iéC) =0,

sp(p—2) =0,

sp(Be +iCC) =0.
We generalize the above BRST invariant restrictions
onto the (1,1)-dimensional antichiral super-submanifolds

(of the suitably chosen most common (1,2)-dimensional
supermanifold)
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95’(1, 9)@(1, 9) + iF(T, 9) F(T, 9) =B(1)¢() +iC(1)C(7).
(28)

The above restrictions lead to the derivation of the
derived variables in terms of the basic and auxiliary vari-
ables. To determine the value of these variables, we perform
the step-by-step explicit calculations. For this purpose, first
of all, we use the generalization of the trivial BRST invariant
restrictions given in the first line of Equation (24) as

P,(7,9) =p,(1)=f5=0,
B(1,9) = B(1) = f, =0,
R(1,9) =r(1) = f;=0, (29)

After substituting the above value of derived variables
from (29) to (15), we get the following expressions for the
antichiral supervariables, namely,

where the superscript (b) on the antichiral supervari-
ables denotes that these supervariables have been obtained
after the use of BRST invariant quantities. It is clear that
the coefficients of Grassmannian variable 9 are simply the
quantum BRST symmetries (8). Now, in the case of nontriv-
ial BRST invariant restrictions: s,(zC) =0 and s,(¢C) = 0,
the following generalizations onto (1,1)-dimensional
super-submanifold, namely,

Z(x,9) F (1,9) = 2(r) C(1), ©(,9) F¥) (1,9) = () C(7),
(31)

5
lead to the following interesting results:
£ =020 < Cm =A@ =mlE:
S(1)C(1) =0= (1) o C(1), =f,(7) = 1,C(1),

where «; and «, are the proportionality constants. To
determine the value of these constants, we use the generali-
zation of BRST invariant restriction s,(¢ —z) =0 as

@(T, 9 -Z(1,9) =¢(1)-z(t) =K =x,.  (33)

Finally, to determine the value of constants, we generalize

the BRST invariant restrictions s,(Bz +iCC) = 0 and s,( B
+1iCC) =0 onto (1, 1)-dimensional super-submanifold as

%" (,9) 7 (,9) + iF(r,9) i¥ (x,9) -
= B(7) 2(1) + iC(1)C(1) = by(1) = 6, B(7),
3" (1,9)0(,9) +iF(r,9) F¥ (1, 9) 55)

= B(1)p(1) +iC(1)C(T) = by(7) = K, B(7).

Using the results obtained in Equations (33) and (34), it is
clear that x; = «, = 1. Therefore, we obtain the value of derived
variables as f,(t) = C(1), f,(t) = C(z), by(1) = B(7); thus,
we get the following expansions for antichiral supervariables:

2(1) — ZO (1,9) = z(r) + 9 [C(T)} = z(7) + I[s, 2(7))],
(36)
(1) — 0 (7,9) = ¢(1) + 9[C(7)] = 9(7) + sy p(7)],
(37)
T

C(r) — FY(1,9) = C(r) + 9[i%B(7)] = C(r) + 9[5,C(7)]..
(38)

Thus, in view of Equation (36), we have a connection
between the BRST symmetry transformation (s;) and partial
derivative (d3) on the antichiral super-submanifold defined
by the mapping: s, < 03 (see, e.g., [11-13] for details). To be
more clear, the BRST transformation of any generic variable
y(7) is equal to the translation of the corresponding antichiral
supervariable ¥%)(z, 9) along the 9-direction. Mathemati-
cally, it can be represented as s,y(7) = (3/09)¥"¥) (1, 9) = 95
¥®)(z,9). In other words, one can say that the coefficient of
9 in the expansion of an antichiral supervariable is simply
the quantum BRST symmetry transformation of the corre-
sponding variable.

We are now in the stage to derive the quantum anti-
BRST symmetry transformations using chiral supervariable
approach. In this context, we use the chiral super expansions
of the chiral supervariables where we generalize (0+ 1)
-dimensional variables onto the (1, 1)-dimensional super-
submanifold of the suitably chosen most common (1,2)



-dimensional supermanifold. The chiral super expansions of
the ordinary variables are as follows:

2(1) — Z(1,9) =z(7) + 9, (7), (39)
(1) — O(1,9) = (1) + 9, (1), (40)
C(t) — F(1,9) = C(7) +i 9, (1), (41)
C(t) — F(1,9) = C(7) + i 9b, (), (42)
r(t) — R(z,9) = (1) + 9f5(1), (43)
p.(1) — P.(7,9) =p, (1) + (1), (44)
Pp(T) — Py(1,9) =p, (1) + 9f5(7), (45)
B(1)— B(r,9)=B() + Fo(r),  (46)

where derived variables b,, b, are the bosonic and derived
variables f, f5, f3, f 4> f 5 f ¢ are fermionic in nature. The anti-
BRST invariant restrictions also must remain independent of
the Grassmannian variable (9) when they are generalized onto
the (1,1)-dimensional chiral super-submanifold. The anti-
BRST invariant restrictions are given as

Sap (r,p,,pq), B, C) =0,

Sab (ZC) = 0,
sa(9C) =0, (47)
Sab (Q)’z + iéC) =0,
Sab((p - Z) =0,
Sap(Be +iCC) =0.

As the physical quantities remain independent of the
Grassmannian variable 9 which imply that the anti-BRST
invariant restrictions can be generalized onto the (1,1)
-dimensional super-submanifold of the most common (1,2)
-dimensional supermanifold as follows:

R(7,9) =r(1), P,(7,9) = p,(7), Py (7, 9) = p, (7),
RB(1,9) = B(1), F(1,9

Z(1,9)F(1,9) = 2(1)C(1), O(7, 9) (1, 9) = 9(1)C(7),
B(1,9)Z(,9) +i F(1,9)E(1,9) = B(1) 2(7) +iC(1)C(7),
O(,9) -

Z(1,9) = ¢(1) - 2(1),

B(1,9)0(,9) +iF (7, 9)F(t, 9) = B(7)o(7) + iC () C(7).
(48)
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The above generalizations of the anti-BRST invariant
restrictions (Equation (47)) lead to the derivation of the chiral
derived variables in terms of the auxiliary and basic variables
present in the Lagrangian L, namely,

b, =0,

f5=0,

fi=0,

fs=0,

fe=0,

f,=C

f,=C
b =-ARB. (49)

The above values of chiral derived variables are obtained in
a similar fashion as the antichiral derived variables are
obtained. After the substitution of the above derived variables
into the chiral super expansions (39), we get the following
expressions for the chiral supervariables onto (1, 1)-dimen-
sional super-submanifold as

2(t) — FW(1,9) =z(1) + 9 (C) = 2(7) + 95, 2(7)];

9(r) — (1, 9) = (1) + 9 (C) = p(7) + Isup(7));
C(T)—>F<“b>(f)9)=c(f) 9(=iRB) = C(7) +9[s,, C(7)],

C(r) — F*(x,9) = C(1) +9(0) = C(7) + [s,,C(7)],
r(r) — R(7,9) = (1) + 9(0) = () + I[spr(7)],
po(1) — P, 9) = p, (1) +9(0) = p,(7) + 5P, (7)),
Py(1) — PYV(7,9) = p, (1) + 9(0) = p, () + 95,4, (7).
B(t) — B (1,9) = B(1) + 9(0) = B(7) + sy B(T))-
(50)

Here, the coefficients of 9 are simply the anti-BRST sym-
metry transformations (see, e.g., [11-13] for detail). In fact,
the anti-BRST transformation of any generic variable y(7) is
simply the translation of the corresponding chiral supervari-
able Y@ (,9) along the 9-direction. Mathematically, this
statement can be corroborated as s,, (1) = (3/09)¥'Y) (1, 9)
= 0% @) (7,9). Thus, it is clear that there is a mapping
between the quantum anti-BRST symmetry transformation (
s,) and the Grassmannian partial derivative (0y) defined on
the chiral super-submanifold with the mapping: s,;, < 9.
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4. Nilpotent (Anti-)co-BRST Symmetry
Transformations: (Anti-)chiral
Supervariable Approach

In this section, we derive the nilpotent (anti-)co-BRST sym-
metry transformations using the (anti-)chiral supervariable
approach (ACSA) where we use the expansions of the
(anti-)chiral supervariables and the (anti-)co-BRST invari-
ant restrictions. Toward this goal in our mind, first of all,
we determine the co-BRST symmetries by exploiting the chi-
ral super expansions given in Equation (39) and the co-
BRST invariant restrictions. The co-BRST invariant restric-
tions are given as

According to the basic rules of ACSA, the above co-
BRST invariant restrictions can be generalized onto the (1,
1)-dimensional super-submanifold (of the suitably chosen
most common (1, 2)-dimensional supermanifold) as

O(1,9) P, (1, 9) +iF (1, 9) F(1,9) = (1) P, (1) +iC(7)C(7),

(54)

Z(1,9) P(P(T, 9) - iF(T, 9F(1,9) = Z(T)p(P(T) —-iC(1)C(7),
(55)

O(1,9) + Z(7,9) = (1) + (7). (56)

At this stage, we determine the value of derived vari-
ables of Equation (39) using the above generalizations of
the co-BRST invariant restrictions. To derive the value of
the derived variables, first of all, we use the first line entry
of Equation (52) where the trivial co-BRST invariant
quantities are generalized which implies the following rela-
tionships:

7
Pq,(‘r, 9) =pq)(r) :>f5 =0,
B(1,9)=B(1) = f, =0,
R(1,9)=r(1) = f, =0, (57)
F(1,9)=C(1r) = b,=0,
P.(1,9)=p,(t)=f,=0.

After substituting the above value of derived variables
into the expressions of the chiral super expansions (Equa-
tion (39)), we obtain the following chiral super expansions:

C(r) — F9(1,9)=C(r) +9(0) = C(r) + 9 [5,C(7)], (58)
(1) — RD(7,9) = r(7) + 9(0) = r(7) + I[syr(z)], (59)
(1) — P(,9) = p,(7) + 9(0) =p,(7) + 9 [s,p,(7)], (60)

2y(1) — P (5,9) =y (1) + 9 (0) =p, (1) + 9 [sap, ()] (61)

B(t) — B (1,9) = B(1) +9(0) = B(7) + [, B(7)], (62)

where superscript (d) on the chiral supervariables
denotes the supervariables obtained after the application
of the co-BRST (i.e., dual-BRST) invariant restrictions.
For the nontrivial case, first of all, we generalize the co-
BRST invariant restriction s;(z C) =0 and s;(¢ C) =0 onto
(1,1)-dimensional super-submanifold as

() -
(7. 9) =¢(7) C(7),

(63)

Z(1,9) F(1,9) =2(1) C(1), O(1, 9) F

which lead to the following relationships for the derived
variables:

J_(l (1)C(r) =0 :>J_(1(T) o C(7), :>J_(1(T) =-#%,C(1),

(64)

where %, and k, are the proportionality constants. To
determine the value of these constants, we further use
the generalizations of the co-BRST invariant restrictions

sa(@+2)=0,5,(pp, + iCC) =0 and sa(zp, —iCC) =0 as

O(1,9) + Z(1,9) = (1) + 2(1) 2 &, =Ky,  (65)

o 9P (1,9)+ i F' (x,9)F(r, 9) = p(1)p, (7) )
+iC(T)C(1) = by (1) =~y (1),
Z(1,9)PL4) (1,9) - i (1, 9) F(r, 9) = 2(1)p, () &)

~iC(T)C(r) = by () =, py (7).

The results of the above three relations in Equation
(65) imply that proportionality constant is equal (i.e., ¥;



=¥,) and their values are equal to minus one (ie., ¥, =
&, = —1). Therefore, we get the value of the derived vari-

ables as f, =C,f,=~C,b; =p,. As a result, we have the
following chiral super expansions of the ordinary variables:

2(t) — ZW(1,9) =2(1) + 9[C(1)] = 2(7) + I[s, 2(7)),

p(r) — O (x,9) = 9(r) + 9 -C(1)| = p(r) + O[5, 9()],
C(r) — F9(1,9) = C(1) + 9 {ipq,(‘r)} = C(1) + 9[s, C(1)),
(68)

where superscript (d) on the supervariables denotes
the same meaning as in Equation (58). From the above
equations, it is clear that the translation of any generic chi-
ral supervariable ¥(@ (7, 9) along the 9-direction generates
co-BRST symmetry transformation (s;) of the correspond-
ing variable (7). Mathematically, we can express these
statements as s;y(7) = 9% @ (7,9). In other words, the
coefficients of 9 are simply the co-BRST symmetry trans-
formations. Thus, the co-BRST symmetry transformation
(sg) is connected with the Grassmannian derivative 0dg
(ie, s; < dy) [11-13].

Now, for the derivation of anti-co-BRST symmetry trans-
formations, we use the antichiral super expansions of the super-
variables (Equation (15)) and anti-co-BRST invariant
restrictions. The anti-co-BRST invariant restrictions are listed as

Sad (r’pr’p(p’ ‘%’ C) = 0’
Sud(zc> =0,

(69)

The generalization of these anti-co-BRST invariant restric-
tions onto the (1,1)-dimensional super-submanifold (of the
most common (1, 2)-dimensional supermanifold) is as follows:

@(‘r, 9)P¢ (T, 9) + 1'1;‘_"(‘[, 9) F(T, 9) = @(T)p,(7) + ié(T)C(T),

Z(1,9) +O(1,9) = (1) + (7). (70)
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The above generalizations of the anti-co-BRST invariant
restrictions, finally, lead to the derivation of the derived vari-
ables as follows:

b, =0,
b2 =_p(p’
fH=6
:—C’
P} 1)
f3=0,
f4=0>
fs=0,
f6=0.

Thus, we have determined all the derived variables using the
same technique as we have used in the derivation of the co-
BRST symmetry transformations. Finally, after substituting
the value of derived variables into Equation (15), we obtain
the following expressions for the antichiral expansions of the
supervariables, namely,

z2(1) — Z (1,9) =2(1) + 9 (C) = 2(7) + 9 [s,4 2(7)],

p(r) — 01 (r,9) = (1) + 9 (-C) = 9(r) + Is,a(r)];

C(t) — F(1,9) = C(7) +9(0) = C(1) + 9 [5,4C(7)],

Py(1) = PYD (1,9) = py (1) + 9 (0) =, (v) + 9 [ 5,2, (7).

B(1) — B (r,9) = B(7) + 9(0) = B(7) + 9 [s,4B(7));
(72)

where superscript (ad) on the antichiral supervariables
denotes the fact that antichiral supervariables are obtained after
the application of quantum anti-co-BRST invariant restrictions
(Equation (69)). Here, it is clear that the coefficient of Grass-
mannian variable 9 is simply the quantum anti-co-BRST sym-
metry transformation (s,;). To be more clear, the anti-co-
BRST symmetry transformation (s,;) of any generic variable
y(7) is equal to the translation of the corresponding antichiral
supervariable V¥ (, 9) along the 9-direction, i.e., s,;y/(7) =
05%“¥ (7, 9). This implies that the anti-co-BRST symmetry
(s,4) is connected with the Grassmannian translation generator
(03) as s,y < 05 [11-13].
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5. Nilpotency and Absolute
Anticommutativity of the Noether Conserved
Charges: ACSA

In this section, we deduce the nilpotency and absolute antic-
ommutativity properties of the conserved (anti-)BRST along
with (anti-)co-BRST charges in the language of ACSA. For
this, first of all, we show the nilpotency of the (anti-)BRST
together with (anti-)co-BRST conserved charges. It is
straightforward to express the expressions of the (anti-
)BRST together with (anti-)co-BRST charges in terms of
the (anti-)chiral supervariables and partial derivatives (03,
0y) with an equivalent integral form as follows:

@bzg[i'“’)(as)p@)(f, 9) — iE® (r, ) (r, 9)}
i (2,9) B0 (2,9) - 1 FO (1, 9) FV) (¢ 9)],

- (ab)

()
i)
S
I
|
—=
=
b~
=
Py
A
<o
N—
m/ﬂ
p~)
Py
<
e
I
-

(t, 9) F4)(x, 9)}

(T,S)—zF (T 9)F) (¢ 9)}

2.9 (1, 9) — i B (1, 9) POz, 9)}

39
- st [i FO (2, 9)F(z,9) i B (z, 9) ¥ («, 9)} ,

5
dé[i# Y (1,8 F) (1, 9) - i F (1, 9) E“ (r, }

1]
_a QJ

=2 {i B (2, 8) F9 (1,8) - 1 P9 (¢ }
9
(73)
where the superscripts (b) and (ab) stand for the antic-
hiral and chiral supervariables that have been obtained after
the application of the BRST and anti-BRST invariant restric-
tions, respectively. The superscripts (d) and (ad) show the
chiral and antichiral supervariables that are obtained after
the application of co-BRST and anti-co-BRST invariant
restrictions, respectively. It is clear that the nilpotency
(05=0,05=0) of the translational generators (Jg,dy)
implies that

89@, =0& Sb@b = _i{@b’ @b} =0, (74)
aSQab =0 Sah@ab = _i{@ab’ @ah} =0, (75)
59@d20<:>5d@d=—i{@1, @d}ZO, (76)
aQQad =06 Saand = _i{Qad’ @ad} = O’ (77)

which show the nilpotency [@%a) b= @f@ 4 =0] of the con-
served charges within the ambit of ACSA to BRST formal-
ism. Thus, we have shown that there is a deep connection

between the nilpotency (af, =0,05=0) of the translational
generator (0, 0y) and the nilpotency (i.e., @ (@) = =0)
of the (anti-)BRST and (anti-)co-BRST charges [@ b, (@)d
]. The above nilpotency property can be also captured in
an ordinary space where we use the (anti-)BRST exact as
well as (anti-)co-BRST exact forms of the charges, namely,

@, = —is,, (CC - CC) ,
Q= +isy, (CC - CC)
Q,=isy (CC - CC) ,

@ad = —isud (CC - CC) .

The above expressions show the nilpotency property of the
(anti-)BRST along with (anti-)co-BRST conserved charges,
in a simpler way, in an ordinary space (cf. (74)).

Now, we are in a stage to show the absolute anticommu-
tativity of the (anti-)BRST along with (anti-)co-BRST
charges. For this purpose, we write the charges in terms of
the (anti-)chiral supervariables and the derivatives (0, dg)
of the Grassmannian variables (9, 9)

) a ab a - (ab a
0, =—i=g [F*” (1,9)F0)(z,9)| =—i | d9[F" (. ) F z,9)].
Q=i {F( (9B, :9)} =i[a [F(b) (v, ) F¥)(x, 9)] ,
Q=i [FW)( 8)F)(x, 9)} =i[as {P( Y (5, 8)F (r, 9)},
0 [.(d - (d
Qui =i 5 [F‘ (1, 9)F9(x, 9)] = —szs [F( (1,9 F 9z, 9)],

where the superscripts (a)b and (a)d denote the same
meaning as explained earlier. Here, it is straightforward to
check that the nilpotency (a%, =0,03 =0) of the translational
generators (Jg, 0g) implies the following relations:

09 @y =0 & 54,Q; = —i{ @y, @y } = 0,
05 Qgp =0 © 5,Qy = —i{Qu> @} =0,
05 Qg =06 5,405 =~i{Qy Qpy} =0,
09 Qg =0 © 54Qpg = =i{Quq» @} = 0,

which show the absolute anticommutativity property of the
(anti-)BRST as well as (anti-)co-BRST conserved charges.
The property of absolute anticommutativity of conserved
charges can also be captured explicitly in an ordinary space
by using the following (anti-)BRST exact and (anti-)co-
BRST exact forms of the charges, namely,
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G, = —isy, (CC) , @, = +isy, (éC),

Q=isyy (éC‘), Qg = —is, (CC).

6. Invariances of Lagrangian in ACSA

In this section, we discuss the (anti-)BRST along with (anti-
)co-BRST invariances of the Lagrangian (7) within the scope
of ACSA to BRST formalism. For this purpose, foremost, we
generalize the ordinary Lagrangian of (0 + 1)-dimensional
onto the suitably chosen (1,1)-dimensional (anti-)chiral
super-submanifold of the most common (1,2)-dimensional
supermanifold. The expressions of the (anti-)chiral super
Lagrangian are

L(r) — 1) (£,9) = (MA) <(>m0

-3 ) - ﬁpw(f)

- ZO(z,9) p, (1) - V(r)
+ % B (1) + B(7)
2V (@9 +0(x9)]

- (b)

e

(v) +iF" (1,9)C(x),

Ho)p, (1) + 0" (v, 9)p, (1)
- SR =5 A)

~ F (1,9) p, (1) - V(r)
+ % 932(1) + =%’(T)

[ gt

L(r)— L9, 9) =7

(7, 9) + O (1, 9)}

—iC(r) ™) (1,9) +i C(r) F¥) (1, 9),
(82)

where the superscripts (ac) and (c¢) on the super
Lagrangians denote the antichiral and chiral super Lagrang-
ians (containing antichiral and chiral supervariables),
respectively. It is evident that under the application of trans-
lational generators (03, dy), we get the (anti-)BRST invari-
ance of Lagrangian (L) with the following results:

% {i(“f) (r, 9)} = di {gg(r)C(r)}

_

i | (83)
e [i“) (7, 9)] == [@(T)C(r)},

which imply that the generalized version of super
Lagrangians remains quasi-invariant (i.e., up to a total time
derivative) under the translational generators (dg, 0g) within
the scope of ACSA which are consistent with Equation (10).
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Now, we capture the (anti-)co-BRST invariance of the
Lagrangian (7) within the scope of (anti-)chiral supervari-
able approach. For this, we generalize the ordinary Lagrang-
ian into (anti-)co-BRST super Lagrangian where (0+ 1)
-dimensional theory is generalized onto the (1,1)-dimen-
sional (anti-)chiral super-submanifold of the common (1,2
)-dimensional supermanifold as follows:

() p(1) + 6 (1,9) p, (1)
- LB = 5 P

-~ Z(2,9) p, (1) - V(r)
+ 1 %2(1) + 95‘(1)

L(r) — L“Y(7,9) =

L(z) — LY (1,9) = i(x)p, (1) + & (v, 9)p, (1)

- 3P0 - 32B(0)

- Z (7, 9)p, () - V(r)

+ %.%’2(7) + RB(7)

: [2“ (o) (r,9) +©“I (1, 9)}

(7. 9) C(r) +iF“) (1, 9) C(x),
(84)

where the superscripts (¢,d) and (ac,ad) denote the
super Lagrangians (containing the chiral and antichiral
supervariables) obtained after the application of the co-
BRST and anti-co-BRST invariant restrictions, respectively.
It is straightforward to check that

% 9] = —% [, (T)C(). 55)
%[i(ﬂfﬂd)( ’g)} __% [p(P(T)C(T)},

which show the (anti-)co-BRST invariance of the
Lagrangian L within the ambit of ACSA to BRST formalism.
At the end of this section, we have the following concluding
remarks. There are deep connections between the (anti-
)BRST symmetries (s,,) and derivatives (dg,dg) of the

Grassmannian variables (9, 9) with the following mappings:
s, © 0y and s,, © dy. Similarly, in the case of (anti-)co-
BRST symmetry transformations, it is clear that these sym-
metry transformations are also connected with the deriva-
tives (dg,0y9) of Grassmannian variables with the
mappings: s; <> 0g and s,; < 05 (cf. Sections 4 and 5).
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7. Conclusions

In our present analysis, for the first time, we have derived the
off-shell nilpotent quantum (anti-)BRST along with (anti-
)co-BRST symmetry transformations within the scope of
ACSA. We have also discussed the nilpotency along with
absolute anticommutativity properties of the corresponding
(anti-)BRST along with (anti-)co-BRST conserved charges
of the ordinary (0+1)-dimensional gauge invariant
Christ-Lee model within the ambit of (anti-)chiral super-
variable approach (ACSA) to BRST formalism.

The novel remarks of our present endeavor are the deriva-
tion of the off-shell nilpotent (anti-)BRST along with (anti-
)co-BRST symmetry transformations (cf. Section 4) and the
proof of nilpotency and the anticommutativity properties of
the (anti-)BRST and (anti-)co-BRST charges in spite of the
fact that we have taken into account only the (anti-)chiral
super expansions of the supervariables (cf. Section 5). The nil-
potency and anticommutativity properties of the above con-
served charges and derivation of the corresponding (anti-
)BRST and (anti-)co-BRST symmetry transformations are
obvious when the full super expansions of the supervariables
(i.e., BT-supervariable formalism [29-32]) are taken into
account. However, for the present study, we have shown these
properties with the help of only (anti-)chiral super expansions
of the (anti-)chiral supervariables.

It is worthwhile to mention that the nilpotency of the
BRST as well as anti-BRST conserved charges is connected
with the nilpotency (95 = 95 = 0) of the translational genera-
tors 0y and 0y, respectively. On the other hand, nilpotency of
the co-BRST and anti-co-BRST charges is connected with
nilpotency (93 = 8%, =0) of the translational generators dy
and 0y, respectively. However, we have shown (cf. Section
5) that the absolute anticommutativity of the BRST charge
with anti-BRST charge is connected with the nilpotency
(ag =0) of the translational generator (dy) and absolute
anticommutativity of anti-BRST charge with BRST charge
is connected with the nilpotency (a% =0) of the translational
generator (dg). On the contrary, the absolute anticommuta-
tivity of the co-BRST charge with anti-co-BRST charge is
connected with the nilpotency of the translational generator
(0y) and the absolute anticommutativity of the anti-co-BRST
charge with co-BRST charge is deeply related with the nilpo-
tency of the translational generator (dgy). These statements
are completely novel for the present model. We have also
captured the (anti-)BRST along with (anti-)co-BRST invari-
ances of the Lagrangian within the scope of ACSA. In fact,
the action corresponding to the (anti-)chiral super Lagrang-
ian is independent of Grassmannian variables (9, 9) which is
completely novel for the present CL model (cf. Section 6).

The above issues, within the scope of ACSA to BRST
approach, would be discussed in our future investigations
for the various gauge-invariant models/theories like ABJM
theory [33-35], supersymmetric Chern-Simons theory [36],
Jackiw-Pi model, Freedman-Townsend model, and Abelian
gauge theory with higher derivative matter fields. In fact,
our standard techniques of ACSA to BRST formalism are
applicable wherever gauge invariance is present in the the-
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ory. Furthermore, there is an interesting and important work
[37] that would be discussed in the future for different pros-
pects of the theoretical and physical point of view in the
domain of theoretical high-energy physics.
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